COMPARISON BETWEEN THE 5-DAY COSYNCH AND 7-DAY ESTRADIOL-BASED PROTOCOLS FOR SYNCHRONIZATION OF OVULATION AND TIMED ARTIFICIAL INSEMINATION IN SUCKLED BOS TAURUS BEEF COWS

Bilbao MGab, Zapata LOb, Romero Harry Hc, Perez Wallace Sd, Farcey MFb, Gelid Lc, Palomares RAe, Ferrer MSe, Bartolome JAb*

aConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina;
bFacultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, Argentina;
cEEA INTA Anguil, La Pampa, Argentina;
dZoetis SRL, Buenos Aires, Argentina;
eDepartments of Large Animal Medicine and Population Health, College of Veterinary Medicine, University of Georgia, USA

*Corresponding author. E-mail address: jbartolome@vet.unlpam.edu.ar

Abstract

The objective was to compare pregnancy per AI and follicular dynamic in suckled \textit{Bos taurus} beef cows treated with either a 7-day progesterone + estradiol-based protocol or a 5-day progesterone CoSynch protocol for timed artificial insemination (TAI) during four breeding seasons. We hypothesized that estrous cycle status, days postpartum (DPP), fat depth and plasma progesterone concentration differentially modify the effect of treatments. Every year, 9 days before initiation of each breeding season, cows were randomly assigned to one of two groups.
Cows in the 7-d P+E group (n = 428) received a progesterone intravaginal device (DIB) and estradiol benzoate on Day -9. On Day -2 the device was removed, and cows received cloprostenol and estradiol cypionate. Forty-eight hours later (Day 0) cows received TAI. Cows in the 5-d P+CoS group (n = 428) received a DIB, and GnRH on Day -8. On Day -3, the device was removed, and cows received cloprostenol. A second dose of cloprostenol was given on Day -2. Cows received GnRH and TAI 72 h after device removal (Day 0). On Day -9, estrous cycle status was determined. In a subset of cows (n = 79) the size of the dominant follicle was determined between Days -2 and 0. In another subset of cows (n = 340), DPP, fat depth (mm) and plasma progesterone concentration (ng/mL) were evaluated on Day -9. Pregnancy per AI was determined 30 d after TAI. Pregnancy per AI was greater for cows in the 5-d P+CoS group than for cows in the 7-d P+E group (50.9 % vs. 41.3 %, P = 0.01) and was also greater in cyclic than in anestrus cows (54.3 % vs. 33.2 %, P < 0.0001). There was also a significant effect of breeding season (P = 0.0002) and sire (P = 0.03), and an interaction between treatment group and breeding season (P = 0.03). The dominant follicle was larger (P < 0.0001) in cows in the 5-d P+CoS group than the 7-d P+E group (10.7 ± 0.29 mm vs. 9.0 ± 0.28 mm). Pregnancy per AI was greater in cows with ≥ 55 DPP (47.0 % vs. 29.6 %, P = 0.001), fat depth ≥ 0.50 mm (44.7 % vs. 29.7 %), and with plasma progesterone concentration ≥ 1 ng/mL (47.2 % vs. 28.7 %, P = 0.01). In cows with plasma progesterone ≥ 1 ng/mL on Day -9, pregnancy per AI was greater in the 5-d P+CoS group (60.5 %) than in the 7-d P+E group (34.9 %), but there was no difference between treatment groups in cows with plasma progesterone < 1 ng/mL (P = 0.07). In conclusion, the 5-d P+CoS protocol resulted in greater size of the dominant follicle and pregnancy per AI in suckled *Bos taurus* beef cows subjected to TAI.

1. Introduction
Synchronization of ovulation and timed artificial insemination (TAI) allowed expanding the use of frozen semen in range beef cow-calf operations, which may result in genetic improvement and increased herd productivity [1,2]. This technology may also contribute to induce estrus in non-cyclic cows [3], minimize the potential impact of venereal diseases, and reduce the interval from calving to conception. Therefore, based on these multiple advantages, several synchronization strategies have been developed for beef cattle.

Administration of GnRH [4] alone or combined with progesterone [5], and estradiol combined with progesterone [6] induce follicular turnover, and after a luteolytic dose of PGF$_{2\alpha}$ and removal of the progesterone source 7 d later, synchronizes estrus between 48 and 72 h later. Then, either GnRH [7] or estradiol [8] can be used to synchronize ovulation and inseminate without the need for estrus detection. The Ovsynch protocol developed for dairy cows [9] was modified to reduce animal handling and be used in suckled beef cows [10]. Since GnRH is not very effective synchronizing emergence of a follicular wave in beef cows, and since proestrus is shortened by administration of GnRH 48 to 60 h later, the initial 7-day CoSynch protocol was modified into a 5-day CoSynch protocol [11]. This 5-day CoSynch protocol avoids persistence of the dominant follicle in cows that do not respond to the initial GnRH treatment and extends proestrus since GnRH and TAI are applied at 72 h [11].

