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Abstract

The con gurational entropy of repulsive interacting particles adsorbed on heterogeneous sur-
faces is studied by combining Monte Carlo simulation and thermodynamic integration method.
The substrate is represented by a bivariate lattice characterized by l × l patches of weak and
strong adsorbing sites, arranged in a deterministic chessboard structure. The temperature is
varied in such a way that di3erent ordered phases can be formed on the surface. A rich variety
of behaviors is found and analyzed in the context of the lattice-gas model.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The advantages of using Monte Carlo simulation to calculate thermal averages of
thermodynamic observables are well known [1]. The estimation of certain quanti-
ties such as total energy, energy @uctuations, correlation functions, etc., is rather
straightforward from averaging over a large enough number of instantaneous con gu-
rations (states) of a thermodynamic system. However, free energy and entropy, in gen-
eral, cannot be directly computed. In order to calculate free energy and entropy,
various methods have been developed. Namely, thermodynamic integration method
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(TIM) [2–7], Ma’s method of coincidence counting of states along the trajectory in
phase space [8], “stochastic models”—method of Alexandrowicz [9], “local states”—
method of Meirovitch [10], “multistage sampling” and “umbrella sampling” of Valleau
et al. [11,12], method of Salsburg [13], method of Yip et al. [14] (which is an op-
timized combination of coupling parameter and adiabatic switching formalisms), etc.
Among them, the TIM is one of the most widely used and practically applicable. The
method relies upon integration of the total energy on temperature along a re-
versible path between an arbitrary reference state and the desired state of the
system.
On the other hand, theoretical studies have been devoted to the con gurational en-

tropy of adsorbed monoatomic and polyatomic molecules. In this sense, by using the
transfer matrix method, Phares et al. [15–19] studied the con gurational entropy of
interacting particles (dimers and monomers) adsorbed on lattices with di3erent geome-
tries. In these leading contributions, a rich variety of di3erent behaviors and structural
orderings were found and discussed by the authors.
In all previously mentioned cases, the surface is considered to be chemically ho-

mogeneous and smooth. However, real surfaces generally present inhomogeneities due
to irregular arrangement of surface and bulk atoms or the presence of various chemi-
cal species, which can signi cantly a3ect the main thermodynamics functions. There-
fore, increasing interest and e3orts have been devoted over decades to developing a
deeper understanding of the surface heterogeneity [20–23]. Most of the papers deal-
ing with molecular processes on heterogeneous surfaces have been dedicated to the
analysis of phenomena such as di3usion [24], percolation [25], growth [26], adsorp-
tion isotherms and heats of adsorption [27], multisite occupancy [28], etc. As it was
discussed above, the entropy is much more diOcult to evaluate and, in the best
knowledge of the authors, there is still a lack of systematic studies on the behav-
ior of the adsorbate’s entropy in presence of surface heterogeneity. For these
reason, it is of interest and of value to inquire how a speci c lattice structure (het-
erogeneous surface with intermediate correlation) in@uences the entropy of the
adlayer.
In this context, the main objective of our paper is to determine, via Monte Carlo

simulation and thermodynamic integration method in canonical ensemble, the e3ects
of the surface heterogeneity on the behavior of the con gurational entropy of
adsorbed interacting particles. For this purpose, we consider a gas of monomers
adsorbed on bivariate heterogeneous surfaces with a characteristic correlation
length, l. The bivariate surfaces are composed by two kinds of sites, say weak and
strong sites with adsorptive energies �1 and �2, respectively, arranged in patches of
size l with a chessboard structure. A special class of this kind of surface has been
observed recently to occur in a natural system [29], although it was already
intensively used in modeling adsorption and surface di3usion phenomena
[24–28].
The plan of the rest of paper is as follow. In Section 2 the lattice-gas model is given

along with the basis of the thermodynamic integration method in canonical ensemble.
The results are presented in Section 3. Finally, we close this article in Section 4 with
the conclusions.
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2. Basic de�nitions

2.1. The model

We assume that the substrate is represented by a two-dimensional square lattice of
M=L×L adsorption sites, with periodic boundary conditions. Each adsorption site can
be either a “weak” site, with adsorptive energy �1, or a “strong” site, with adsorptive
energy �2 (�16 0, �26 0 and |�1|¡ |�2|). Weak and strong sites form square patches
of size l(l= 1; 2; 3; : : :) which are spatially distributed in a deterministic alternate way
(chessboard topography), Fig. 1.
In order to describe the system of N particles adsorbed on M sites at a given

temperature T , let us introduce the occupation variable ci, which can take the values
ci=0 if the corresponding site is empty and ci=1 if the site is occupied. Particles can
be adsorbed on the substrate with the restriction of at most one adsorbed particle per
site and we consider a nearest neighbor (NN ) repulsive interaction energy w among
them. Under these considerations, the Hamiltonian of the system is given by

H = w
∑
(i; j)′

cicj +
M∑
i

�ici ; (1)

where (i; j)′ represents pairs of NN sites and �i(=�1 or �2) is the energy of adsorption
of one given surface site.

