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Abstract
Anterograde interference refers to the negative impact of prior learning on the propensity for future learning. There is
currently no consensus on whether this phenomenon is transient or long lasting, with studies pointing to an effect in the
time scale of hours to days. These inconsistencies might be caused by the method employed to quantify performance,
which often confounds changes in learning rate and retention. Here, we aimed to unveil the time course of anterograde
interference by tracking its impact on visuomotor adaptation at different intervals throughout a 24-h period. Our empirical
and model-based approaches allowed us to measure the capacity for new learning separately from the influence of a
previous memory. In agreement with previous reports, we found that prior learning persistently impaired the initial level of
performance upon revisiting the task. However, despite this strong initial bias, learning capacity was impaired only when
conflicting information was learned up to 1 h apart, recovering thereafter with passage of time. These findings suggest that
when adapting to conflicting perturbations, impairments in performance are driven by two distinct mechanisms: a
long-lasting bias that acts as a prior and hinders initial performance and a short-lasting anterograde interference that
originates from a reduction in error sensitivity.
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Introduction
We gain robustness through adaptation: in the face of environ-
mental and/or internal perturbations, adaptation allows us to
maintain precise control of elementary movements like reach-
ing and saccades. Like other types of learning, adaptation may
lead to interference or facilitation depending on the level of
congruency of sequentially learned materials. Facilitation of
learning is commonly referred to as savings, a process by which
subsequent exposure to the same perturbation results in faster
learning (Krakauer, 2009; Pekny et al. 2011). In contrast, succes-
sive adaptation to opposing perturbations, for example rotation

A followed by rotation B, may lead to a deficit in the learning of B.
This phenomenon, known as anterograde interference, has been
reported in various adaptation paradigms (Brashers-Krug et al.
1996; Sing and Smith, 2010; Tong and Flanagan, 2003; Wigmore
et al. 2002; Leow et al. 2014). Yet, there is currently no consen-
sus on whether anterograde interference is transient or long
lasting. In fact, whereas some studies suggest that anterograde
effects may last less than a few hours (e.g., Brashers-Krug et al.
1996; Thoroughman and Shadmehr 1999), others appear to point
to a long-lasting impact in the time scale of days (Caithness
et al. 2004; Miall et al. 2004). It has even been suggested that
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anterograde interference may be stronger than retrograde inter-
ference (Caithness et al. 2004; Miall et al. 2004; Sing and Smith
2010), masking the effect of interest in retrograde protocols
aimed at unveiling the time course of memory consolidation
(Miall et al. 2004).

This lack of consensus may be partly due to the method
employed for measuring interference (Sing et al. 2009). Previous
studies estimated the amount of interference of A on B pre-
dominantly based on the initial level of performance, computed
by averaging through the first trials of the learning curve. This
empirical measure does not discriminate between changes in
learning rate and retention. That is, initial performance in B is a
mixture of how much the subject has retained what they learned
in A and how much they can learn from errors experienced
in B. If anterograde interference arises from impairment in the
ability to learn, one would expect that prior exposure to A would
reduce the learning rate in B. Yet, with the exception of Sing and
Smith (Sing and Smith 2010), no study that we are aware of has
focused on the rate of learning as the fundamental measure of
anterograde interference.

Here, we aimed to unveil the origins of anterograde interfer-
ence by varying the time interval elapsed between adaptations
to opposing rotations throughout a 24-h period. This approach
allowed us to estimate how the passage of time affected two
potential sources of performance impairment: (1) retention of an
opposing prior memory versus (2) changes in the rate at which
new information could be acquired. We recruited a large number
of subjects (n = 93) in order to measure how adaptation changed
from A to B, when the two events were separated by 5 min, 1, 6,
and 24 h. We used a trial-by-trial error-based model of learning
(Albert and Shadmehr 2018; Cheng and Sabes 2006; Donchin
et al. 2003; Ethier et al. 2008; Smith et al. 2006) to determine
the impact of prior learning on three separate processes: (1)
biases in performance due to the memory of A, (2) the rate of
memory decay in B, and (3) the capacity of learning from error
in B. These three processes are represented separately by three
specific model parameters: (1) the initial state of the learner in
B, (2) the retention factor, and (3) the error sensitivity.

In contrast with previous findings, our work shows that
anterograde interference recovers gradually with passage of
time. This recovery proceeds despite initial impairments in per-
formance that originate from a lingering memory of A that
persists over a much longer time scale.

Materials and Methods
Participants

Ninety-three healthy volunteers (33 males; ages: mean ± std.
dev. 24 ± 4 years old) with no known history of neurological or
psychiatric disorders were recruited from the School of Medicine
of the University of Buenos Aires. All subjects were right-handed
as assessed by the Edinburgh Handedness Inventory (Oldfield
1971). The experimental procedure was approved by the local
Ethics Committee and carried out according to the Declaration
of Helsinki.

Experimental Paradigm

Subjects were seated in a comfortable chair and performed a
center-out-back task using a joystick operated with the thumb
and index fingers of their right hand. Visual information was
presented on a computer screen. The right elbow laid comfort-

ably on an armrest, and the wrist laid on a structure that fixed
the joystick over a desktop. Subjects were told to maintain the
same wrist posture across experimental sessions. The vision of
the hand was occluded throughout the study.