Estradiol-17β administered at the beginning of a progestogen treatment for 7 days inhibit gonadotrophin secretion resulting in follicular regression and induction of a new follicular way 4 to 5 days later in *Bos taurus* beef heifers [12]. Estradiol benzoate administered 24-30 h after progesterone removal induced an LH surge and synchronize ovulation in *Bos taurus* beef cattle [13]. Estradiol and progesterone-based protocols, with or without eCG, are the most common
70 treatments for synchronization of ovulation and timed insemination in suckled *Bos taurus* beef
cows in South America [14]. The main reason for it is that the cost of estradiol is lesser than that
of GnRH, estradiol is more effective inducing follicular turnover in cows and heifers and cow
handling is reduced [15].

In a metanalysis study including a large number of cows, it was reported that days post-
partum (DPP), body condition score (BCS) and cyclicity affected pregnancy per AI [16]. The
impact of DPP, BCS and cyclicity on fertility could also be affected by the length of
progesterone treatment, the type of protocol using different combinations of GnRH and estradiol,
and length of proestrus. To the authors’ knowledge, the 5-Day progesterone-based CoSynch
protocol and the conventional progesterone + estradiol-based protocols have not been compared
in multiparous suckled beef cows. Therefore, the objective was to compare pregnancy per AI and
follicular dynamics between 5-day progesterone-based CoSynch and 7-day progesterone +
estradiol-based protocol for synchronization of ovulation and TAI in multiparous beef cows
during four breeding seasons. We hypothesized that estrous cycle status, DPP, fat depth and
plasma progesterone concentration at initiation of the treatment will differentially affect the
efficacy of treatments, and therefore, the interaction of these variables with treatments will be
assessed.

2. Materials and methods

2.1. Study population
The study was conducted in the Aberdeen Angus cow-calf operation of the Experimental Station of the National Institute of Agricultural Technology EEA INTA Anguil, La Pampa, Argentina. A total of 856 multiparous suckled *Bos taurus* beef cows were included in the study. The day of the TAI was considered the first day of the breeding season. TAI was performed on 12/11/14 (breeding season 1), 11/9/15 (breeding season 2) 11/9/2016 (breeding season 3), and 11/21/17 (breeding season 4). Frozen semen from eight different sires was used (three in breeding season 1, one in breeding season 2 and two in breeding seasons 3 and 4), and each cow was inseminated only once per breeding season. Clean up bulls were introduced to the cow herd 15 d after TAI for a period of 75 d. The herd was free of brucellosis and vaccinated for reproductive diseases with a killed virus vaccine every 6 m (including BHV-1, BVDV, BRSV, PI3V, *Campylobacter fetus fetus*, *C. fetus veneralis*, *Leptospira interrogans pomona pomona*, *Haemophilus somnus*, 5 mL, sc, Bioabortogen® H, Biogenesis Bago, Argentina). Cows were grazing Weeping lovegrass (*Eragrostis curvula*) during the entire breeding season. All procedures were performed with the approval of the Committee of Ethics in Biological Science Research (Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, Argentina, Resolution 247/11) and according to the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching [17].

2.2. Experimental design

Every year, 9 d before the initiation of each breeding season, cows with more than 30 DPP were randomly assigned to one of two treatment groups. Group 7-d P+E. 7-day progesterone + estradiol-based group (n = 428), cows received a 0.5 g progesterone device
(DIB®, Zoetis Animal Health) and 2.5 mg of estradiol benzoate (2.5 mL, im, Gonadiol®, Zoetis, Argentina) on Day -9. On Day -2 the device was removed, and cows received 0.125 mg of cloprostenol (2 mL, im, Ciclase, Zoetis Animal Health) and 0.5 mg of estradiol cypionate (0.5 mL, im, Cipiosyn®, Zoetis Animal Health). Forty-eight hours later (Day 0) cows received TAI.

Group 5-d P+CoS. 5-day Progesterone-based CoSynch group (n = 428), cows received a DIB, and 100 μg of GnRH analog (Gonadoreline acetate, 2 mL, im, Gonasyn GDR®, Zoetis) on Day -8. On Day -3, the device was removed, and cows received 0.125 mg of cloprostenol (2 mL, im, Ciclase®). A second dose of cloprostenol was given on Day -2. Finally, cows received 100 μg of gonadoreline acetate im and TAI 72 h after device removal (Day 0).

