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Critical behavior of repulsive linear k-mers on square lattices at half coverage:
Theory and Monte Carlo simulations

F. Romá, A. J. Ramirez-Pastor,* and J. L. Riccardo
Departamento de Fı´sica, Laboratorio de Ciencias de Superficies y Medios Porosos, Universidad Nacional de San Luis, CONIC

Chacabuco 917, 5700 San Luis, Argentina
~Received 15 April 2003; published 6 November 2003!

Monte Carlo~MC! simulations have been used to study the critical behavior of repulsive lineark-mers on
square lattices at 50% coverage. A (2k32) ordered phase, characterized by a repetition of alternating files of
adsorbedk-mers separated byk adjacent empty sites, was found. This ordered phase is separated from the
disordered state by a order-disorder phase transition occurring at a critical temperatureTc , which presents an
intriguing dependence with the sizek of the adsorbed molecules. In addition, two analytical techniques were
combined with Monte Carlo simulations to predict the critical temperature of the order-disorder transformation.
The first is based on a detailed mean-field approximation~DMFA!, considering the exact interactions between
thek-mers belonging to a regiong ~the cluster! and a mean-field interaction with the rest outsideg. Different
sizes forg (k31,k32,2k31,2k32) were used in the calculations in order to discuss its influence in the
determination ofTc . The second approach is based on a free energy minimization criterion~FEMCA!. The
dependence onk of the transition temperatureTc(k) observed in MC is in remarkable qualitative agreement
with DMFA and FEMCA. Both allow us to interpret the physical meaning of the mechanisms underlying the
observed transitions.

DOI: 10.1103/PhysRevB.68.205407 PACS number~s!: 05.70.Ce, 05.70.Np, 68.43.De
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I. INTRODUCTION

The two-dimensional lattice-gas model1 with repulsive in-
teractions between the adparticles is of experimental inte
because it provides the theoretical framework to study
order-disorder phase transition occurring in many ph
isorbed monolayer films. An example is the case of heli
adsorbed on graphite, which has been widely studied.2–4 In
this system, the size of the admolecule is somewhat la
than the lattice constant, so there is a repulsive interac
energyw between the adatoms. The presence of this kind
lateral interaction leads to a transition between ordered
disordered phases taking place when the thermal energykBT
is comparable in magnitude tow. Similarly, there exist many
adsorption systems in which the size of the adsorbate d
not correspond to the dimensions of the adsorption site. T
cal systems, such as methane,5 ethane,6 propane-butane,7

etc., adsorbed in nanotubes of aluminophosphates, have
recently reported.

In spite of the obvious evidence of the character of po
atomic admolecules in many real situations, most deve
ments in adsorption theory have mainly dealt with mon
atomic adsorption.8–10 The inherent complexity of the
multisite adsorption statistics still represents a major di
culty to the development of approximate solutions for t
thermodynamic functions. This difficult is mainly associat
to three factors which makes thek-mers statistics differen
from the usual single particle statistics. Namely,~1! no sta-
tistical equivalence exists between particles and vacanc
~2! the occupation of a given lattice site ensures that at le
one of its nearest-neighbor sites is also occupied, and~3! an
isolated vacancy cannot serve to determining whether
site can ever become occupied or not.

However, several attempts were done in the past in o
0163-1829/2003/68~20!/205407~9!/$20.00 68 2054
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to solve thek-mers problem. An early seminal contributio
to dimer statistics was done by Fowler and Rushbrook11

while an isomorphous system, namely, adsorption of bin
liquid in two dimensions, was treated by Flory.12,13 More
recently, leading contributions have been presented in R
8,14–18 treating with multisite adsorption on homogeneo
and heterogeneous surfaces. In general, these studies
focused on~i! effect of the chemical structure of a noninte
acting adsorbate on its mode of adsorption,~ii ! influence of
the surface heterogeneity on noninteractingk-mers adsorp-
tion, or ~iii ! description of the first-order phase transitio
occurring in the adsorbate for attractive nearest-neighbor
teractions. On the other hand, there have been very few s
ies devoted to the order-disorder transition associated to m
tisite adsorption with repulsive lateral interactions. Amo
them, the structural ordering of interacting dimers has b
analyzed by Phareset al.19 The authors calculated the en
tropy of dimer on semi-infiniteM3N square lattice (N
→`) by means of transfer matrix techniques. They co
cluded that there are a finite number of ordered structures
dimers with repulsive nearest-neighbor interactions.

