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Abstract: In the context of the holographic duality, the entanglement entropy of ordinary

QFT in a subregion in the boundary is given by a quarter of the area of an minimal

surface embedded in the bulk spacetime. This rule has been also extended to a suitable

one-parameter generalization of the von-Neuman entropy Ŝn that is related to the Rényi

entropies Sn, as given by the area of a cosmic brane minimally coupled with gravity, with

a tension related to n that vanishes as n → 1, and moreover, this parameter can be

analytically extended to arbitrary real values. However, the brane action plays no role in

the duality and cannot be considered a part of the theory of gravity, thus it is used as an

auxiliary tool to find the correct background geometry.

In this work we study the construction of the gravitational (reduced) density matrix

from holographic states, whose wave-functionals are described as euclidean path integrals

with arbitrary conditions on the asymptotic boundaries, and argue that in general, a non-

trivial Hayward term must be haven into account. So we propose that the gravity model

with a coupled Nambu-Goto action is not an artificial tool to account for the Rényi en-

tropies, but it is present in the own gravity action through a Hayward term. As a result

we show that the computations using replicas simplify considerably and we recover the

holographic prescriptions for the measures of entanglement entropy; in particular, derive

an area law for the original Rényi entropies (Sn) related to a minimal surface in the n

replicated spacetime. Moreover, we show that the gravitational modular flow contains the

area operator and can explain the Jafferis-Lewkowycz-Maldacena-Suh proposal.
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1 Introduction

The von Neumann entropy measures the entanglement of a physical system in a given

state and for a specific subset of degrees of freedom, and the celebrated Ryu-Takayanagi

(RT) [1] formula is a powerful tool to compute it in quantum field theory in the mindset

of the gauge/gravity correspondence. This generalizes the Bekenstein-Hawking law for

the thermodynamic entropy of Black holes [2–4], and the entropy is given by a quarter

of the area of the minimal surface embedded in the dual higher dimensional spacetime

with gravity. Since its discovery, a lot evidence of its validity had been collected, and

it was finally been derived by computing the gravitational entropy with different replica

methods [5–7].

The Rényi entropies are a generalization of the von Neumann entropy labeled by an

integer parameter n [8],

Sn ≡
1

1− n log Trρn (1.1)

such that the standard von Neumann entropy S ≡ −Trρ log ρ is recovered in the limit

n→ 1. There is an alternative family of measures of entanglement entropy related to the

Rényi entropies, given by

Ŝn ≡ −n2∂n

(
1

n
log Trρn

)
(1.2)

that also coincides with the von Neumann entropy as n → 1, and has a very similar

thermodynamic interpretation [9]. A similar area-law prescription for these entropies has
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Figure 1. The figure shows the standard situation where a Hayward boundary term must be

considered. The spacetime M has a boundary with a non-smooth corner at Γ = Σ1 ∩ Σ2, which is

described in terms of the angle Θ = cos−1 (n1 · n2).

been provided [10], but in this case the extremal surface interacts with the background

spacetime through a tension that depends on the parameter in the specific way

Tn =
n− 1

4nG
(1.3)

where G is the Newton’s constant. In a computational sense, Rényi entropies are generally

easier to handle. However, they are objects of interest in their own as they should provide a

full understanding of the entanglement structure of the quantum state [6, 11] and are known

sometimes to be directly measured [12]. Rényi entropies have been previously studied in

the holographic context [5–7, 10].

The proposal of [10] consists of an elegant Nambu-Goto action describing a cosmic

brane coupled to gravity, with a tension that depends on n and vanishes for n = 1, such

that the RT law is recovered. By virtue of (1.3), the parameter n can be analytically

extended to any real value. However, the origin of such brane is hard to be justified from

standard holographic recipes. It cannot be argued in the own gravity theory, and need

to be put by hand as an tool to obtain the conical dominant solutions and explain the

entropies (1.3). In other words, the problem is that the reduced density matrix should

be calculated from a pure global state in gravity (in the Hartle-Hawking formalism), by

tracing out the complementary dof’s in the bulk theory but it does not explain the cosmic

brane term or its effect in the solutions. In an alternative approach, specific states were

considered with definite (extremal) area [13], which provides a Sn proportional to this area

and independent on n.

In this work we start from a different point of view that also captures the results for the

entropy, and moreover, explains the cosmic brane contribution with the appropriate tension

from the own theory of gravity, through a very plausible assumption on the correspondence

between subsystems in both sides of the gravity/gauge duality.

The idea is to consider a generalization of the Gibbons Hawking boundary term to cases

where the spacetime has a non smooth boundary proposed by Hayward in the 90’s [14].

For instance, if there is a co-dimension 2 corner Γ (see figure 1) that splits the spacetime

boundary in two smooth components Σ1,2 with respective normal vectors n1,2, thus the
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standard gravitational action has an extra term given by

1

8πG

∫
Γ

cos−1 (n1 · n2)
√
γ (1.4)

where γ is the induced metric on Γ. Since the boundary is fixed previously, the corner angle

is arbitrarily fixed and the Hayward term is required to get a well posed variational problem.

In a very recent article [15] Takayanagi and Tamaoka drew attention to a possible

application of this term to holographic context and to the study of the entanglement

entropy; in particular, using a replica trick calculation close to the Fursaev’s approach [5],

they showed that the von Neumann entanglement entropy can be explained by considering

the Hayward term in the gravitational action. The aim of the present work is to generalize

this result to the Rényi entropies, precisely by showing that the cosmic brane term is

explained in the own gravitational theory through a Hayward term. The presence of the

Newton’s constant G in (1.3) enforces such point of view.

Another important aspect captured by the present study is the modular Hamilto-

nian associated to the modular flow in gravity [16, 17], which can be obtained from the

gravitational density matrix that will include the area operator. The area operator in a

holographic context had been essayed in ref. [18] as the gravity dual of the modular Hamil-

tonian in the gauge theory, and it could lead to the quantization of areas, at least in certain

specific contexts such as black holes. Then a more detailed analysis of the area operator

in a suitable (holographic) quantum gravity was provided in [19], and finally based on

it, the presence of this area operator as part of the modular Hamiltonian of gravity was

formulated in ref. [20], in what is known as the JLMS conjecture. In the present work, a

precise (path integral) definition of area operator and how its matrix elements in a basis of

bulk fields (i.e, boundary data on two copies of the entanglement wedge) can be computed

in the semi-classical (large N) regime, will be obtained as a result. Moreover it will be

shown that it is present in the gravitational modular Hamiltonian in agreement with the

proposal JLMS proposal.