At the beginning of each trial, we displayed one of eight
potential targets (0.4 cm diameter, placed 2 cm from the start
point and concentrically located 45◦ from each other) on a
computer screen. Joystick position was represented on the
screen with a gray cursor of the same size as the target. The gain
of the joystick was set to discourage subjects from correcting
their movements online. Specifically, a displacement of 1.44 cm
of the tip of the joystick moved the cursor on the screen by 2 cm.
On average, movement time for correct trials was 125.5 ± 26.6 ms
(mean ± 1 std. dev.), providing little or no opportunity for within-
movement corrections based on visual feedback. Participants
were instructed to make a shooting movement through the
target, as fast as possible, starting at target onset. There
were 8 trials per cycle (1 for each target) and 11 cycles per
block. The order of target presentation was randomized within
each cycle.

Two types of trials were presented throughout the exper-
imental session (Fig. 1A). During null trials, participants per-
formed shooting movements in the absence of a perturbation.
During perturbed trials, a counterclockwise (CCW, labeled as
perturbation A) or a clockwise (CW, labeled as perturbation B)
visual rotation of 30◦ was applied to alter the trajectory of the
cursor.

Feedback about the subject’s movement was provided on
each trial via the color of the cursor, which varied along a
gradient between red (miss) and green (hit). Furthermore, sub-
jects had a limited amount of time to complete the movement
after the appearance of the target. If the elapsed time exceeded
900 ms, the trial was aborted and the cursor was turned red until
the next trial. Target hits with error < 2.5◦ were rewarded with
a simulated sound of an animated explosion. The total score
(hit percentage) was displayed on the screen at the end of each
block. Subjects were instructed to try to maximize this score
throughout the experiment. The task was programmed using
MATLAB’s Psychophysics Toolbox, Version 3 (Brainard, 1997).

Experimental Procedure

Figure 1A illustrates the experimental design. Participants were
randomly assigned to one of four experimental groups or a
control group. The experimental groups (Fig. 1A) performed one
block (11 cycles) of null trials followed by six blocks (66 cycles)
of CCW perturbed trials (perturbation A). After a variable time
interval, each group performed six blocks (66 cycles) of the
CW perturbation (perturbation B). The four experimental groups
were distinguished by the amount of time that separated the
two rotations: 5 min (n = 16), 1 h (n = 20), 6 h (n = 19), and 24 h
(n = 18). This variation in the period between perturbations A
and B allowed us to assess how the passage of time impacted
the initial level of performance in B (first cycle), as well as on
each subject’s ability to adapt to B.

A group of subjects (n = 20) experienced only the B pertur-
bation. This control group served two purposes. First, it was
critical for our analysis of anterograde interference, serving as
our benchmark for performance in B without any potential
influence of learning in A. Second, given that subjects always
learned A before B, this group was key in ruling out an order
effect. Control subjects performed one block (11 cycles) of null
trials followed by six blocks (66 cycles) of B.
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Figure 1. Experimental paradigm and learning curves. A. Paradigm. Subjects held

a joystick and made pointing movements toward one of eight visual targets
shown on a display. The experiment began with 11 cycles of null trials (Null) after
which a 30◦ counterclockwise rotation was applied to the cursor for 66 cycles
(perturbation A). Next, each experimental group waited a period of time ranging

from 5 min to 24 h. After this break, subjects were immediately exposed to a
30◦ clockwise rotation (perturbation B) for 66 cycles. B. Behavior. Pointing angles
on each trial were collapsed into cycles by identifying the median pointing angle

across each cycle of eight trials. The shaded region indicates ±1 standard error of
the median. Each group differs in the amount of time that elapsed between the
exposure to the A and B periods (from top to bottom: 5 min, 1, 6, and 24 h). The
behavior for each experimental group (gray) is compared with that of a control

group (black) that was exposed to 11 cycles of null and then 66 cycles of the B

perturbation.

Data Post-Processing

For each trial, the pointing angle was computed based on the
angle of motion of the joystick relative to the line segment con-
necting the start and target positions. Trials in which pointing
angles exceeded 120◦ or deviated by more than 45◦ from the
median of the trials for each cycle were excluded from further
analysis (1.6% of all trials). After this processing, the trial-by-trial
data were converted to cycle-by-cycle time series by calculating
the median pointing angle in each 8-trial cycle for each subject.
Unless otherwise noted, the cycle-by-cycle data were used for
each analysis reported in this work.

Model-Free Data Analysis

We empirically quantified each subject’s learning rate in A and
B by fitting a single exponential function (eq. 1) to the sequence
of pointing angles measured in A and B periods.

y(t) = α exp (−βt) + c (1)

Here y(t) represents the pointing angle on cycle t. The first cycle
of the rotation was represented by t = 0. The exponential fits
included three parameters. Parameters α and c determine the
initial bias and the asymptote of the exponential, respectively.
Parameter β represents the learning rate of the subject. We con-
strained the relationship between α and c to force the exponen-
tial fit to intersect subject behavior at time step t = 0. Therefore,
the exponential function had only two free parameters; the third
was fixed by the initial level of subject performance. We fit
one exponential function to the 66 cycles of the A rotation and
another one to the 66 cycles of the B rotation (Fig. 1). Each period
was fit using the fmincon function (MATLAB 2018a) to minimize
the squared error between subject behavior and the exponential
fit.

Although the exponential function closely approximates the
decay of motor error during adaptation to a single perturba-
tion, its learning rate parameter reflects a mixture of cycle-
by-cycle forgetting and error-based learning. This potentially
confounds our analysis of interference because during the A
perturbation, the direction of forgetting (always toward base-
line performance) opposes the direction of error-based learning.
However, during the B perturbation, an initial bias in the perfor-
mance of the experimental groups toward A causes forgetting
and error-based learning to act in the same direction. This
relationship switches once subjects pass the “zero point” of
baseline performance: here retention and error-based learning
again oppose one another. These considerations illustrate the
difficulties inherent in using exponential fits to disambiguate
the differential effects learning and forgetting may have on
behavior.