In previous work we have studied the phase diagram
dimers with repulsive nearest-neighbor interactions
square lattice20 confirming the structural ordering predicte
in Ref. 19. In addition, we have analyzed the influence
such structural ordering on interesting properties as ads
tion isotherm and heat of adsorption,21 collective diffusion
coefficient,22 and configurational entropy.23 From these stud-
ies it is not possible to know completely the critical behav
in a lattice gas~structure of the different ordered phases o
curring at low temperature and critical temperature char
terizing each transition! as the sizek of the admolecules is
increased. However, from the (432) phase appearing in
dimers at critical regime we can predict the existence o
©2003 The American Physical Society07-1
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(2k32) structure fork-mers at half coverage.
Accordingly, the scope of the present work is to det

mine, via Monte Carlo~MC! simulation and two analytica
approximations, the critical behavior of repulsivek-mers ad-
sorbed at half coverage on a square lattice. For this purp
the critical temperatureTc(k) characterizing the transition
from the disordered state to the (2k32) phase is obtained a
a function of the sizek of the adsorbed molecules. The ou
line of the paper is as follows. In Sec. II we describe t
lattice-gas model, the simulation scheme, and we presen
behavior ofTc(k), obtained by using the MC method. I
Sec. III we present the analytical approximations@detailed
mean-field approximation~DMFA! and free energy minimi-
zation criterion~FEMCA!# and compare the MC results wit
the theoretical calculations. Finally, the general conclusi
are given in Sec. IV.

II. LATTICE-GAS MODEL AND MONTE CARLO
SIMULATION SCHEME

A. The model

In this section we described the lattice-gas model for
adsorption of linear rigid molecules with multisite occ
pancy. In order to make the treatment as general as poss
we considered the adsorption of homonuclear lineark-mer
molecules on hypercubic lattice modeled ask interaction
centers at a fixed separation, which is equal to the lat
constanta. In the adsorption process, it is assumed that e
monomer occupies a single adsorption site. The hi
frequency stretching motion along the molecular bond
not been considered here. Thek-mers bond length remain
constant throughout the treatment. The surface is represe
as an array ofM adsorptive sites. In order to describe t
system ofNk-mers adsorbed onM sites at a given tempera
ture T, let us introduce the occupation variableci which can
take the valuesci50 if the corresponding site is empty an
ci51 if the site is occupied. The energy involved in th
adsorption of eachk-mer unit is smaller than the bond energ
between thek units. On the other hand, molecules adsorb
desorb as one unit, neglecting any possible dissociation.
der this consideration, the Hamiltonian of the system is giv
by

H5w(
^ i , j &

cicj2N~k21!w1e0(
i

ci , ~1!

where w is the nearest-neighbor~NN! interaction constan
which is assumed to be repulsive~positive!, ^ i , j & represents
pairs of NN sites, ande0 is the energy of adsorption of on
given surface site. The termN(k21)w is subtracted in Eq.
~1! since the summation over all the pairs of NN sites ov
estimates the total energy by includingN(k21) bonds be-
longing to theN adsorbedk-mers.

B. Monte Carlo method

We have used a standard importance sampling
method in the canonical ensemble24 and finite-size scaling
techniques.25 The lattices were generated fulfilling the fo
lowing conditions.
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~1! The sites were arranged in a square lattice of s
L(M5L3L), with conventional periodic boundary cond
tions.

~2! Due that the surface was assumed to be homogene
the interaction energy between the adsorbedk-mer and the
atoms of the substratee0 was neglected for sake of simplic
ity.