This work is organized as follows. In section 2 we discuss how bipartite systems in

the boundary QFT should be related to the possible partitions of the gravitational d.o.f.

and give a plausible holographic prescription. In section 3 we describe the states and

wave functional in gravity, and show how the Hayward term appear as more general (non

smooth) initial surfaces are considered. In section 4 we describe the density matrix in

gravity and show that the area operator appears. Section 5 is devoted to derive the area

law for the von Neumann entropies with the Hayward term, and in section 6 we generalize

it using replicas and obtain the prescriptions for the Rényi and modified Rényi entropies.

Finally, in section 7 we study the modular flow in gravity (with Hayward term) and obtain

the JLMS formula, properly involving the area operator. Concluding remarks are collected

in section 8.

2 States in holography and decomposition of bi-partite systems

Consider a local quantum field theory defined on a globally hyperbolic spacetime M =

Rt × ∂Σ, in a pure state defined through its density matrix ρ = |Ψ〉〈Ψ| we can define the
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Figure 2. (a) A representation of the state |Ψλ〉 as an euclidean path integral is presented. An

external source λ 6= 0 prepares an excited state. The CFT subsystem A is denoted in blue, while

two candidates for its dual bulk regions are denoted B1 and B2. (b) A depiction of the computation

of 〈φ+|ρλ|φ−〉 is shown, where ρλ = TrB̄ |Ψλ〉〈Ψλ|. The φ± define the field configurations in the

branches and β is the local angle between them around the codimension-2 surface Γ inside the bulk.

In building 〈Ψλ|, the source λ?(τ) ≡ λ(−τ) must be defined.

reduced density matrix, ρA, on a subsystem A ∈ ∂Σ as the partial trace on the complement

of A (denoted by Ā). By definition this object is semi-definite positive and Hermitian and

then can be always written as

ρA = TrĀρ =
e−KA

Tre−KA
, TrAρA = 1 , (2.1)

where KA is the modular Hamiltonian. We will assume that this theory is holographic, i.e,

M stands for the boundary of spacetimes with fixed asymptotics. Typically one consider

the dualty AdS/CFT, where the space ∂Σ is compact (a d − 1-sphere), and the bulk

spacetime is asymptotically AdS.

Let us denote as Σ the constant-t spacelike hypersurface of the bulk spacetime, and

let B ⊂ Σ a candidate to the gravity dual of the region A (figure 2b). The intersection

of B with its complement B̄ ⊂ Σ, is the codimension-2 (entangling) surface Γ that inter-

sects the asymptotic boundary on ∂A. The causal development of B is often called the

entanglement wedge.

The (von Neumann) entanglement entropy is computed from (2.1) as

S(A) = −Tr ρA log ρA (2.2)

similarly, one can compute the entanglement entropy in the theory of gravity S(B) and by

virtue of the holographic correspondence, it should coincide with S(A) for a suitable choice

of B.
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Given a state Ψλ, common to both (gauge/gravity) Hilbert spaces [21], the reduced

density matrix for a subregion of the boundary (gauge) theory A is obtained by taking

the trace on the complement Ā; and since the dual of A is B, one can naively claim

that the holographic dual of this operation is TrB̄ ΨΨ†. Nevertheless, there is no a clear

prescription (at quantum level) on which is the gravitational subsystem B that correspond

to the subsystem A on the boundary.1 In a path integral approach, the natural prescription

is that one should sum over all the possible partitions of the dual space in two subsystems

B and B̄ (intersecting in the surface Γ), such that B intersects the asymptotic boundary

on A, i.e, to sum over the entangling surfaces Γ (see figure 2a).

On the other hand, let us observe that the matrix elements of ρ(A) can be computed

in a configuration basis of fields |φ〉 ≡ |{φ(x), ∀x ∈ B ⊂ Σ}〉 in the corresponding entan-

glement subregion B ⊂ Σ of the bulk. This matrix ρ(B) ≡ 〈φ+|ρ|φ−〉 (see figure 2b) can

be interpreted as a representation of the density operator on HB, then, if one changes

the subset B, the representation is changing.2 Thus clearly, these representations can be

labeled by the codimension-2 surfaces Γ.

Therefore, our prescription here is that the density matrix of the system A, living on

the boundary of Σ, has the structure of a sum over blocks over the different representations

in the bulk

ρλ(A) =
⊕

Γ

ρλ(B) . (2.3)

In fact one of the results of this work is that the probabilities of the different represen-

tations/blocks depend on the area of Γ as e−TArea(Γ) where T is a real positive number.

This resembles the von Neuman’s theorem (see e.g. appendix of [23]). Since the algebra

of operators in the QFT defined on the boundary is a von Neumann algebra, then in the

context of the gauge/gravity duality, it is natural to decompose the Hilbert spaces as

HA ⊗ HĀ ≡
⊕

Γ

HB ⊗HB̄ . (2.4)

The objective of this paper is not to study more details of this structure, although inter-

esting questions remain for future research. For the most of applications studied in this

work, we are interested in the formula to compute the partition function (and the entropy)

in the field theory in terms of the theory of gravity, namely

Zλ(A) =

∫
∂Γ=∂A

[DΓ] Zλ(B) ∂B ≡ Γ ∪ A , (2.5)

which follows from eq. (2.3) by taking trace, on the right hand side one shall sum over the

Γ-blocks. This formula expresses that given the subsystem A, the surface Γ (anchored by

∂A) is undetermined a priori, and one should sum over all possibilities.

These prescriptions will be useful to relate the entanglement entropies (and modular

Hamiltonian) computed to both sides of the gauge/gravity correspondence, and we shall

return to them later.
1A similar discussion can be found in ref. [13] to explore the fixed area states subspaces.
2This is particularly clear in a finite-dimensional Hilbert space (which can be formulated using a suitable

discretization of Σ), where the dimension of the representation would be dΓ ≡ dimHB . A construction using

OQEC techniques can be found in [22].
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3 Wave functionals in gravity and the Hayward term

In the present work we will consider states in the field theory whose wave functional can be

described as an euclidean path integral in the gravity side such as in the Hartle-Hawking

formalism, but with arbitrary (asymptotic) boundary conditions λ 6= 0, that correspond to

sources on the euclidean extension of M [24, 25]:

|Ψλ〉 ≡ P {e−
∫
τ<0 dτ O(τ)·λ(τ)} |0〉 ⇐⇒ 〈φΣ|Ψλ〉 ≡

∫
(φΣ;λ)

Dφ e−I[φ] (3.1)

where τ denotes the Wick rotated time coordinate of M. This is the state in the field

theory, and the expression on the right is its wave function in the holographic dual. The

ground state corresponds to setting λ = 0. These states were extensively studied in different

holographic setups [26–30], and extended to finite temperature cases [21, 31, 32].