State-Space Model

To better quantify subject performance in A and B, we used a
state-space model that dissociates the effect of cycle-by-cycle
learning from forgetting while appreciating initial biases in
learning.

When people perform a movement that produces an unex-
pected result, they learn from their movement error and retain
part of this learning over time. In other words, behavior during
sensorimotor adaptation can be described as a process of error-
based learning and trial-by-trial forgetting (Donchin et al. 2003;
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Smith et al. 2006; Thoroughman and Shadmehr 2000). State-
space models of learning consider how the behavior of a learner
changes due to trial-by-trial error-based learning and decay of
memory due to the passage of time (i.e., trials). To examine the
anterograde interference of A on B, we fit a single module state-
space model to the empirical data. This allowed us to ascribe
any differences in performance during the B period to mean-
ingful quantities: sensitivity to error, forgetting rate, and initial
state.

We imagined that the state of the learner (the internal esti-
mate of the visuomotor rotation) changed from one cycle to
the next, due to error-based learning and partial forgetting,
according to equation (2).

x(t+1) = ax(t) + be(t) + ε
(t)
x (2)

Here x(t) represents the state of the learner on cycle t. Parameter
a is a retention factor that encapsulates how well the subject
retains a memory of the perturbation from one cycle to the next.
Parameter b represents sensitivity to error and determines the
rate at which each subject learns from error. The error sensitivity
is multiplied by the visual error e(t) between the pointing angle
and target. The change in state from one cycle to the next is
corrupted by state noise ε

(t)
x , which we assumed to be Gaussian

with mean zero and variance equal to σ2
x .

The internal state of the subject is not a measurable quan-
tity. Rather, on each cycle, the motor output of the subject is
measured. We imagine that the motor output directly reflects
the internal state but is corrupted by motor execution noise
according to equation (3).

y(t) = x(t) + ε
(t)
y (3)

As with our exponential fit of equation (1), here y(t) represents
the subject’s pointing angle on cycle t. We assumed that the
motor execution noise ε

(t)
y corrupting the reaching movement

was Gaussian with mean zero and variance equal to σ2
y .

We fit the state-space model to cycle-by-cycle single-subject
behavior using the expectation–maximization (EM) algorithm
(Albert and Shadmehr 2018). The algorithm identified the
parameter set that maximized the likelihood of observing
each sequence of subject pointing angles given the parameters
and structure of our state-space model. This parameter set
contained six parameters: the retention factor a, error sensitivity
b, state noise variance σ2

x , motor noise variance σ2
y , and

two parameters describing the initial state of the learner.
We modeled the initial state of the learner as a normally
distributed random variable with mean x1 and variance σ2

1. The
parameter x1 served as our estimate of the initial bias of the
learner.

To fit the model, we started the EM algorithm from 5 dif-
ferent initial parameter sets, performed 100 iterations of the
algorithm (Albert and Shadmehr 2018), and selected the param-
eter set with the greatest likelihood. We fit our state-space
model to single-subject behavior separately for the A and B
periods. For the A period, we fit the 77 cycles encompassing the
first 11 null cycles and the following 66 CCW rotation cycles
(Fig. 1). We fit the initial null trials along with the perturba-
tion trials to increase confidence in the model parameters.
For the B period, we fit the 66 cycles encompassing the CW
rotation (Fig. 1).

Validation of the Single State-Space Model

Our primary analysis assumed that learning could be repre-
sented using a single adaptive state. For a single-state system,
impairment in the learning rate in B requires that the learning
system (i.e., the model parameters) has changed from the A
to the B period. In contrast, two-state models of learning posit
that adaptation is supported by two parallel learning processes,
a slow process that learns little from error but exhibits strong
retention over trials and a fast process that learns greatly from
error but has poor ability to retain its memory over trials. To val-
idate the choice of a single-state over a two-state model, we fit a
two-state model of learning to the A and B sequences of subject
pointing angles and compared the single-state model and two-
state model in their abilities to describe subject behavior using
the Bayesian Information Criterion (BIC).

In a two-state model, the states evolve over trials according
to equation (4).

x(t+1)
s = asx(t)

s + bse(t) + ε
(t)
x

x(t+1)

f = af x(t)
f + bf e(t) + ε

(t)
x

(4)

Here, the slow and the fast states are represented by the quan-
tities xs and xf , respectively. As with the single-state model
(eq. 2), each state changes due to forgetting (described by its
retention factor a) and error-based learning (described by its
error sensitivity b). These internal estimates of the perturbation
are additively combined to determine motor behavior according
to equation (5).

y(t) = x(t)
s + x(t)

f + ε
(t)
y (5)

We fit this two-state model of learning to subject behavior
during the A and B periods using the EM algorithm (Albert and
Shadmehr 2018). The algorithm identified the parameter set that
maximized the likelihood of observing each sequence of subject
pointing angles. We fit the model to the same cycles in A and
B described for the single-state model fits. To fit the model,
we started the EM algorithm from 20 different initial parameter
sets, performed 250 iterations of the algorithm, and selected the
parameter set with the greatest likelihood. The model parameter
set consisted of nine variables: slow and fast retention factors as

and af , slow and fast error sensitivities bs and bf , the variances
of state evolution and motor execution, and three parameters
for the initial state of the learner. We modeled the initial fast
and slow states as normally distributed random variables with
mean x(1)

s and x(1)

f and variance σ 2
1 . Each model was fit under the

linear constraints bf > bs and as > af . These constraints enforce
that the slow state learns more slowly than the fast state but
also retains its memory better from one trial to the next (Smith
et al. 2006).