~3! In order to maintain the lattice at half coverageu
5kN/M51/2, the number ofk-mers on the lattice was fixed
asN5M /2k.

~4! Appropriate values ofL/k were used in such away tha
the (2k32) adlayer structures are not perturbed.

A number Monte Carlo steps~MCS! per site between
1052106 were discarded in each run to allow for equilibriu
and the next 1052106 MCS were used to compute average
At temperatures far for the critical point fewer than 105 were
found to be enough to obtain sufficient precision. In the
cinity of critical points up to 106 MCS had to be used be
cause fluctuations are greatly enhanced.

In order to study the order-disorder phase transition
curring in the adsorbate, it is convenient to define a rela
order parameter. In particular, atu51/2, a (2k32) ordered
structure is formed in the adsorbate below the critical te
perature. Figure 1 shows snapshots corresponding to
possible configurations of the (432) phase appearing fo
adsorbed dimers (k52) at critical regime. Due to the peri
odic boundary conditions the degeneracy of this phase
equal to 8. These configurations allow us to decompose
original lattice into eight different sublattices~see Fig. 2!.26

The coverage on each sublattice is denoted asu i( i
51, . . . ,8). Inthis way, an order parameterw can be defined
for dimers as

w5uu12u2u1uu32u4u1uu52u6u1uu72u8u, ~2!

where we sum the differences~in absolute value! between
the coverage corresponding to two complementary sub
tices. The term complementary refers to sublattices with
superposition.

In general, the number of sublattices fork-mers will be
4k, each one having a surface coverageu i( i 51, . . . ,4k).
Thus, the generalized order parameterw(k) can be written as

w~k!5Ak (
i 50

2k21

uu2i 112u2i 12u, ~3!

whereAk is a normalization factor defined as

Ak55
2

k
for even k,

2k

k213
for odd k.

~4!

When the system is disordered (T.Tc), all sublattices
are equivalents and the order parameter is minimum. H
ever, when a configuration of the (2k32) phase appears a
low temperature (T,Tc), this is allocated on a sublattic
~between a set of 4k). Let us suppose that this configuratio
lies on the sublatticei. Then, the coverageu i is maximum
7-2
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CRITICAL BEHAVIOR OF REPULSIVE LINEARk- . . . PHYSICAL REVIEW B 68, 205407 ~2003!
(u i51) and the coverage of the complementary sublattic
zero. In addition, the rest of the sum is zero or minimum.
conclusion, the definition~3! is computationally convenien
and w appears as a good order parameter evidencing
order-disorder phase transition. Finally, the reduced fou
order cumulantUL introduced by Binder,27 can be calculated
as

UL~T!512
^w4&T

3^w2&T
2

, ~5!

where the thermal averagê•••&T , in all the quantities,
means the time average throughout the MC simulation.

C. Computational results

The standard theory of finite-size scaling24,25,27allows for
various efficient routes to estimateTc from MC data. One of
this method, which will be used in the next section, is fro
the temperature dependence ofUL(T), which is independen
of the system size forT5Tc . In other words,Tc is found
from the intersection of the curveUL(T) for different values
of L, sinceUL(Tc)5const.

FIG. 1. Snapshot of the ordered phase for dimers at half co
age.
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The thermodynamic properties of the present model h
been investigated by means of the computational scheme
scribed in the previous section. The calculations were de
oped for lineark-mers withk5225 ~as it is well known,28

the value ofTc for k51 is exact!. The simulation lattice was
a square lattice of sizeL3L with conventional periodic
boundary conditions. Note, however, that the choice of
propriate linear dimensionsL has to be done in such awa
that the ordered structures are not disturbed. In our case
(2k32) ordered phase (L54k,8k,12k,16k,24k) were used.

Hereafter we discuss the behavior of the critical tempe
ture as a function of the sizek, for adsorbedk-mers at mono-
layer. Figure 3 illustrates the reduced four-order cumula
UL(T) plotted versuskBT/w ~where kB is the Boltzmann
constant! for several lattice sizes. From their intersectio
one gets the estimation of the critical temperature. As
example, the figure shows the results for two values ok
@k52, Fig. 3~a! and k53, Fig. 3~b!#. The curves of the
order parameter, which were used to obtainUL(T), are
shown in the insets of the figure. The procedure was done
k5225 and the results are collected in Table I.