The path integral on the right is the projection of a state |Ψλ〉 onto a of a basis of

field configurations on a given initial spacial surface Σ. It implicitly supposes the sum

over all the euclidean bulk topologies M− whose boundary is Σ and the past (τ < 0) of

the asymptotic boundary, see figure 2; but at large N , only the classical configurations

contribute and one evaluates it on the dominant solution (M−, gµν).

The variable φ here denotes the collection of bulk local fields, including metric and

matter fields: φ = (gµν , ϕ, . . . ); and φΣ = (hab, ϕΣ, . . . ) , λ = (λab, λ, . . . ) denote Dirichlet

boundary conditions on Σ and the asymptotic boundary respectively. For λ ≡ 0 this

describes the Hartle Hawking wave functional for the fundamental state, but it generalizes

to other (excited) states as λ 6= 0 [33], which in the large N approximation, correspond to

quantum coherent states [21, 24, 31]. The total action is I ≡ IG[gµν ] + Imatter where IG is

the gravity action and Imatter denote the terms depending on ϕ that would contribute to

the action as o(1/Nk) , k ≥ 0.

The initial surface Σ where one projects the state is arbitrary. The standard choice is

a connected and smooth hypersurace, but for our purposes here, will be crucial to consider

an initial surface Σ = B ∪ B̄, with an angle β/2 (on Γ) between B and its complement

(see figure 3b).

Let us consider states (3.1) such that M− can be continuously foliated in surfaces

B(τ) labeled by an angular parameter τ ∈ [0,−iβ/2] [31, 34], identifying B(0) ≡ B and

B(iβ/2) ≡ B̄. If β/2 ≡ π, the initial surface Σ = B ∪ B̄ is smooth (figure 3a). This

geometry is the same that construction ref. [15] starts with.

The most well known examples of this are: the thermal vacuum [34], and excited

(coherent) thermal states [21, 31], where the euclidean spacetime can be described by

M− = B × [0,−π] and τ parameterizes a symmetry such that the foliation is uniform:

B(τ) = B , ∀τ . One might alternatively project this state in a basis of configurations of

the fields on another initial hypersurface Σ′ = B ∪ B̄ with angle β/2 6= π between B

and B̄, but in this case the foliation of the spacetime bounded by Σ′ cannot be uniform,

see figure 3b.

– 6 –



J
H
E
P
0
7
(
2
0
2
0
)
2
2
7

|Ψ 〉

Γ

π

λ

B B
−

(a)

Γ

β/2

|Ψ 〉λ

B B
−

(b)

Figure 3. (a) The figure shows the state |Ψλ〉 projected on a basis of field-configurations defined

on a smooth (initial) surface Σ; while figure (b) depicts the projection on a basis |φΣ, β〉 associated

to a non-smooth surface Σ, in this case the (Euclidean) path integral that represents the wave

functional requires a Hayward term in the action.

In this context the wave functional can be expressed as a matrix element of an euclidean

evolution operator [21, 30, 31]

〈φΣ, β/2 |Ψλ〉 = 〈φB| ⊗ 〈φB̄|Ψλ〉 =

∫
φB ,φB̄ ,λ

[DΦ] e−I[Φ] ≡ 〈φB|Uλ(0,−iβ/2)|φB̄〉 (3.2)

where φB , φB̄ are the boundary conditions on τ = 0 and τ = −iβ/2 respectively, then

〈φB|〈φB̄| denotes an element of the (complete) configuration basis of the Hilbert space

HB ⊗ HB̄. The evolution operator shall be seen as a linear map U : HB → HB̄ , and

according to the gluing rules [31], the reduced density matrix can be expressed as the

composition at the moment of time-reflection symmetry:

ρλ (: HB → HB) = Uλ(iβ/2, 0)U †λ(iβ/2, 0) ≡ Uλ(iβ/2, 0)Uλ∗(0,−iβ/2) = Uλ(iβ/2,−iβ/2)

(3.3)

where λ∗(τ) ≡ λ(−τ) (see refs. [21, 24, 30, 31]). For this reason the operator U is also

referred to as ρ1/2 in the TFD literature [35, 36]. The representation of the pure states

in terms of evolution operators is convenient and more illuminating for the computations

involving the Replica method.

In this case, the full gravity action is expressed as

IG = − 1

16πGN

∫
M−

√
g(R−2Λ)− 1

8πGN

∫
B

√
hK− 1

8πGN

∫
B̄

√
hK+

1

8πGN

∫
Γ
(β/2−π)

√
γ,

(3.4)

where K is the trace of the extrinsic curvature; β/2 is the angle between the two surfaces

B and B̄. The Einstein-Hilbert action with matter will be referred to as the bulk action

Ibulk[φ,M−] ≡ 1

16πGN

∫
M−

√
g(R− 2Λ) + Imatter[g, ϕ, . . . ] (3.5)

which includes all the integrals on the points of the interior of M−. The boundary con-

tributions are given only by the Gibbons-Hawking term and extra (local) contributions of

– 7 –
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matter fields on the boundaries of M−

Ibdy[φΣ, λ, ∂M
−] ≡ 1

8πGN

∫
B̄

√
hK +

1

8πGN

∫
B

√
hK + Imatter[h, ϕΣ, λ, . . . ], (3.6)

and the so-called Hayward term (see refs. [14, 15]):

IH(Γ) =
1

8πGN

∫
Γ
(β/2− π)

√
γ , (3.7)

which vanishes for β/2 ≡ π that describes a smooth (without wedges) initial surface Σ. In

this first study we will set to zero the gravitational sources at the asymptotic boundary

(λab ≡ 0) for simplicity, and so the asymptotic gravitational terms do not appear in the

action (3.6). The classical problem for this theory is well posed by fixing Dirichlet boundary

conditions on B, B̄, the asymptotic boundary, and the angle β/2, and then γ on Γ is

computed from the bulk metric.

Then in the large N limit, the gravitational (unnormalized) wave function can be

computed in the saddle point approximation:

Ψλ (φB, φB̄, β/2) (= 〈φB|Uλ (−iβ/2, 0) |φB̄〉) = e−Ibdy [φB ,φB̄ ,λ]+
(π−β/2)

8πG
a(Γ), (3.8)

where we have imposed that the opening angle (between B and B̄) is uniform along the

surface Γ and the Hayward term is3

IH [Γ, β/2] = − 1

8πG

∫
Γ
(π − β/2)

√
γ = −(π − β/2)

8πG
a(Γ) (3.9)

At this point we would like to point out that the Hayward term appears as the state is

projected on a particular basis |φΣ, β/2〉 of configurations, thus it appears as a property of

the wave functionals of gravity (or components) by projecting the state on a specific basis,

rather than about the state itself. The state Ψλ of the dual field theory, is characterized

by the sources λ on the interval (0, π)× ∂Σ of the asymptotic boundary.