Then, we computed the Bayesian Information Criterion (BIC)
for both models according to equation (6).

BIC = k log(n) − 2 log (Lmax) (6)

Here k represents the number of model parameters (6 for the
single-state model, 9 for the two-state model), n represents
the number of data points, and Lmax represents the maximum
likelihood for the model fit obtained using the EM algorithm. To
obtain a single estimate of BIC for each subject, we averaged the
BIC over the A and B periods. To quantify the evidence for each
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model, we compared the BIC distributions for the single-state
and two-state models for all subjects in the experimental groups
using a paired t-test.

Statistical Assessment

Statistical differences were assessed at the 95% level of confi-
dence. Prior to statistical testing, outlying parameter values were
detected and removed based on a threshold of three median
absolute deviations from the group median. For cases where our
variables of interest did not fail tests for normality and equality
of variance, we used a one-way ANOVA for our statistical test-
ing. In cases where the statistical distributions failed tests for
both equal variance across groups (Bartlett’s test) and normality
(Shapiro-Wilk test), we used the Kruskal–Wallis test to detect
nonparametric differences across experimental groups. In cases
where our statistical tests indicated a significant effect of group
(P < 0.05), we used either Tukey’s test or Dunnett’s test (following
one-way ANOVA) or Dunn’s test (following Kruskal–Wallis) for
post hoc testing, and corrected for multiple comparisons using
Bonferroni. For the latter (Dunn’s test), pairwise tests of all
experimental groups were conducted against the control group.
In cases where one-way ANOVA was used for statistical testing,
complementary figures depict the mean statistical quantity for
each group as well as the standard error of the mean, calculated
assuming a normal distribution. In cases where Kruskal–Wallis
was used for statistical testing, complementary figures depict
the median statistical quantity for each group as well as the
standard error of the median (estimated with bootstrapping).
When comparing mean values against zero, a one-sample t-test
test was used followed by the Bonferroni correction for multiple
comparisons.

Results
Memory of A Decays in Time, but Persists Even
after 24 h

When people adapt to perturbation A, and then switch to the
opposite perturbation B, performance in B appears impaired
(Brashers-Krug et al. 1996; Braun et al. 2009; Caithness et al.
2004; Shadmehr and Brashers-Krug 1997; Tong and Flanagan
2003). Pinpointing the origin of this behavioral deficit is difficult
because performance in B may reflect two different processes:
the level of retention of the memory of A and the ability to
learn B. In addition, these factors may vary independently as a
function of time. Our study aimed to dissociate between these
two factors by varying the time interval elapsed between A and
B as subjects adapted to conflicting visuomotor rotations.

On each trial, subjects moved a joystick to displace a cursor
to one of eight targets. On average, movement time for correct
trials was 125.5 ± 26.6 ms (mean ± 1 std. dev.), providing little or
no opportunity for within-movement corrections. All groups ini-
tially trained in a baseline period of null trials (no perturbation),
followed by adaptation to perturbation A (Fig. 1A). After comple-
tion of training in A, subjects in each group waited for a specific
amount of time (5 min, 1, 6, or 24 h) and then were exposed
to perturbation B. Fig. 1B shows the pointing angle during null
trials (cycles 1–11), learning of A (cycles 12–77), and learning of B
(cycles 78–143) for each of the experimental groups (gray curves)
and the control group (black curve). As expected, the pointing
angle during null trials was close to zero. During exposure to
perturbation A, subjects shifted their pointing angle gradually,

approaching −30◦ (Vaswani et al. 2015), but maintained small,
sustained residual errors (Vaswani et al. 2015). After adapting
to A and waiting the assigned time, subjects returned and were
exposed to perturbation B.

How did learning of A impact performance in B? We quan-
tified the initial level of performance in B as the mean pointing
angle during the first cycle of adaptation for each group (Fig. 2A).
Given that little or no learning is expected to take place in one
cycle (1 cycle = one trial per target), this measure allowed us to
estimate the recall of A.

The initial level of performance in B was biased toward A
and decayed as a function of time (Fig. 2A, one-way ANOVA,
F(88,4) = 39.59, P < 0.001; Dunnett’s test, control different from
all experimental groups with P < 0.001; Tukey’s test, 5 min
different from 24 h with P = 0.045, all other comparisons
are nonsignificant). Notably, even at 24 h the memory of A
remained strong, exhibiting nearly 50% retention (one-sample
t-test against zero with Bonferroni correction: P < 0.001 for
all experimental groups), while the control’s group pointing
angle was not different from zero (P = 0.28). This observation
is consistent with the presence of a lingering memory of A
(Shadmehr and Brashers-Krug 1997; Thoroughman and Shad-
mehr 1999). This level of memory retention (48%) is comparable
to that found for reaching under a visuomotor rotation of 30
degrees and for velocity-dependent force field (Caithness et al.
2004), suggesting that our findings are generalizable to other
experimental paradigms.

In summary, during initial performance in B, the movements
were strongly influenced by the presence of a memory of A. This
memory decayed with time but was still present at 24 h.