As can be observed, the critical temperature presents
nontrivial behavior as a function of the particle sizek. An
understanding of the intriguing dependence ofTc(k) on k
can be developed by following the subtle interdependenc
energetic and entropic cost necessary to alter the ord
phase. This will be discussed in Sec. III C.

A systematic analysis of critical exponents for eachk-mer
size was not carried out since this was out of the scope of
present work. Although, they might be expected to belong
the two-dimensional Ising model’s universality class, it is n
clear that this would be true fork-mers in general. It is worth
pointing out that we did not assume any particular univers
ity class por the transitions analyzed here in order to ca
late their critical temperatures, since the analysis relied
the order parameter cumulant’s properties. However a p
liminary finite-size scaling analysis of the size dependence
the specific heat’s maximum reveals that critical expone

FIG. 2. Different sublattices defined fork52.

r-
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different from the two Ising ones have to be assumed
order for the critical temperatures from both ways to be c
sistent.

III. ANALYTICAL APPROXIMATIONS AND COMPARISON
BETWEEN SIMULATED AND THEORETICAL

RESULTS

A. Detailed mean-field approximation „DMFA …

In this section, we will extend the basic ideas of a clus
method, which has been applied successfully to describe
continuous transition occurring in repulsive monomers
critical regime.29 The proposed system can be summarized
the following rules.

FIG. 3. UL(T) versuskBT/w, for two sizes of the adsorbe
molecule:k52 ~a! andk53 ~b!. From their intersections one ob
tainedkBTc /w. The order parameters corresponding to the cur
of UL(T) are presented in the insets.

TABLE I. Tc(k) for k ranging from 1 to 5. The value ofTc(1)
is exact~Ref. 28! while in the other cases,k5225, the data were
obtained from the intersection ofUL(T) versuskBT/w.

k kBTc /w 6D

1 0.567
2 0.331 0.001
3 0.405 0.001
4 0.482 0.002
5 0.546 0.006
20540
n
-

r
he
t
n

~i! The substrate consists of a set of neighbor s
grouped in a rectangular structure, the so-called clus
which is embedded in an infinite lattice. Figure 4 shows
cluster of size 232.

~ii ! The k-mers adsorb into the cluster~i.e., each one of
thek particles belonging to ak-mer must adsorb on a cluste
site!.

~iii ! The interactions between thek-mers belonging to the
cluster are explicitly accounted for. Additionally, a mea
field interaction with the rest of sites out the cluster boun
aries is added.

~iv! Because the ordered phases may develop on diffe
sublattices~as discussed in Sec. II!, different sublattices are
defined on the cluster. This is the main difference with t
standard cluster method for monomers.29

Hereafter, we calculate in the grand canonical ensem
where the critical temperature is found from the conditi
u51/2 and w→0 (T→Tc

2). An example for adsorbed
dimers follows in order to make this point clear. Figure
shows a snapshot corresponding to a 232 cluster. This clus-
ter is constituted by four sites, belonging to two differe
sublattices. Circles~squares! denote sites on the sublattic
1~2!, whereu1 andu2 are the mean coverages on each s
lattice. The possible configurations for our example a
shown in Fig. 5.

The grand partition functionJ will be

J511l@e24u1bw1e24u2bw12e22(u11u2)bw#

12l2e2(4u114u212)bw, ~6!

whereb51/kBT andl5ebm is the fugacity. From Eq.~6!, it
is possible to calculate the mean coverage on both sublat

u15
1

2J
$l@2e24u2bw12e22(u11u2)bw#

14l2e2(4u114u212)bw%, ~7!

u25
1

2J
$l@2e24u1bw12e22(u11u2)bw#

14l2e2(4u114u212)bw%. ~8!