4 The gravitational density matrix and the area operator

The reduced density matrix associated to the region B of the bulk is

ρλ(B, β) ≡ TrHB̄ |Ψλ〉〈Ψλ| =
∑
φB̄

〈φB̄|Ψλ〉 〈Ψλ |φB̄〉 . (4.1)

Defining two arbitrary field configurations φ± ≡ φ(B±) = φ(±iβ/2) on two copies (or

branches) of the surface B, denoted as B± (figure 1b), which intersect in a co-dimension

two surface Γ = B+∩B−, and using the relation (3.2), one can express its matrix elements

as the product of euclidean evolution operators (eq. (3.3)):

〈φ+|ρλ(B, β)|φ−〉 =
∑
φB̄

〈φ+|Uλ (−iβ/2, 0) |φB̄〉〈φB̄|Uλ (0, iβ/2)) |φ−〉

= 〈φ+|Uλ (−iβ/2, iβ/2) |φ−〉
(4.2)

3This requirement implies that β projects on the intersection of Γ with the asymptotic boundary, so it

also characterizes configurations basis of the QFT defined on the boundary.
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where we have used the completeness of the configuration basis IB̄ ≡
∫
DφB̄|φB̄〉〈φB̄| on

HB̄. This is well defined as a path integral, and one can compute this in the Large N

approximation, and using (3.8):

〈φ+|ρλ(B, β)|φ−〉 =

∫
φ±,λ

[DΦ] e−I[Φ] ≈ e−Ibulk[φ,M ] e−Ibdy [φ±,λ]+
(2π−β)

8πG
a(Γ) (4.3)

where, by virtue of the saddle point approximation, we evaluated the action IG in a classical

solution M = M− ∪ M+ smoothly glued on the surface B̄, whose boundaries are the

branches B− and B+ (see figure 2a). Obviously the boundary data φ± that label the

matrix elements (so as λ characterizing the state), backreact with the bulk metric. Notice

that because of (3.8) and (4.2), in the exponent of this expression appears as a sum of two

(equal) Hayward terms [15].

Let us see briefly that in the present formalism a(Γ) shall be interpreted as an operator.

In fact, the Hayward term in the action (3.4) and in the wave functional is crucial to it.

The opening angle β/2 (actually, its analytical extension −iβ/2) and the volume el-

ement
√
γ can be taken as the variables canonically conjugated in the ADM formalism,

associated to “edge” modes (see ref. [15] for details); then, in an eventual canonical quan-

tization of gravity as these quantities be promoted to operators [18, 19]:

〈φΣ, β|a(Γ)|Ψ〉 = −(8πG) 2
∂

∂β
Ψ(φΣ, β) (4.4)

We see that by variate the wave functional eq. (3.2) with respect to β one obtains the action

of the area operator on the global state. Then obviously the computation of it depends

on which o(G) approximation the path integral (3.2) is being calculated. For instance,

to leading order the wave functional is given by the r.h.s. of (3.8) and the area of Γ is

nothing but the area computed with the induced metric γ, obtained from the boundary

data: hB, hB̄ by continuity. This shows that in the present set up a(Γ) can be considered an

operator, and many calculations are precisely defined, as the Hartle-Hawking path integral

can be better calculated. For example, its expectation value can be computed from eq. (4.3)

by taking the trace (summing over the gluing conditions φ+ = φ−), and differentiate it

with respect to β:

Tr{ ρ(B, β) a(Γ)} = −(8πG)
∂

∂β
Tr ρ(B, β) = −(8πG)

∂

∂β
Z(B, β) . (4.5)

This can be considered an explicit realization of previous proposals viewing the area as an

operator [13, 18–20].

5 The partition function and gravitational entropies

Expression (3.8) is the reduced density matrix associated to the entanglement region B

-with boundary Γ-, and clearly the angle between the boundaries B− and B+ is β. To

evaluate the partition function Z(β) ≡ Trρ in the large N approximation, B+ and B−

must be smoothly glued, such that their contributions (the Gibbons-Hawking terms) cancel

out [24, 27, 33].
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It is worth pointing out that in the standard previous computations of this partition

function (as function of β), the Hayward term is ignored, and one would obtain a conical

geometry with only one asymptotic boundary, and a deficit angle 2π − β. Thus the total

action is (3.5) and only the tip of the cone contributes to the action with a scalar curvature

R = 4π (1−β/2π) δΓ, so the on-shell action is proportional to the area of Γ [7, 15], such that

Z = Zbulk e
aΓ
8πG

(2π−β) . (5.1)

If one consider the vacuum state λ ≡ 0, then φ = 0 everywhere, and logZbulk is given only

by the gravity the action that goes over the regular part of M . The contribution of the

cosmological term can be eliminated by normalizing the state ρ→ ρ/Z(1) (see section 6).

So, the gravitational (von Neumann) entanglement entropy in this case is independent

on the range β

S(B) = logZ − β∂ logZ

∂β
=

aΓ

4πG
(5.2)

which is the expected area law, and the derivation is similar to [5]. A criticism with this

is that on-shell contributions to the path integral coming from conical geometries (with

β 6= 2π), should require suitable sources in the bulk that cannot be justified only from the

theory of gravity (3.4) [6, 7].4 Then one need to consider some appropriate extension of the

theory to include back reacting fields such that effectively behaves as a cosmic brane [10],

although it is difficult to argue that using the standard holographic recipes.

In contrast in the present formulation, we have just shown that the construction of a

state ρ(B) where the interval β differs from 2π, requires a Hayward term. The total theory

of gravity that one shall consider is Ibulk + IH(Γ), such that Γ is taken as a dynamical

variable (as argued in the next section), and so there are classical solutions with conical

singularities, avoiding the criticism mentioned above.

In this case, the result (5.1) is recovered as follows. The surfaces B± are identified

after a period β, so M is a conical geometry but Γ is part of the boundary. The Einstein-

Hilbert (bulk) term is local and integrates the scalar curvature in the interior of M , where

it is regular.