Anterograde Interference Dissipates with Increasing
Time Separating A and B

In order to assess the rate of learning, we fit the motor output
for each subject in A and B with an exponential function (eq.
1). The exponential model accounted for 67.2 ± 13.2% (mean ± 1
std. dev.) of the variance in individual subject behavior. Note
that this is almost double of the variance accounted for when
fitting individual trials instead of cycles (35.2 ± 10.6%, mean ± 1
std. dev.). If the exponential curve was fit to the median behav-
ior across the group, thus reducing cycle-by-cycle variability
in reaching movements, the variance accounted for would be
92.1–95.9%, depending on the group.

We found that during the A period there was no difference in
the learning rates across the four experimental groups (Kruskal–
Wallis, X2(62) = 4.75, P = 0.19). That is, the various groups were
indistinguishable during learning of A.

To examine if prior learning of A impaired the ability to
learn B, we compared the rate of learning in B with that of the
control group (Fig. 2B). Nonparametric testing revealed a signif-
icant effect of group on the ability to learn B (Fig. 2B; Kruskal–
Wallis, X2(80) = 10.84, P = 0.029). Post hoc comparison between
each experimental group and the control group identified a
significant difference at 5 min and 1 h (Dunn’s test with Bon-
ferroni correction, 5 min different from control with P = 0.044,
1 h different from control with P = 0.024), which disappeared
by 6 h (6 and 24 h not different from control with P > 0.952).
This temporal pattern in the impairment of motor learning is
consistent with the theory of consolidation (Krakauer 2009).

Finally, to rule out the possibility that our results may be
explained by an order effect (subjects always learned the CCW
rotation before the CW rotation), we statistically compared
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Figure 2. Effect of prior learning on the initial level of performance and the ability to learn. A. The initial level of performance in B, estimated from the mean pointing

angle on the first cycle, is displayed here for all groups. Given that learning within one cycle is minimal, in the experimental groups this measure reflects the retention
of the memory of A. Even at 24 h, there is roughly 50% retention of A. B. The rate of improvement (i.e., the learning rate) in B for all experimental groups and the control
group is shown. In A and B, barplots represent the mean and median for each measure, respectively; error bars indicate ±1 standard error of the mean and median,
respectively. Data for each subject is superimposed in gray. Asterisks indicate a level of significance of P < 0.05 (∗) or P < 0.001 (∗∗∗).

the rate of learning of the control group with those of the
experimental groups during learning in A. No differences were
found between the learning rates of A and B control (Kruskal–
Wallis, X2(78) = 5.53, P = 0.237). Therefore, the control condition
rules out the possibility that our results are explained by the
order in which the perturbations were learned.

In summary, while the lingering memory of A caused the
starting point of the adaptation to be strongly biased in all exper-
imental groups, the learning process itself was significantly
impaired only at 5 min and 1 h. As the time interval lengthened,
the ability to learn recovered.

Anterograde Interference Is Caused By a Decrease
in Sensitivity to Error that Recovers with Time

The exponential model we employed for our empirical analysis
implicitly assumed that the rate of learning remained constant
across trials. For the B period, this assumption is unlikely to be
true because initially, learning from the errors induced by B is
aided by forgetting of the memory of A. That is, as the B period
starts, performance falls toward the baseline, and the rate of
this fall is due to two processes: forgetting of A and learning
from error in B. During this period, forgetting and learning act
in the same direction. However, once the performance crosses
baseline levels, the influence of memory decay on behavior is
in the opposite direction to learning from error. State-space
models of learning disentangle these processes of forgetting and
learning. For this reason, we fit a state-space model to each
subject separately during the A and B periods (eqs. 2 and 3).

To assess which model was more appropriate to explain our
data, we fit both a one-state and a two-state model of learning
separately to the A and B periods and compared the likelihood
of each model using the Bayesian Information Criterion (BIC).
At the level of individual subjects, we found that a two-state
model of learning was justified in only 5 of the 73 subjects across
the experimental groups (Fig. 3A, black lines). Therefore, in our
task, the measured behavior was better described by a single
state (Fig. 3B, lower BIC for single-state model, paired t-test, t

Figure 3. Validation of the single state-space model. A. We calculated the
Bayesian Information Criterion (BIC) for single- and two-state model fits to

individual subject behavior. The endpoint of each line shows the average BIC
for the A and B periods (left, single-state model; right, two-state model). Each
line depicts the result for a single subject. Black lines indicate subjects for which
the two-state model was superior to the single-state model. B. We calculated

the difference in BIC for the single-state and two-state models. Negative values
indicate higher evidence for the single-state model. The bar depicts mean BIC,
and error bars indicate ±1 standard error of the mean. Data for each subject is

superimposed in gray.

(92) = 16.133, P < 0.001) than a two-state model of learning. This
is in agreement with previous work on visuomotor adaptation
in reaching (Zarahn et al. 2008). Therefore, we fit a single-state
model to the data.

The state-space model assumes that learning is governed by
two processes: a process that learns from error and a process
that retains a fraction of that memory from one trial to the next.
The model closely tracked the observed behavior (Fig. 4A).

To quantify the model’s goodness of fit, we computed the
fraction of each subject’s behavioral variance accounted for by
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Figure 4. State-space model fit. A. We fit individual behavior using a single-state model that estimated cycle-by-cycle forgetting, error-based learning, and initial bias.