Taking into account that

u5
u11u2

2
~9!

s

FIG. 4. Cluster of size 232 for dimers.
7-4
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FIG. 5. Different configura-
tions for dimers adsorbed on
cluster of size 232.
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and by defining the order parameter as

w5
u12u2

2
~10!

the critical temperature can be obtained from the condit
u51/2 and w→0 (T→Tc

2). The procedure to solve thi
problem is as follows.

@~1!# Becauseu51/2, the fugacity can be determine
from Eqs.~6!–~9!;

l5
e3bw

A2
. ~11!

@~2!# From Eqs.~9! and ~10!

u15u1w5
1

2
1w, ~12!

u25u2w5
1

2
2w. ~13!

@~3!# From Eqs.~11!–~13!, the grand partition function is
rewritten as

J521
ebw

A2
~e4wbw1e24wbw12!. ~14!

@~4!# From Eqs.~7!, ~8!, and~10!–~13!, we obtain

w5
ebw

A8J
~e4wbw2e24wbw!. ~15!

@~5!# The right-hand side~RHS! of Eq. ~15! is expanded in
powers ofw aroundw50 ~which corresponds toT5Tc)

w5S A8wbce
wbc

21A8ewbc
D w1•••, ~16!

wherebc51/kBTc . Then, by comparing the terms of o
der O(1) of Eq. ~16!,

21A8ewbc5A8wbce
wbc. ~17!
20540
n

Finally, the numerical solution of Eq.~17! yields kBTc /w
50.826.

By following the procedure detailed above,k31, k32,
2k31, and 2k32 clusters fork52, . . . ,5were solved. The
results of these calculations are shown in Sec. III C in co
parison with the MC simulations.

We predict that the critical temperature as a function
the adsorbate size presents a local minimum for dimers.
critical temperature for dimers, trimers, 4-mers, and, rough
for 5-mers is lower than the one for monomers~the Ising
model!. The overall behavior shown by the MC simulation
is qualitatively well reproduced by the cluster approximati
developed here, especially for the minimal critical tempe
ture for dimers.

B. Free energy minimization criterion „FEMCA …

Hereafter, we present a thermodynamic analysis t
sheds light on the underlying physics of the observed s
dependence ofTc . Let us consider an ideal gas in a contain
of fixed volume. The total system is assumed to be isola
By ‘‘isolated’’ it is meant that the system does not exchan
energy with anything external to it. Then we split the sam
into two parts~left and right! by means of a movable hea
conducting wall~a metallic piston in an isolated and close
cylinder containing gas at low pressure!. As it is well known,
the wall moves until the pressure and the temperature
both parts of the partition are the same. In this way, it
possible to determine the thermodynamical equilibrium.

This analysis, which is mainly based on the mechani
equilibrium between the different parts of the system, can
replace by statistical arguments. In this framework, an i
lated system will be in a state of thermodynamical equil
rium when the entropyS has reached a maximum30,31

S5maximum~ isolated system!. ~18!

The stability will be reached when the values of the fr
system’s parameters allow one to satisfy the condition~18!.
In our case, we can verify the condition~18! by arranging the
piston in an adequate position. The position of the condu
ing wall is denoted byx. Then the entropy of the system wi
be
7-5
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S~x!5Sl~x!1Sr~x!, ~19!

whereSl(x)@Sr(x)# represent the entropy on the left~right!
for a given value of the positionx of the barrier. The equi-
librium is obtained by calculating the positionx5x0, which
maximizes Eq.~19!. Only x5x0 corresponds to a state o
equilibrium for the isolated system with a movable wall.
the position of the piston is fixed (x is not a free parameter!,
other states of equilibrium will be reached for different va
ues ofx. On the other hand, if the wall is allowed to mov
freely, these states will be out of the equilibrium and t
entropy will not be defined.