Thus, since the total gravity action is (3.5) (without the Gibbons-Hawking terms)

results that

Z(B, λ, β) ≡ TrB Uλ(iβ) = Zbulk[M ] e
(2π−β)

8πG
aΓ , (5.3)

is the partition function associated to a region B of the bulk with fixed boundary Γ. But we

will show below (using the replica method) that the cosmological term does not contribute,

and the other contributions to the prefactor Zbulk[M ] can be neglected such that only the

Hayward term is relevant for the computation (5.2). These results will be recovered in

section 6 using replicas, and many details will be clarified.

Density matrix and entropy in the boundary QFT. The previous results in the

gravity side suppose an arbitrary (fixed) separation in two subsystems of the bulk d.o.f’s:

B ∪ B̄ and a entangling surface Γ, but now we shall translate them to the field theory

4In a pure-gravity path integral, the dominant contributions are smooth (vacuum) solutions.
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defined on the boundary. As argued in section 2, the gauge/gravity duality prescribes that

the respective Hilbert spaces are equal; therefore, we are implicitly assuming that the state

is described by the same object |Ψλ〉 [24, 30]. However, this state can have very different

representations in the gauge or gravity theories, and we actually do not know precisely how

they relate. A particularly relevant issue about this is how to relate the reduced states

on the regions A and B and the respective partition functions, although in section 2 we

argued a formula for it, involving a sum over Γ’s (eq. (2.5)).

The main result of this work is that the Hayward term, added to the prescription (2.5),

effectively explains the cosmic brane proposal of [10], and accounts for the entanglement

entropies in the field theory defined on the boundary. Moreover, the proposal (2.3) is crucial

to define the boundary density matrix, such that the area appears as an operator [19, 20].

In fact, plugging (4.3) in the prescription (2.3) we obtain the (path integral) formula

for the reduced density matrix in the boundary:

ρλ(A) =
⊕

Γ

∫
φ±(Γ),λ

[DΦ] e−I[Φ] ≈ e−Ibulk[M ] e−Ibdy [φ±,λ]+
(2π−β)

8πG
a(Γmin) ⊕ . . . (5.4)

where the right hand side is the large N approximation of the most probable representation

Γ (∂Γ = ∂A), associated to the surface of minimal area. So the field configurations φ± ≡
φ±(Γmin) refers to the matrix elements in that representation (and “. . . ” denote the others

less probable). The prescription (2.5) consists of taking the trace of this, and the result is

the sum on the Γ-blocks of the traces of each sector TrBρλ(B), that are computed summing

over φ+(B) = φ−(B) (this operation is equivalent to glue the surfaces B± after an interval

β 2). So we obtain the partition function associated to the region A in the boundary theory:

Z(A, β) =

∫
∂Γ=∂A

[DΓ]

∫
λ
[DΦ] e−Ibulk[Φ]−Ibdy [λ]− (2π−β)

8πG
a(Γ) ≈ e−Ibulk[M ]−Ibdy [λ]+

(2π−β)
8πG

a(Γmin)

(5.5)

where, on the r.h.s. we have used the saddle point approximation and evaluated on the

surface whose area is a minimum Γmin (for β > 2π). Finally, we compute the entanglement

entropy for the region A using the formula (5.2) and obtain the RT formula

S(A) =
1

4G
a(Γmin) . (5.6)

The computation of (5.4) and (5.5) is well defined since the boundary problem indi-

cated in figure 2 is well posed. Notice that the problem consists in solving the coupled

system of equations for the fundamental fields Γ, g, φ, derived from a Nambu-Goto action

coupled with gravity with a tension

T =
2π − β
8πG

, (5.7)

such as in the formulation [10]. The difference is that the Hayward term replaces the cosmic

brane, but it is part of the gravitational action rather than an artifice to find the classical

geometry with the suitable conical singularity. In contrast with the approach of [10], this

term contributes crucially to the partition function and to the direct computation of the

Rényi entropies, presented in section 6.
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Remarkably, the formula (5.7) for the real-valued tension as function of the opening

angle β between the branches B+ and B− is universal, and it open the possibility of

interesting generalizations (e.g. higher order gravity); in particular we will see below that

it works as a parameter to generalize the von Neumann gravitational entropies. In the

limit as β → 2π, the geometry of figure 2(b) is given by a solution of gravity, and the

cosmic brane becomes the non-backreacting minimal surface of the RT prescription. The

presence of the Newton constant in the brane tension suggests that the nature of this term

is gravitational, which enforces our point of view.

6 Rényi entropies from Hayward term using replicas

In this section we use a version of the replica method to compute the spectrum of Rényi

(and von Neumann in the limit n→ 1) entropies using the Hayward term. It is markedly

different from the calculus [15], and closer to the method of refs. [7, 10] but where the

Hayward term plays a crucial role.

Let us consider now the euclidean spacetime solutions Mn of n copies of the asymptotic

boundary conditions: λn on ∂Mn ≡ (0, 2π) ∪ (2π, 4π) ∪ . . . (2π(n − 1), 2nπ) × (∂Σ)(d),

where 0, and 2nπ are identified; i.e: th BC’s of a single copy, λ, is repeated n times before

gluing the boundaries B±. To identify the edges B± corresponds to take the trace of (6.1),

and the geometry Mn becomes periodic (with period 2πn).

Since the un-normalized matrix density ρn can be described as the evolution opera-

tor [7, 21, 31], at large N , the bulk computation consists in evaluating the (euclidean) path

integral on the classical solution:

Tr ρn(B) = Tr U(B, i(β = 2nπ)) = Z[B,Mn] ≈ e−I[Mn] . (6.1)

In our mindset (e.g. eq. (4.2)), this expression can be thought as a bra-ket of a initial

state with β/2 ≡ nπ; thus, the semi-classical approximation (4.3) has a Hayward term

proportional to δn = 2π(1−n). So therefore, the classical dominant solution Mn is a conifold

with deficit angle δn (and tension δn/8πG) and the repeated boundary conditions λn.

One can directly observe that the logarithm of the left hand side of eq. (6.1) is pro-

portional to the nth order Rényi entropy. Nevertheless, the right computation involves the

normalized density matrix, and requires to divide this expression by the number (Tr ρ)n.