Fig. 1. Schematic representation of a square heterogeneous bivariate surface with chessboard topography.
Black (white) symbols represent sites with energy �1 (�2). The patch size in this  gure is l = 4.
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2.2. Thermodynamic integration method in canonical ensemble

Let us suppose a lattice-gas of N interacting particles, each of which occupies one
site on a regular lattice with M sites at temperature T . Then, it is possible to write(

9S
9T

)
N;M

=
1
T

(
9U
9T

)
N;M

; (2)

where S and U represent the con gurational entropy and the internal energy, respec-
tively. From Eq. (2),

S(N;M; T ) = S(N;M; To) +
∫ T

To

dU
T
: (3)

Eq. (3) allows to calculate the entropy in di3erent equilibrium states if S(N;M; To)
(reference state) is known, given that the integral in the second term can be accu-
rately estimated by Monte Carlo simulation. This procedure is called thermodynamic
integration.
In our case, the determination of the entropy in the reference state is trivial. In fact,

for a monoatomic lattice-gas

lim
To→∞

S(N;M; To) = kB ln

(
M

N

)
= kB ln

[
M !

N !(M − N )!
]
: (4)

kB being the Boltzmann constant. By using the Stirling’s approximation (ln x! ≈ x ln x−
x), Eq. (4) can be written as s(�; To → ∞)=kB = −� ln � − (1 − �) ln(1 − �), where
�= N=M and s= S=M denote surface coverage and entropy per site, respectively.
On the other hand, the integral in the second term of Eq. (3) can be obtained by

evaluating U at constant coverage for various values of T following the standard pro-
cedure of Monte Carlo simulation in the canonical ensemble, based on the Metropolis
scheme [30]. Then, U (T ) is spline- tted and numerically integrated [5–7].
The approximation to thermodynamical equilibrium is usually reached in 106 MCS

(a Monte Carlo Step (MCS) is achieved when M sites have been tested to change
its occupancy state). After that, mean values of the internal energy U , are obtained
by simple averages over 106 MCS con gurations. In the next section, we analyze the
application of this methodology in calculating adsorption entropy of interacting particles
adsorbed on two-dimensional heterogeneous surfaces.

3. Results

The computational simulations have been developed for squares L×L lattices with L=
144 (in such a way that it is a multiple of l) and periodic boundary conditions. With this
size of the lattice we veri ed that  nite size e3ects, which a3ect the thermodynamical
properties in the case of repulsive interactions at much smaller sizes, are negligible. We
focus on the case of repulsive interaction energy among adsorbed particles (w¿ 0).
This is far more interesting since, as we shall see, order–disorder transitions can take
place in the adsorbate, even if the order can be partially disturbed by heterogeneity.
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Fig. 2. Con gurational entropy per site (in units of kB) versus the surface coverage for interacting particles
adsorbed in chessboard substrates with l=12 and T�=12. The curves from top to bottom correspond to the
following: kBT =∞, kBT = 4:90, kBT = 3:30, kBT = 2:50, kBT = 1:67, kBT = 1:00, kBT = 0:67, kBT = 0:50,
kBT = 0:40 and kBT = 0:2, respectively. (a) w = 1, (b) w = 2.

The di3erence between the energies of the patches has been chosen to be T�=�1−�2=
12 (�1 = 0; �2 =−12). A high value of T� has been considered in order to emphasize
the e3ect of the surface heterogeneity as the temperature is diminished.
In order to understand the basic phenomenology, we consider in  rst place a chess-

board topography with l= 12 (size of each homogeneous patch), and di3erent values
of the temperature. Fig. 2(a) [(b)] shows canonical Monte Carlo simulations of the
con gurational entropy per site, s, versus surface coverage, �, for w = 1 [w = 2]. As
a consequence of the equivalence particle-vacancy, the curves are symmetrical around
� = 0:5. For high temperatures, the overall behavior can be summarized as follows:
in the limits � → 0 and � → 1 the entropy tends to zero. For very low coverages
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s(�)=kB is an increasing function of �, reaches a maximum at � = 0:5, then decreases
monotonically to zero for �¿ 0:5.
As the temperature is diminished, the entropy decreases for all coverage and devel-