From these arguments, it can be concluded that the
cedure to calculate the state of equilibrium for an isola
system requires two steps:~i! to obtain the entropy of the
system by fixing the parameters of interest in accessible
ues and~ii ! to choose the set of these parameters so that
entropy reach the maximum. In the following, a closed s
tem in contact with a large thermal reservoir at temperaturT
is studied. With these assumptions, the equilibrium condit
for the system is that the total free energyF5U2TS must
be a minimum30,31 in comparison with any other state t
which the system might go without violating fundamen
conservation laws. Then,

F5U2TS5minimum~closed system!, ~20!

whereU represents the mean energy.
To obtain the equilibrium state, we must calculate the

tropy of the system as a function of the energyS(U). This
process implies that we should isolate the system for dif
ent energies and to calculate the entropy correspondin
each energy. Then, the equilibrium state at temperaturT
~characterized bySandU) is determined from the condition
~20!.

An example of this type of analysis is the following de
vation for an ideal gas. The procedure requires the followi

~i! To obtain the relationshipS(U). For the ideal gas is
well-known that32,33

S5NkBlnF S V

ND S CU

N D 3/2G , ~21!

whereN is the number of particles,V is the volume, andC is
a constant.

~ii ! To build the functionF, this is

F5U2TNkBlnF S V

ND S CU

N D 3/2G . ~22!

~iii ! To minimizeF with U as the free parameter

]F

]U
512TNkB

F S V

ND S C

ND 3/2G
F S V

ND S CU

N D 3/2G
3

2
U1/250, ~23!

U5
3

2
NkBT. ~24!
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In this way we have obtained the mean energy at tempera
T. This quantity corresponds to a equilibrium state of t
system.

It is straightforward that between two possible states,
isolated~closed! system prefers the state having the ma
mum entropy~minimum free energyF). Based on these con
cepts we will develop an approximation to determineTc in
the canonical ensemble and we will apply the methodolo
to our system.

In a closed system of adsorbed particles with repuls
interactions, the phase transition occurring in the adsorba
a continuous~second-order! phase transition. In other words
the entropy varies continuously from a completely orde
state ~when T→0) to a disordered state~when T→`).
AroundTc , Schanges abruptly~but continuously!.23 Then, it
is possible to analyze the phase transition taking into acco
the functionF in the two extreme states~maximum order and
maximum disorder!. Accordingly,

F`5 lim
T→`

F and F05 lim
T→0

F ~25!

then

F`!F0⇒T.Tc , ~26!

F`@F0⇒T,Tc , ~27!

F`5F0⇒T'Tc . ~28!

The last equation allows us to determineTc . This calcu-
lation is not exact due to the fact that the system does
pass from a extreme order to an extreme disorder. There e
intermediate states between the two extreme states. How
as we will show in the following analysis, Eq.~28! provides
a very good approximation forTc .

Let us consider a well-known system, the ferromagne
Ising model without external field. The Hamiltonian of th
system is

H52J(
( i , j )

s is j , ~29!

whereJ is the exchange interaction,s i is the spin variable
associated to the sitei (s i561), and (i , j ) represents pairs
of NN sites. For a lattice ofN spins and connectivityz, the
mean energy and the entropy can be calculated in two
treme states

U052
1

2
zJN and S05kBln 2 ~order!, ~30!

U`50 and S`5kBN ln 2 ~disorder!. ~31!

In the thermodynamical limit, the free energy per spinf will
be

f 05 lim
N→`

F0

N
52

1

2
zJ ~order!, ~32!
7-6
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f `5 lim
N→`

F`

N
52kBT ln 2 ~disorder!. ~33!

Evidently, the system prefers the ordered~disordered!
state asT→0(`). However, a temperature exists in whic
both free energies are equals. This temperature will be u
as a criterion of the estimation of the critical temperatureTc .
Taking into account Eq.~28!,

f 05 f `⇒T'Tc⇒kBTc /J'z/ ln 4. ~34!

For z54 we havekBTc /J'2.88, which is a rough esti
mation to the real value of 2.269.

In general, for a system ofk-mers at temperatureT

f 05u02Ts0 and f `5u`2Ts̀ , ~35!

where u and s represent the mean energy per site and
entropy per site in the thermodynamical limit, respectivel

u5 lim
M→`

U

M
and s5 lim

M→`

S

M
. ~36!