The normalized density matrix is

ρ̃ ≡ ρ/Z(M1) , (6.2)

where

− log Tr ρ(M1) ≡ − logZ(M1) = I[M1] (6.3)

and I is given by (3.4). Then using (6.1) we have

log Tr ρ̃n = log Z[Mn]−n log Z(M1) = Ibulk[Mn]−nIbulk[M1]+IH(Mn)−nIH(M1) (6.4)

but noticing that for n = 1, 2π − β = 0, the contribution from the Hayward term is the

same upon normalization, i.e

ĨH ≡ IH(Mn)− nIH(M1) = IH(Mn) = 2π(1− n) a(Γmin,n) . (6.5)
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Note that since we aim at the field theory partition function, (according to eq. (5.5)) the

Hayward term here is valued on-shell on the minimal surface Γmin,n in the target spacetime

Mn. If one is interested in the purely gravitational computation Z(B), it shall be valued

on arbitrary Γ (see [13]). The bulk terms are

Ĩbulk[Mn] ≡ Ibulk[Mn]− nIbulk[M1] =
(
IG(g(n),Mn)− n IG(g1,M1)

)
+ ĨMatter[φ(n),Mn] ,

(6.6)

where

ĨG[Mn] =
(
IG(g(n),Mn)− n IG(g1,M1)

)
=

1

16πG

(∫
Mn

(Rn − 2Λ)
√
g(n) − n

1

16πG

∫
M

(R− 2Λ)
√
g(1)

)
.

(6.7)

There is not asymptotic boundary terms in this expression, because the asymptotic

boundary condition for Mn has been defined as n- equal copies of λ1 (on ∂M1). In Einstein

gravity (Λ = 0), (6.7) vanish trivially on a vacuum solution (ϕ = 0), and then (6.4) is given

only by the Hayward term. For gravity with cosmological constant, this action is propor-

tional to the volume and the volume of Mn is proportional to n, then we also have that

the combination Λ(V ol[Mn] − nV ol[M1]) vanishes.5 Consequently, the calculation (6.4)

finally results

log Z̃[Mn] = log Tr ρ̃n = IH(Mn) + ĨMatter , (6.8)

that can be analytically extended to real values n → β/2π, as discussed around eq. (5.3)

(see refs. [10, 13]):

log Z̃[M β
2π

] = (2π − β)
a(Γ)

8πG
+ o(Gk≥0) . (6.9)

We see that the only contribution to the leading order (1/G) of the normalized partition

function is given by the Hayward term. Even if ϕ 6= 0 (with non trivial asymptotics: λ 6= 0)

one can ignore the back-reaction since it contributes to subleading terms (∼ o(Gk≥0)).

6.1 Calculus of the Rényi entropies

The main result of this section can be directly observed from expression (6.8), and (6.5).

Using that the contribution to the (normalized) partition function of the term Ĩbulk is

neglected and only the Hayward term contributes:

− log Trρ̃n = δn
a(Γn,min)

8πG
(6.10)

where δn = 2π(n−1), then from the definition of the standard nth order Rényi entropy (1.1)

one obtains

Sn =
1

1− n log Trρ̃n =
a(Γn ,min)

4G
, (6.11)

5This can easily understood by considering the metric gn of Mn in the region near the tip: ds2 =

dr2 + r2dτ2 +γijdx
idxj , 0 ≤ τ ≤ 2πn, which is locally independent on n, so the total volume is: V ol[Mn] =

nV ol[M1]. Away from the singularity this relation is trivial because the solutions Mn are simply copies

of M1.
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which is a (minimal) area law in agreement with the conjecture of ref. [37], where the

minimal surface backreacts with the geometry but in this prescription, remarkably, the

space time Mn is the solution to the n-replicated boundary condition and the tension

localized on the surface Γ is

Tn = (n− 1)/4G , (6.12)

acting as a gravitational source [38]. The Ryu-Takayanagi prescription is recovered from

this computation in the limit n → 1: The tension vanishes in this limit, and the minimal

surface Γn ,min reduces to Γmin, which is the minimal (non-backreacting) surface in the

smooth space time M1 = M (without conical singularity).

There is a particular class of geometries such that this computation gives an flat

spectrum, since the area of Γn ,min is independent on n, and our formula agrees with

results of [13] (see example in appendix: eq. (A2)). In this case the modified Renyi

entropy computed from (1.2), also coincides with (6.11). This is related to the fact that

the quotient of the spacetime Mn/Zn coincides with M1.

Finally, we note that for a fixed region B ⊂ Σ, one is computing the spectrum of

gravitational Renyi entropies associated to this subset, thus (6.11) is given by the (fixed)

area of the surface Γ ≡ ∂B ∩Mn

6.2 The prescription for the modified Rényi entropies

The definition of the modified nth-Rényi entropies eq. (1.1), can be conveniently put in a

more familiar form

Ŝn = logZ − n∂ logZ

∂n
=

(
logZ − β∂ logZ

∂β

) ∣∣∣∣
β=2πn

(6.13)

which shows it explicitly as a one-parametric extension of the von Neumann entropy. This

expression can be analytically extended to any real value β ≥ 0 (coinciding with the exten-

sion of the von Neumann entropy and the thermodynamic picture [8, 10]), and the discrete

spectrum Ŝn is recovered by taking β ≡ 2πn at the end of the calculation. Moreover, no-

tice that in the present approach, the geometric interpretation of the analytically extended

parameter β is the period around the conical singularity.

In this section we will show that the model of ref. [10] can be recovered in the present

set up, and therefore, the correct prescription for the modified nth-Rényi entropies. To

achieve this goal we must have into account some subtleties on the gravitational measure

and the path integral, for instance, the calculus of Tr ρn through replicated dual geometries

involves a manifest discrete symmetry Zn.

In the holographic replicas construction, the boundary is replicated n times and one

could permute cyclically these copies, obtaining the same boundary condition λn and the

same euclidean spacetime Mn filling it. This is the meaning of the so-called replica sym-

metry Zn. Therefore, let us consider spacetimes Mn with this symmetry, such that one

can define the orbifold:

M̂n ≡
Mn

Zn
. (6.14)
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In fact, the geometry Mn quotiented by the replica symmetry Zn, satisfies the un-replicated

boundary conditions associated to the original spacetime: λ1 on ∂M1 = [0, 2π]×∂Σ, but it

has a conical singularity on the codimension-2 transverse surface Γ, which consists of the

fixed points of the replica symmetry [10]. Moreover, using the locality of the bulk action,

we have:

Ibulk[Mn] = nIbulk[M̂n] . (6.15)

This property is not extensive to the Hayward term, but one can write I[Mn] = nI[M̂n]

by defining

I[M̂n,Γ] = Ibulk[M̂n] +
δ̂

8πG
a(Γ) (6.16)

where δ̂ ≡ 2π(1− n)/n. For our calculation below, we only need demand that the replica

symmetry holds at the level of the action, in line with the assumption of previous deriva-

tions [7, 10], which assume that the Zn-symmetry is not spontaneously broken by the

dominant solution. In other words, the relation (6.15) is satisfied for the off-shell geome-

tries considered in the path integral.