ops three local minima at � = 1
4 ,

1
2 and 3

4 . In the ground state, s
(
�= 1

4 ; T = 0
)
=kB =

s
(
�= 1

2 ; T = 0
)
=kB = s

(
�= 3

4 ; T = 0
)
=kB = 0. These marked singularities are separating

four di3erent adsorption processes: (i) for 0¡�¡ 1
4 , the strong site patches are  lled

until the c(2×2) ordered phase is formed on them; (ii) for 1
4 ¡�¡ 1

2 , the  lling of the
strong site patches is completed; (iii) for 1

2 ¡�¡ 3
4 , the weak site patches are  lled

until the c(2× 2) ordered phase is formed on them; (iv) for 3
4 ¡�¡ 1, the  lling of

the weak site patches is completed.
We now analyze the case corresponding to w=4 (Fig. 3(a)) and w=5 (Fig. 3(b)).

As in Fig. 2, three minima appear in the entropy as T decreases. Nevertheless, the
cause of these minima in Figs. 3(a) and (b) is di3erent. In fact, the  lling of the
lattice proceeds according to the following processes: (i) for 0¡�¡ 1

4 , the strong
site patches are  lled until the c(2 × 2) ordered phase is formed on them; (ii) for
1
4 ¡�¡ 1

2 , the weak site patches are  lled until the c(2× 2) ordered phase is formed
on them; (iii) for 1

2 ¡�¡ 3
4 , the  lling of the strong site patches is completed;

(iv) for 3
4 ¡�¡ 1, the  lling of the weak site patches is completed.

As it can be easily understood, once strong site patches are  lled up to � = 0:25
(where a c(2 × 2) structure is formed on them), there are two possible positions to
adsorb a new particle: (1) on strong sites, involving an energy of 4w + �2 (4w due
to repulsions); or (2) on weak sites, with energy �1. Then, as long as the condition
4w + �2¡�1

(
w=T�¡ 1

4

)
is satis ed, the adsorption process is similar to the one

described in Fig. 2, i.e. strong site patches are  lled  rst and weak site patches are
 lled after. We call this feature regime I (RI).
On the other hand, the condition �1¡ 4w+�2 is not su cient to assure the existence of

a new regime. In fact, an intermediate adsorption regime occurs for 3w+�2¡�1¡ 4w+
�2
(
1
4 ¡w=T�¡ 1

3

)
, where incoming particles (at �¿ 0:25) can be adsorbed on the

border of the strong patches (with energy 3w + �2). Then, as long as 3w + �2¿
�1
(
w=T�¿ 1

3

)
is satis ed, the adsorption process is as in Fig. 3, which we call

regime II (RII).
RI and RII could be also interpretated in terms of spatially modulated phases [31–33]

(this model was introduced some years ago to study systems with competing interac-
tions, as the model presented here). However, we consider that such description, which
is very appropriate to deal magnetic systems, is out of the scope of the present work.
In the next  gure, we show RI and RII from a new perspective. For this purpose,

Fig. 4(a) [(b)] presents a typical low-temperature adsorption isotherm (coverage versus
chemical potential, �) in RI [RII]. Simulations corresponding to Fig. 4 were performed
in grand canonical ensemble. Both adsorption regimes can be easily visualized by
following the behavior of �1 and �2 versus �, where �1 (�2) represents the partial
coverage associated to sites with energy �1 (�2).
An interesting case occurs for w=3 (Fig. 5). For this lateral interaction, the adsorp-

tion process is as follows: (i) the strong site patches are  lled until the c(2×2) ordered
phase is formed on them; (ii) for 0:25¡�¡ 0:75, the particles can be adsorbed on
strong patches (with energy �2 + 4w = 0) or on weak sites (with energy �1 = 0). For
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Fig. 3. Con gurational entropy per site (in units of kB) versus the surface coverage for interacting particles
adsorbed in chessboard substrates with l=12 and T�=12. The curves from top to bottom correspond to the
following: kBT =∞, kBT = 4:90, kBT = 3:30, kBT = 2:50, kBT = 1:67, kBT = 1:00, kBT = 0:67, kBT = 0:50,
kBT = 0:40 and kBT = 0:2, respectively. (a) w = 4 and (b) w = 5.

this reason, the entropy varies smoothly between 0:25¡�¡ 0:75, and the minimum
at �= 0:5 disappears. The process (ii) conclude when the weak site patches are  lled
until the c(2× 2) ordered phase is formed on them; and  nally, (iii) the  lling of the
weak site patches is completed.
In the following, we will analyze what happens when the topography is changed.