Each plot depicts the median pointing angle for each experimental group (gray lines) as well as the median pointing angle predicted from simulating the state-space
model without noise (black lines) using the maximum likelihood model parameter sets identified for each subject. Behavior and state-space predictions are provided
for the control group in the top left plot. The shaded error region indicates ±1 standard error of the median. B. Initial state of the learner at the start of the B period. C.
Error sensitivity during the B period. D. Retention factor during the B period. In panels E–G, we repeated our primary analysis, excluding the initial cycles of large errors

from the model fit. To this aim, based on our exponential model, we selected the cycle during which the pointing angle was nearest zero. E. New initial pointing angle
for this analysis (black) and the true initial pointing angles at the start of B (gray). F. Error sensitivity of a state-space model after removing the initial period of large
errors. G. Error sensitivity of the state-space model fit after removing the initial period of large errors (black) and fit to the entire B period (gray). Each bar represents
the mean (B and E) or median (C, D, F, and G) parameter value for each group. Error bars indicate ±1 standard error of the mean or median. Data for each subject is

superimposed in gray. Asterisks indicate a level of significance of P < 0.05 (∗), P < 0.01 (∗∗), or P < 0.001 (∗∗∗).

our model fit (R2). To measure this coefficient of determination,
we computed the expected value of the behavior predicted by
our stochastic model (eqs. 2 and 3) and compared this prediction
with each individual subject’s data. We found that for single
subjects, our model accounted for approximately 81.4 ± 8.4%
(mean ± 1 std. dev.) of the variance in subject behavior. We
repeated this analysis at the group level, where noise in the
process of learning (eq. 2) and production of a movement (eq.
3) is smoothed over subjects. For each group, we computed the
median behavior, the median behavior predicted by our model
(Fig. 4A), and then the coefficient of determination for these two

time courses. At the group level, the model accounted for 96.0–
98.2% of the variance in median subject behavior.

Using the model parameters, we measured the impact of
prior learning on (1) biases in performance due to the memory of
A, (2) the rate of memory decay in B, and (3) the capacity to learn
from error in B. These three processes are represented separately
by three specific model parameters: (1) initial state of the learner
in B, (2) retention factor, and (3) error sensitivity.

Unsurprisingly, the initial state of the learner in B (Fig. 4B)
closely followed our empirical estimate of the initial level of
performance in B (Fig. 2A). As the interval between A and B
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increased, the initial state of the learner in B, that is, the amount
of the A memory retained over time, decreased (one-way
ANOVA, F(88,4) = 52.16, P < 0.001; Dunnett’s test, control different
from all experimental groups with P < 0.001; Tukey’s test,
5 min different than 24 h with P = 0.023, all other comparisons
are nonsignificant). However, despite this temporal decay, all
experimental groups retained at least 50% of the memory of A
(one-sample t-test with Bonferroni correction, all experimental
groups P < 0.001), while the control group was not different from
zero (P = 0.11). Therefore, impairment of performance in B was
in part caused by a lingering memory of A that was present even
at 24 h.

To what extent was the impairment in B driven by changes
in the rate of error-based learning and the strength of memory
retention? Similar to our empirical analysis, we first confirmed
that the experimental groups did not differ in performance dur-
ing the A period. That is, there was no difference in error sensi-
tivity (Kruskal–Wallis, X2(65) = 1.16, P = 0.763) or retention factor
(Kruskal–Wallis, X2(66) = 0.53, P = 0.912) across the experimental
groups during adaptation to A. Yet, we found that error sen-
sitivity was affected by prior learning (Fig. 4C; Kruskal–Wallis,
X2(83) = 14.47, P = 0.006). Post hoc tests against the control group
unveiled a significant reduction in error sensitivity at 5 min and
1 h but not at longer time intervals (Dunn’s test with Bonferroni
correction, 5 min different from control with P = 0.008, 1 h
different from control with P = 0.004, 6 and 24 h not different
from control with P > 0.132). In contrast, we found no difference
in the retention factor during learning in B for any of the exper-
imental groups, including the control group (Fig. 4D; Kruskal–
Wallis, X2(79) = 5.66, P = 0.226).

In summary, our state-space model pointed to a similar
conclusion drawn from our empirical findings. Prior exposure
to A resulted in a bias in the initial state of B that persisted
through 24 h. However, despite this lingering initial bias, prior
exposure produced a short-lived impairment in error sensitivity:
error sensitivity in B resembled control values when the time
between A and B was 6 h or more. Therefore, differences in
performance in B for any time scale greater than 6 h were likely
related to a prior memory of A and not to a deficit in learning.

Error Sensitivity Is Independent of Initial Error Size

We and others have shown that sensitivity to error declines as
a function of error size (Kim et al. 2018; Marko et al. 2012; Wei
and Körding 2009). This raises the concern that the differences
in error sensitivity reported in Fig. 4C may be driven by the
differences in the magnitude of the initial error experienced
at the start of perturbation B. To address this possibility, we
reanalyzed behavior in B, this time controlling for initial error
size. To this aim, we fit an exponential function (eq. 1) and
identified the cycle in which each participant exhibited a point-
ing angle near zero and refit our state-space model to the
behavior after this point. In this way, model parameters could
no longer be impacted by differences in initial error size across
groups (Fig. 4E). We found that the pattern of error sensitivity
described when fitting the whole behavior (Fig. 4C; Kruskal–
Wallis, X2(83) = 14.47, P = 0.006; Dunn’s test 5 min vs. control,
P = 0.008; Dunn’s test 1 hour vs. control, P = 0.004) persisted
even when the initial error was near zero (Fig. 4F; Kruskal–
Wallis, X2(81) = 11.25, P = 0.024; Dunn’s test 5 min vs. control,
P = 0.041; Dunn’s test 1 hour vs. control, P = 0.007). Furthermore,
no significant differences were found when the two analyses
were compared (Fig. 4G; Wilcoxon signed rank test for each

experimental group with Bonferroni correction, P > 0.177 for all
groups).