At this point, it is illuminating to write down the partition function. Considering only

gravity for simplicity, we can express the path integral (5.5) as

Z(A, λ1, n) =

∫
∂X|∂M=∂A

[DX]

∫
λ
[DMn] e−nIbulk[M̂n]+

2π(1−n)
8πG

a[X,ĝ(X)] (6.17)

In this expression M̂n stands for a spacetime equipped with the corresponding metric ĝ

obtained from g (of Mn) by the quotient (6.15). Generally, both metrics are the same

locally but the range of the coordinates is different.

The embedding fields X(Γ) were put explicitly here in order to highlight which are

the fields in the action and differentiate them from the parameters. Recall that the last

term is nothing but a Nambu-Goto action where a = a[X, ĝ(X)]. Thus this partition

function is only a function of the asymptotic boundary conditions λ = λ1, the subset A of

∂M̂n = ∂M1 where the QFT lives, and the number of replicas n, while the fields X, ĝµν , ϕ

are integrated out.

The difference of this partition function with Z(A, λn, n) considered previously is that,

although it also sums over spacetimes whose boundary is the branched cover ∂Mn (with

replicated boundary conditions λn), the replica symmetry is considered manifest and one

must sum on geometries as (6.15). This guarantees that the replica symmetry is not

spontaneously broken [7, 10]. Note that there is a sort of redundancy in the measure

because one the sums over the replicated geometries Mn’s, however here we need not more

technical details on this.

Let us consider now the saddle point approximation in this context. Factorizing out n

in the total action appearing in (6.17), and since n > 0, the dominant solution is obtained

by minimizing (6.16). Then we have

1

n
log Trρn = I[M̂n,Γ]

∣∣∣
on-shell

+ (. . . ) , (6.18)
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where the r.h.s. is the action valued on a solution of the coupled theory (6.16), and (. . . )

denotes (quantum) corrections (o(Gk≥0) to the saddle point approximation. Notice that

the Hayward term must be valued on the minimal surface Γ̂min, whose area is a minimum

in the dominant geometry M̂n, with a deficit angle δ̂. This coincides exactly with the

action of the model in [10], given by an action of gravity plus a cosmic brane with a tension

corresponding to the same deficit angle: δ̂/8πG. Finally, the modified nth-Rényi entropy

is computed using the formula (6.13) or Ŝn = −n2 ∂
∂nn

−1 log Ẑ(A, λ, n) (eq. (1.2)).

Noticing that we actually need to take a derivative of the path integral (6.17) with

respect to the parameter n (or β),6 and using that I[M̂n] and a[Γ, ĝ] are (off-shell) inde-

pendent on n, we obtain the expected result

Ŝn =

〈
−n2 ∂

∂n
I

〉
= −n2

〈
∂

∂n

δ̂

8πG
a(Γ)

〉
=

1

4G
〈 a 〉 =

a(M̂n,Γmin)

4G
+ o(Gk≥0) (6.19)

for the vacuum state (λ ≡ 0), although it is straightforwardly generalizable to excited

states [24, 31]. The bracket 〈. . . 〉 stands for the object within the path integral (6.18),

thus on the r.h.s., the expectation value of the area was approximated by its value on

the dominant classical solution Γ̂min, ĝ. It is worth emphasizing here that the manifold

associated to this solution (denoted as Mn) should not be confused with the saddle of the

replicated boundary condition of the prescription (6.11) (section 6.1). In appendix we give

examples in d = 2 + 1 where, except for δ̂ = 0, the solution M̂n is the quotient of a smooth

geometry Mn (see also [7, 10]).

This result agrees with the formula for Ŝn derived previously by Dong [10]. The

difference is that our calculation includes the contribution of the Hayward term, while that

of [10] follows a method similar to [7], where one substitutes a neighborhood of Γ by a

thin tube around it, and then considers the variation (with respect to n) of (6.18). The

Hayward term clearly plays no role in such a construction.

7 The gravitational modular flow

Let us show that the Hayward term may explain the presence of the area operator in the

modular Hamiltonian K of gravity and the JLMS proposal [20]. This is a relation holding

beyond expectation values and at an operator level, see e.g. [39] for related discussion.

The important object is the generator of the (gravitational) modular flow, namely ρis

where s is a real parameter, but it can be hard to compute directly in gravity. A way to

do this is take advantage of the replica calculus of

ρn = U(i2πn) (7.1)

in the bulk studied in the previous sections, considering the analytical extension of the

modular parameter: is→ n (e.g. see [40]).

6Taking n as a parameter, the derivation is off-shell and we only shall take derivatives of the quantities

that depend explicitly on n in the total action. Moreover, the bulk gravity action is an integral on the local

curvatures and metrics off-shell that are integrated out, then the dependence with n only can be in the

limits of integration that, because of the quotients by Zn, are typically independent on n (e.g,
∫ 2π

0
dτ).
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The modular flow satisfies basic properties of symmetry and the Kubo-Martin-

Schwinger (KMS) condition, and the modular Hamiltonian in general QFT is the generator

of the modular flow (7.1) that can be computed by the formula

K = − lim
n→0

U(−i2πn)
∂

∂n
U(i2πn) = − lim

n→0
ρ−n

∂ρn

∂n
(7.2)

Having into account that the density matrix in the boundary field theory can be approx-

imated by the most probable representation ρ(A) ≈ ρ(B,Γmin) in gravity, we can use

expression (5.4) (or (4.3)) for β = 2πn, such that the bulk action is valued on a geometry

Mn.7 Then if a(Γmin, γ) in these expressions is interpreted as operator upon quantization

(see section 3) [19], and using (7.2), results the modular Hamiltonian

K(A) =
a(Γmin, γ)

4G
+Kbulk(B) (7.3)

where Kbulk(B) is the modular Hamiltonian of the entanglement wedge B. In special

cases with U(1) symmetry, e.g. a black hole in the vacuum state (λ ≡ 0), Kbulk coincides

with the canonical Hamiltonian of the bulk theory. All these cases can be related (via the

CHM map) to spherical entangling surfaces ∂A on the boundary theory [40]. This result

shows that the gravitational modular flow contains the area operator and reproduces the

JLMS formula.

8 Conclusions

In this work an area prescription for the holographic Rényi entropies in a purely gravi-

tational formulation is presented. We have shown that the area term, which is usually

computed through an auxiliary back-reacting codimension-2 brane, follows from including

a necessary boundary (Hayward [14]) term in the bulk action for the geometries built from

global pure states represented in figure 3b. In particular we established clearly the rela-

tion of the n-th Rényi entropy with the solution of n consecutive copies of the boundary

conditions on Mn, recovering the holographic prescriptions for both Sn and Ŝn [10, 13, 15],

additionally shedding light on the origin of the area operator present in the modular Hamil-

tonian [18–20]. In fact our approach manifestly includes a term with matrix elements of

the area operator, which would be difficult to explain from formulations without a Hay-

ward term.