If f 05 f ` , this is

u02Ts05u`2Ts̀ ~37!

thenT'Tc and

Tc'
Du

Ds
5

u`2u0

s`2s0
. ~38!

From Eq.~38!, it is possible to calculate the critical tem
perature and to interpret the dependence ofTc with k, for a
system of repulsive lineark-mers on a square lattice at ha
coverage. In this case, the mean energy, the entropy, an
free energy for the ordered state (T50) are u05s05 f 0
50. Then, the critical temperature depends on the mean
te
ic
al
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e
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ergy and the entropy of the disordered state. In first term,u`

will be calculated from the mean-field approximation

u`

w
'

Nu

2M
@612~k22!#5

k11

4k
, ~39!

where u51/2. Equation ~39! is exact for monomers (k
51), due to the fact that in this case all sites in the bor
are equivalents. In order to calculate the entropy of the d
ordered state, the configurational factor of monomers fok
51 is employed:

V5
M !

N! ~M2N!!
~40!

and the configurational factor of Guggenheim34 for k>2 is

V'zN
M !

N! ~M2kN!! F ~bN1M2kN!!

M ! Gz/2

, ~41!

wherez5z/2 andb5@(z22)k12#/z. Thus,

s`5 lim
M→`

kBln V

M
. ~42!

In the particular case ofz54 andu51/2, the entropy per
site of the disordered state results in

s`

kB
5 ln 2 for k51 ~43!

and

s`

kB
'

1

2k
ln 4k1

1

2
ln 21S 1

2k
1

3

2D lnS 1

4k
1

3

4D for k>2.

~44!

Finally, from Eqs.~38!, ~39!, ~43!, and ~44!, we obtain
Tc(k):
kBTc~k!

w
'

u` /w

s` /kB
5H 1/ln 450.721 fork51,

~k11!/F2 ln 4k12k ln 21~6k12!lnS 1

4k
1

3

4D G for k>2.
~45!
The

ara-
e-
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ec-
C. Comparison between theoretical and simulated results

Figure 6 shows the comparison between the simula
results previously presented in Table I and the theoret
predictions obtained from DMFA and FEMCA for the critic
temperature as a function of the sizek. The MC simulations
reveal two main characteristics for the behavior of the cr
cal temperature versus the sizek of linear rigid k-mers: ~i!
the curve presents a minimum fork52 and~ii ! for k.2, the
critical temperature is monotonically increasing onk. Both
characteristics are well reproduce by FEMCA and DMFA
clusters of sizes (k32) and (2k32). On the other hand, th
curves corresponding to DMFA and clusters of sizesk
31) and (2k31) do not reproduce the minimum ink52.
This behavior can be understood as follows.
d
al

-

r

Equation ~38! shows thatkBTc(k)/w depends on the
mean energy and the entropy of the disordered state.
behavior of these quantities as a function ofk allows us to
understand the arguments presented in the previous p
graph. In first term, we will analyze the entropy. In the on
dimensional case,s` diminishes ask is increased. The expla
nation is simple: atu51/2, the number of entities per lattic
site ne ~and for this reason, the number of accessible sta!
diminishes ask increases@ne(k)}1/2k#. From Ref. 35,
s`(k51)50.693, s`(k52)50.477, ands`(k53)50.375,
for monomers, dimers, and trimers adsorbed in 1D, resp
tively. In 2D, the situation changes slightly:~i! the entropy is
similar for monomers and dimers and~ii ! for k.2, s` di-
minishes as k is increased. From Ref. 23,s`(k51)
7-7
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50.693,s`(k52)50.635, ands`(k53)50.462, for mono-
mers, dimers, and trimers adsorbed in 2D, respectively.
reason for this is the following. In two dimensions a ne
degree of freedom appears for the adsorbed particles w
size isk>2: dimers, trimers, etc., can rotate on the lattic
The new accessible states for dimers due to possible r
tions compensate the diminution in the number of entit
with respect to monomers. Consequently, the variation in
entropy between monomers and dimers is small. Howe
due to the fact that the new degree of freedom appears
k>2, the diminution in the entropy is reestablished~associ-
ated to the diminution in the number of entities!.