In conclusion, these results indicate that the impact of prior
learning on error sensitivity cannot be explained by the initial
level of error experienced in B. Rather, the effect appears to be
related to a deficit in the ability to learn.

Alternate Hypotheses: A Two-State Model Account
of Anterograde Interference

The decrease in error sensitivity observed here is at odds with a
prior account of anterograde interference in force field adapta-
tion (Sing and Smith 2010), in which an impairment of learning
arises from differing initial biases in the underlying adaptive
states of a two-state system, rather than a change in sensitivity
to error. Briefly, in the two-state framework, learning in B is
hindered when the slower state of learning is biased toward ear-
lier adaptation. We tested this idea in a supplementary analysis
using a two-state model and found that it fails to account for
our empirical data (Supplementary file 1). Therefore, the fact
that the slow state is heavily biased toward A at the start of B
cannot explain the deficit we observed in the speed of learning
in B. In fact, fitting a two-state model in which parameters are
free to vary from A to B (Supplementary file 2) yields a similar
pattern of impairment in error sensitivity of the slow module
to the one obtained with a single-state model, with no impact
of anterograde interference on the fast module. This analysis
suggests that the recovery of behavior we observe over time was
not caused by the interaction of the fast and slow states (i.e., the
initial bias) but rather by the restoration of error sensitivity of
the slow process. Altogether, our findings indicate that antero-
grade interference in visuomotor adaptation is caused by a
genuine impairment in error sensitivity both for one-state and
two-state models of learning.

Discussion
How do motor memories influence one another? In this work,
we studied the expression of anterograde interference in visuo-
motor adaptation by varying the time elapsed between learn-
ing opposing perturbations. We examined the impact of prior
learning on the initial level of performance as well as the rate
of learning over the time course of 5 min through 24 h. We
found that these two parameters behaved very differently as a
function of time. On one hand, adaptation in A biased the initial
level of performance in B. Although the magnitude of this effect
decreased with time, it remained strong at 24 h. On the other
hand, prior adaptation impaired the ability to learn from error,
resulting in reduced error sensitivity when perturbations were
separated by 5 min and 1 h. Unlike the bias caused by prior
learning, error sensitivity recovered with the passage of time. To
the best of our knowledge, these findings demonstrate for the
first time that anterograde interference, a fundamental concept
in memory research, is caused by a reduction in error sensitivity
that recovers over time.

Anterograde Interference Differs from a Lingering
Memory of a Prior

There has been no general agreement in the sensorimotor
literature regarding how to define and, therefore, quantify
anterograde interference. With the exception of Sing and Smith
(2010), who measured the relative change in learning rate, most
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previous studies estimated anterograde interference based on
the initial level of performance, by averaging across the first
trials/cycles/blocks (Brashers-Krug et al. 1996; Krakauer et al.
2005; Lee and Schweighofer 2009; Shadmehr and Brashers-Krug
1997; Tong and Flanagan 2003). For example, Tong and Flanagan
(2003) reported interference at 5 min based on the average of
the second and third cycles. Likewise, Miall et al. (2004) reported
interference at 15 min based on the initial state obtained
from fitting a power function, while noting that the rate of
learning was not affected. Yet, it is likely that the initial level of
performance, when averaged across trials, reflects not only the
capacity for learning in B but also the bias of a lingering memory
of A. Evidence supporting this possibility comes from force
field studies showing that the preferred direction of the biceps
and triceps during exposure to a second opposing force field is
appropriate to solve the first force field (e.g., Thoroughman and
Shadmehr 1999). Therefore, assessing anterograde interference
based on the initial level of performance may overestimate its
magnitude.

Here, we compared the bias imposed by the memory of A with
the deficit observed in the rate of learning. We reasoned that if,
as suggested by previous work, the initial level of performance
reflects the level of anterograde interference, then the two mea-
sures should behave similarly as a function of time. In contrast,
we found that initial performance was profoundly hindered
throughout the 24 h of testing whereas the ability to learn
resembled control levels starting at 6 h. Furthermore, the fact
that the pattern of error sensitivity persisted when controlling
for initial error size suggests that anterograde interference is
caused by a genuine downregulation of error sensitivity.

Anterograde Interference and Memory Stabilization

Our work sheds light on a long-standing debate regarding the
failure of retrograde protocols at unveiling the time course of
memory consolidation. Over the past two decades, several labo-
ratories have attempted to uncover the time course of memory
stabilization using behavioral protocols based on retrograde
interference (e.g., Brashers-Krug et al. 1996; Caithness et al. 2004;
Krakauer et al. 2005). In these studies, subjects usually adapt to
opposing perturbations A (A1) and B separated by a time interval
that varies between minutes to 24 h. Next, they wait for a further
period of time (usually 24 h) and are again exposed to A (A2) to
assess the integrity of the motor memory. Consolidation of the
memory of A should be reflected as the presence of savings (a
faster rate of learning) in A2. Although this approach has proved
successful in declarative (Lechner et al. 1999; Tulving 1969) and
some kinds of motor skill learning tasks (Korman et al. 2007;
Walker et al. 2003), it has led to inconclusive results in senso-
rimotor adaptation. In fact, with the exception of three force
field studies reporting release from interference at around 6 h
(Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug 1997) or
later (Overduin et al. 2006), other experiments have shown com-
plete lack of savings even if 24 h is interposed between A1 and B
(Bock et al. 2001; Caithness et al. 2004; Goedert and Willingham
2002; Krakauer et al. 2005). These inconsistencies have also been
reported for perceptual and motor sequence learning, prism
adaptation (Aberg and Herzog 2010; Goedert and Willingham
2002), and declarative tasks including the paired associate task
(Houston 1967; Howe 1969; McGeoch 1933; Wixted 2004). Miall
et al. (2004) have claimed that naïve performance at recall (A2)
reported in retrograde protocols (Caithness et al. 2004; Goedert
and Willingham 2002; Krakauer et al. 2005) reflects a mixture of