Specifically, we considered a holographic CFT density matrix built via an Euclidean

wave-function, possibly coupled to external sources such that it describes an excited

state [24, 26, 30]. We project the state in a basis of two smooth regions corresponding

to subregions B and B̄ glued together by a codim-2 surface Γ that imposes a fixed π−β/2
deficit angle on the bulk Γ splitting, where β = 2πn, see figure 3. The Hayward boundary

term simplifies computations provide area laws for both Sn and Ŝn, albeit for different

7However the symmetry Zn is not exactly valid here because of the arbitrary conditions h± on the

branches B±, that deforms the bulk geometry, so (6.15) is only approximation as this effect is negligible.

This would be the case, for instance, if the Γ is near the asymptotic boundary.
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geometries,8 described in section 6. In the original holographic proposal [10], an auxiliary

cosmic brane term is needed to produce the gravity solutions with conical singularity, such

that the free energy is simply the (euclidean) gravitational on-shell action, but there is no

contribution from the brane action itself. In contrast, the present formulation avoids this

conceptual issue and capture both ingredients simultaneously: the total action is purely

gravitational from the beginning, where the would-be brane action is nothing but the Hay-

ward term, which is not auxiliary in any sense but mandatory for a well defined variational

problem; and moreover, it provides the main (1/G) contribution to the free energy and

entropy. Additionally, the analysis of section 2 about the Hilbert space decomposition of

holographic bipartite systems, implies a sum over surfaces Γ in the gravitational partition

function that effectively turns it dynamical, and the Hayward term works as a Nambu-Goto

action. This provides an unified and systematic framework to describe holographic pre-

scriptions on different measures of entanglement entropy, and modular hamiltonian with

a term that can be interpreted as the area operator. In the point of view adopted in this

approach, the gravity edge modes associated to Γ (and studied in ref. [15]) are a property

of the basis where the state is projected, i.e. of the initial surface on which the set of field

configurations describes a basis of the Hilbert space.

Although we have worked in the AdS/CFT framework for concreteness, this prescrip-

tion allows to calculate the reduced density operator for any holographic field theory defined

on the boundary from the computation in the dual gravitational theory. For instance, Ein-

stein gravity without cosmological constant Λ ≡ 0 on spacetimes with an arbitrary (not

necessarily asymptotic) boundary ∂M , such that the boundary condition is assumed to de-

fine some field theory on ∂M , and it is holographic in the sense that the gravitational theory

can be interpreted as a suitable model to do approximations to the full calculations [7].

One could also envision other entanglement measures being holographically accounted

for in terms of a Hayward term in a similar fashion as presented in this work. A covariant

generalization of this construction, in the fashion of the HRT prescription [41], should

also be possible. This would also involve an extremal surface ending on ∂A, but in the

Lorentzian spacetime. One should thus extend this study in a complexified SvR-like [33]

extension to the path integrals formulae. We leave this study for future research.
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8A nice thermodynamical analogy of these two constructions can be made, where one defines a (mi-

cro)canonical description of the system either keeping fixed the (area element)deficit angle on Γ, corre-

sponding to fixing the (energy)temperature in the CFT partition as thermodynamical variables. This

complements recent discussion on the matter [13, 15, 22].
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A Examples of conical geometries built with replicas

For the sake of clarity, we present some simple examples of 3d Euclidean spacetimes with

deficit angle, proportional to the tension of the effective brane [38], used in the main body of

the text. These be can thought as higher dimensional metrics, with translations symmetry

along the transverse codimension-2 surface Γ.

An example of manifold Mn built in section 6.1, with symmetry U(1), is obtained

through a n-times replicated BTZ solution with a consequent deficit angle of 2π(n− 1):

ds2 = r2dτ2 +
dr2

r2 + 1
+ (r2 + 1)dX2 ; 0 ≤ τ ≤ 2nπ (A.1)

where X denote the transverse coordinates. The minimal surface Γn,min in this construction

corresponds to r = 0 has area

a(Mn,Γn,min) = a1 ≡
∫
dX (A.2)

which is independent on n in this case. This is related to the fact that the quotient of this

solution is M1 which does not have conical singularity. This is essentially an example of

the Fursaev’s construction [5], and agrees with one of the results of [13].

On the other hand, a solution of (6.16), (M̂n, Γ̂n,min), is built such that it has a deficit

angle δ̂ = 2π(n− 1)/n. The resulting manifold satisfies the original asymptotic boundary

conditions but develops a conical singularity in the interior (see [7])

ds2 = r2dτ2 +
dr2

r2 + 1
n2

+

(
r2 +

1

n2

)
dX2 ; 0 ≤ τ ≤ 2π , (A.3)

and the corresponding minimal area is

a(M̂n, Γ̂n,min) =
a1

n
. (A.4)

Observe that this solution can be obtained by taking the Zn quotient of a spacetime

without conical singularity, consisting of the same metric (A.3) but such that the range of

τ is [0, 2πn].
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[10] X. Dong, The Gravity Dual of Rényi Entropy, Nature Commun. 7 (2016) 12472

[arXiv:1601.06788] [INSPIRE].

[11] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[12] R. Islam et al., Measuring entanglement entropy in a quantum many-body system, Nature

528 (2015) 77.

[13] X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum

gravity, JHEP 10 (2019) 240 [arXiv:1811.05382] [INSPIRE].

[14] G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev. D

47 (1993) 3275 [INSPIRE].

[15] T. Takayanagi and K. Tamaoka, Gravity Edges Modes and Hayward Term, JHEP 02 (2020)

167 [arXiv:1912.01636] [INSPIRE].

[16] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151

[arXiv:1704.05464] [INSPIRE].

[17] R. Haag, Local quantum physics: Fields, particles, algebras, Texts and monographs in

physics, Springer, Berlin, Germany (1992).

[18] M. Botta Cantcheff, Area Operators in Holographic Quantum Gravity, arXiv:1404.3105

[INSPIRE].

[19] D.L. Jafferis and S.J. Suh, The Gravity Duals of Modular Hamiltonians, JHEP 09 (2016)

068 [arXiv:1412.8465] [INSPIRE].

[20] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative

entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[21] M. Botta-Cantcheff, P.J. Mart́ınez and G.A. Silva, Holographic excited states in AdS Black

Holes, JHEP 04 (2019) 028 [arXiv:1901.00505] [INSPIRE].
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