For this purpose, we  x the energies (lateral interaction and di3erence between the
energies of the patches) and the temperature, and vary the size l of the patches. As in
Figs. 2, 3 and 5, the Monte Carlo simulations were performed in canonical ensemble.
The result of this analysis is shown in Figs. 6 and 7 for RI and RII, respectively.
It can be seen that all curves vary between two limit ones: the one corresponding to
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Fig. 4. Total and partials adsorption isotherms (coverage versus chemical potential �) for a typical case in
RI (a) and RII (b). Solid, dashed and dotted lines represent total coverage �, partial coverage of strong sites
�2 and partial coverage of weak sites �1, respectively.

1 × 1 patches and the one corresponding to bp (two big patches). The fact that the
entropy for di3erent topographies, characterized by a length scale l, vary between two
extreme curves (see Figs. 6 and 7), suggests that we should search for some appropriate
quantity to measure the deviation among these curves and study the behavior of such
quantity as the length scale is varied. The quantity we found most suitable is

�S =
∑
i

[s(�i)− sbp(�i)]2 ; (5)
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Fig. 5. Con gurational entropy per site (in units of kB) versus the surface coverage for interacting particles
adsorbed in chessboard substrates with l=12 and T�=12. The curves from top to bottom correspond to the
following: kBT =∞, kBT = 4:90, kBT = 3:30, kBT = 2:50, kBT = 1:67, kBT = 1:00, kBT = 0:67, kBT = 0:50,
kBT = 0:40 and kBT = 0:2, respectively for w = 3.
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Fig. 6. Con gurational entropy per site (in units of kB) versus coverage for square chessboard topographies
with di3erent l’s, T� = 12, w = 2 and kBT = 1 (RI). The di3erent values of l are displayed in the  gure.

where sbp(�i) is the entropy corresponding to big patches and the sum runs over all
values of coverage (between 0 and 1). The results for �S are shown in Fig. 8, where we
can see that �S behaves as a power law in l with two di3erent values of the exponent,
�S , depending on the ratio w=T�. These results con rm the existence of two adsorption
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regimes at low temperatures. A similar behavior was recently observed in Ref. [27]
for other properties of adsorption (isotherms and di3erential heat of adsorption), which
reinforce the robustness of the results presented here.

4. Conclusions

In the present work we have used the bivariate trap model in order to study how
the surface topography a3ects the con gurational entropy of repulsively interacting
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particles. In the framework of this model, it is assumed that the surface is formed
by a collection of homogeneous patches. Every adsorptive site within a given patch
has the same adsorptive energy. However, di3erent patches have di3erent adsorptive
energies. We have considered only two kinds of square patches with di3erent energies,
i.e. strong and weak patches, which are arranged in a chessboard-like ordered structure.
In order to analyze the e3ects of the topography on the con gurational entropy of

the adsorbate, three quantities have been chosen as the control parameters: (i) the
relationship between the lateral interaction and the di3erence between the energies of
the patches (w=T�); (ii) the temperature and (iii) the size of the patches, l, which is
associated to the correlation length. On this basis, di3erent cases have been observed:

(1) For high temperatures, the thermal energy governs the adsorption process and the
entropy tends to the Langmuir case.

(2) As the temperature decreases, the con gurational entropy develops three minima
at coverage � = 0:25, 0.50 and 0.75, which tend to zero in the ground state
(T = 0). Depending on the value of w=T�, two di3erent regimes are observed.
For w=T�¡ 1

4 (RI), the strong sites patches are  lled  rst and weak site patches
are  lled after. On the other hand, for w=T�¿ 1

3 (RII), both patches are  lled
sequentially up to 50% and then, the  lling of the patches is completed up to full
coverage.

(3) For  xed energies and T , the con gurational entropy appears as a very sensitive
quantity to the correlation length, con rming the importance of the energetic cor-
relation length as a controlling parameter in the adsorption process. This e3ect
has been discussed in previous studies involving di3erent process taking place on
strong correlated surfaces [24–28].

Future e3orts will be directed to study how (a) di3erent topological distribution of the
patches (for instance, at random); (b) di3erent connectivities of the lattice, c (c=3; 4; 6)
and (c) attractive lateral interactions, in@uence the behavior of the entropy of interacting
adsorbates on heterogeneous surfaces.
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