anterograde interference from B and the integrity of the memory
of A, and not catastrophic retrograde interference. It is impor-
tant to note, however, that these authors measured anterograde
interference based on the initial level of performance. In light
of our findings, the interpretation of these studies may need
to be revisited. Our data indicates that, because release from
interference starts at around 6 h, anterograde interference is not
likely to cause naïve performance in A2. Tracking the time course
of recovery in learning rate reported here provides a new path
forward for understanding the process of memory stabilization.

The temporal dissociation we observed between the initial
level of performance and the rate of learning likely reflects the
contribution of two distinct processes: (1) the persistence of
a prior memory and (2) competition for neural resources that
support learning. The formation of memory involves learning-
dependent synaptic plasticity as part of a process known as
long-term potentiation and depression (LTP and LTD). Given that
biological substrates underlying synaptic plasticity are limited
by nature, cellular modifications induced by learning temporar-
ily constrain the capacity for further LTP induction. This phe-
nomenon is known as occlusion and reflects competition for
neural resources that support plasticity (Ling et al. 2002). Using
this approach, it has been reported that motor skill learning in
rats and humans is associated with LTP (Cantarero et al. 2013;
Rioult-Pedotti et al. 1998; Rioult-Pedotti et al. 2000). Cantarero
and collaborators showed that in fact, in humans, occlusion
fades around 6 h after motor skill learning. In this light, we
may speculate that adaptation in A may have partially occluded
the capacity for further synaptic plasticity, thereby hindering
adaptation in B. The timing of recovery from interference we
describe here (starting around 6 h) coincides with the peak in
functional connectivity of a visuomotor adaptation network that
includes the primary motor cortex (M1), the posterior parietal
cortex (PPC), and the cerebellum (Della-Maggiore et al. 2017).
The timing of recovery is also in general agreement with recent
results showing that in the minutes after conclusion of reach
adaptation, the retention of the acquired memory depends on
the somatosensory cortex, but this dependence is no longer
present at 24 h (Kumar et al. 2019). These regions have been
linked to memory formation in visuomotor rotation (Della-Mag-
giore et al. 2004; Hadipour-Niktarash et al. 2007; Landi et al. 2011;
Richardson et al. 2006). Whether this timing reflects the process
of motor memory consolidation is now a hypothesis amenable
for testing.

Anterograde Interference Results From an Impairment
in Error Sensitivity that Recovers with Time

Using a state-space model allowed us to identify which aspect
of learning was affected by anterograde interference, that is,
a deficit in the ability to learn from error or in the ability to
retain information cycle-by-cycle. Here we found that antero-
grade interference could be attributed to a change in error
sensitivity. It is well established that humans have the ability to
change their error sensitivity depending on the errors they have
experienced in the past (Gonzalez Castro et al. 2014). Current
models of error sensitivity (Herzfeld et al. 2014) posit that sensi-
tivity to a specific error increases gradually in an environment
where that error is likely to occur again on the next trial and
decreases gradually if the error is unlikely to occur again. In this
way, sensitivity to an error is specific to one’s prior history of
error. However, the decrease in error sensitivity we report here
is of a different nature. Here, error sensitivity in B is reduced
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even though errors in B were never experienced during the A
perturbation. This points to a different mechanism for error
sensitivity modification, one in which learning of a perturbation
actively suppresses learning of a different perturbation, poten-
tially through a competition for neural resources that subsides
at longer time intervals.

Substantial evidence indicates that visuomotor adaptation
results from the interplay between explicit learning (driven by
target error) and implicit learning (driven by prediction error)
(Haith et al. 2015; Morehead et al. 2015; Taylor et al. 2014; Tseng
et al. 2007). Could the changes we observed in error sensitivity
be caused by differential contributions of implicit and explicit
components of learning? This possibility is unlikely for two rea-
sons. The reaction time (a marker for explicit learning) of exper-
imental and control groups was similar in B (Supplementary file
3), suggesting that the relative implicit/explicit contribution to
adaptation did not change with the amount of time separating A
and B. In addition, the pattern of error sensitivity persisted even
after the critical early cycles, generally associated with the use of
explicit strategies, were excluded (compare Fig. 4C,F). Together,
these results undermine the possibility that differences in the
relative implicit/explicit contributions could account for our
results.

In conclusion, we have examined the strength and dura-
tion of anterograde interference in visuomotor adaptation by
tracking its impact on behavior during learning of opposing
perturbations separated from 5 min through 24h. We found that
prior learning dramatically hindered the initial state at all time
intervals. This was likely due to a bias imposed by a lingering
memory associated with adapting to the initial perturbation.
Prior learning also impaired the ability to learn from errors
for at least 1 h, but a release from interference was detected
starting as early as 6 h post training. This finding is consistent
with a process of memory stabilization for this type of learning.
Our work suggests that the poor performance observed when
opposing rotations are learned consecutively is driven by two
distinct phenomena operating on different time scales (days vs.
hours): a long-lasting influence of a memory that acts as a prior
which negatively influences the initial level of performance and
a shorter-lasting impairment of learning.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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