With respect to the mean energy, the approximated s
tion given in Eq.~39!, shows thatu`(k) diminishes until an
asymptotic value for higherk’s: u`(1)50.5, u`(2)
50.375, u`(3)50.333, u`(4)50.312, . . . , u`(`)50.25.
Note thatu`(k) diminishes abruptly~slightly! in the range
k5122 (k522`).

Now we can interpret the two main characteristics in
numerical curvekBTc(k)/w versusk presented in Fig. 6.~1!
From k51 to k52, the mean energy value diminishes a
preciably. On the other hand, the entropy remains practic
constant. Thus, in agreement with FEMCA@Eqs. ~38! and
~45!#, kBTc(k)/w decreases betweenk51 andk52. ~2! For
k>2, the entropy diminishes monotonically and the me
energy stabilize its value. Thus,kBTc(k)/w increases mono
tonically ask is increased, such as is predicted by FEMC

In addition, as we discuss above, the possibility of orie
tation of the adsorbed molecules originates the minimum
pearing in the curve ofkBTc(k)/w versusk. Based on these
arguments it is possible to understand the results obta
from DMFA. For linear clusters@(k31) and (2k31)] the
curves increases monotonically and do not reproduce
minimum in k52. When a new degree of freedom is i
cluded in the clusters, allowing the rotation of the dimers,
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for kBTc /w vs k. The symbology is indicated in the figure.
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results from DMFA are in good qualitative agreement w
MC simulations@see the curves for (k32) and (2k32) in
Fig. 6#.

IV. CONCLUSIONS

In the present work, we have addressed the critical pr
erties of repulsive lineark-mers on two-dimensional squar
lattice at half coverage, and shown the dependence of
critical temperature on the sizek. The results were obtaine
by using MC simulations and two analytical approach
DMFA and FEMCA, which were introduced in this contr
bution.

Several conclusions can be drawn from the present w
On one hand, the critical temperature dependence on the
ticle size of an ordered phase (u51/2) of repulsive straight
particles have been reported and we found that dim
present the minimum value. An analysis of the delicate b
ance between the size dependence of entropy and energ
site allowed to interpret this minimum an the overall beha
ior of Tc versusk.

On the other hand, the comparison between DMFA a
MC simulations allowed us to test the validity of this an
lytical approximation in the present problem. In this sen
we can conclude that for linear clusters@(k31), (2k31),
etc.# the theoretical results disagree with the computatio
simulations. Contrarily, for rectangular clusters@(k32),
(2k32), etc.# DMFA is in good qualitative agreement wit
the simulations.

Moreover, FEMCA appears as a meaningful theoreti
argument to account for the main features of the critical te
perature since~i! provides results in very good qualitativ
agreement with MC simulations and~ii ! constitutes a theo-
retical framework in order to interpret the behavior ofTc vs
k. According to Eq.~38!, Tc depends on the ratio of th
energy and entropy differences between a fully disorde
state (T→`) and the ground state (T→0). In other words,
an increase inDu(Ds) with respect toDs(Du) implies an
increase~decrease! in Tc . This important result can be gen
eralized beyond the specific system studied in the pre
contribution. In the particular case of repulsive lineark-mers,
the k dependence ofTc is as follows: the mean energy d
minishes appreciably fromk51 to k52 while the entropy
remains practically constant. Consequently,Tc for dimers
lowers with respect to the one for monomers. Fork.2, the
entropy diminishes monotonically and the mean energy
bilize its value. Thus,Tc increases monotonically ask is
increased.

The two models presented in this paper represent v
important tools in order to study the phase behavior of d
ferent interacting lattice gases. In particular, future effo
will be directed to obtainTc versusk for other existing or-
dered phases in the whole range of coverage.
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