On Day -9, estrous cycle status (anestrus or cyclic) was determined in all cows based on clinical signs at palpation and ultrasonography of the genital tract per rectum. Cows with a CL or clinical signs of estrus (ovarian follicle ≥ 10 mm and uterine tone) were considered cyclic and cows without a CL and flaccid uterus were considered anestrus. Pregnancy per AI was determined by ultrasonography of the uterus per rectum (5 MHz transrectal linear transducer, HS-101V, Honda Electronics, Japan) 30d after TAI. Pregnancy rate was calculated as the number of cows pregnant at 30 d/number of cows inseminated x 100.

In a subset of 79 cows (breeding seasons 1 and 2, n = 40, Group 5-d P+CoS, n = 39, Group 7-d P+E) the diameter (mm) of the dominant follicle was determined daily between Days -2 and 0 using transrectal ultrasonography of the ovaries [18]. In another subset of cows (n= 340, breeding seasons 3 and 4), DPP, plasma progesterone concentration and fat depth were evaluated on Day -9. Fat depth was measured between the 12th and 13th ribs, 3/4 the length ventrally on the longissimus dorsi muscle [19,20], using a Pie Medical Falco Vet 100 diagnostic ultrasound machine with an 18 cm, 3.5 MHz linear array transducer, following the Iowa State University guidelines [21]. The
coupler was vegetable oil, a no stand-off pad was used. Cattle were not clipped, and they stood in
a normal, relaxed posture.

Blood samples were collected on Day -9 by venipuncture of the coccygeal vein into
evacuated tubes containing EDTA (Vacutainer®, BD, Franklin Lakes, NJ, USA). The samples
were immediately placed on ice. Samples were centrifuged at 1100 X g for 20 min, and plasma
was stored at -20 ºC until assayed for progesterone. Plasma progesterone concentrations were
determined at the Laboratory of Animal Reproduction at Facultad de Ciencias Veterinarias,
Universidad Nacional de La Pampa, Argentina, using a direct, solid-phase RIA (RIA
Progesterone, REF IM1188, IMMUNOTECH s.r.o. Hostivař, Czech Republic) according to
previously described protocol [22], in a Multi Crystal Gamma Counter LB 2111 (Berthold
Technologies, GmbH & Co., Bad Wildbad Germany). Measurements were completed in three
assays. The sensitivity of each of them was 0.06, 0.038 and 0.047 ng/mL, respectively. The inter-
assay CVs were 4.17, 1.62 and 10.45 %, and the intra-assay CVs were 2.57, 8.57 and 6.85 %,
respectively. Cows were dichotomized as having progesterone concentration ≥1 ng/mL or < 1
ng/mL.

2.3. Statistical analysis

Baseline comparisons were established evaluating the distribution of cows in both groups
using a Chi-square test (Proc Freq, SAS system®). The effect of treatment group (5-d P+CoS vs.
7-d P+E), breeding season (1, 2, 3 and 4), estrous cycle status (anestrus vs. cyclic), and sire (A,
B, C, D, E, F, G and H) on pregnancy per AI was determined by univariate analysis with a Chi-
square test and multivariable analysis using the backward elimination procedure (Proc Logistic,
SAS system®) of multiple logistic regression [23]. The effect of treatment group, experimental
day, and their interaction on follicular dynamics was evaluated using analysis of variance using
the repeated measures method (Proc Mixed, SAS system®) using treatment group and the
interaction treatment group and day as fixed variables, cow nested in treatment group as random
variable and day as repeated variable. Since cloprostenol was first administered on Day -3 in
cows in the 5-d P+CoS group and on Day -2 in cows in the 7-d P+E group, the effect of
treatment on follicular dynamics was also evaluated considering the day from cloprostenol
administration (first cloprostenol for 5-d P+CoS group). The interactions between treatment
group and plasma progesterone concentrations on Day -9 (< 1 ng/mL or ≥ 1 ng/mL), fat depth (≤
0.5 mm or > 0.5 mm) and DPP (≤ 55 days or > 55 days) on pregnancy per AI adjusting for
breeding season and bull was evaluated using multiple logistic regression (Proc Logistic, SAS
system®). The effects of fat depth and DPP as continuous variables on the probability of
pregnancy were also evaluated by logistic regression using STATA/IC 14.2 (StataCorp LP, 4905
Lakeway Drive, College Station, Texas 77845 USA). Significant effects were declared at P ≤
0.05 and tendencies declared at 0.05 < P ≤ 0.10.

3. Results

There was no difference in the distribution of cows by breeding season, estrous cycle status
and sire in both groups (Table 1). In the univariate analysis, pregnancy per AI was greater in the
5-d P+CoS than the 7-d P+E group (P = 0.004; Table 2). Additionally, breeding season (P <
0.0001), estrous cycle status (P < 0.0001) and sire (P < 0.0001) affected pregnancy per AI (Table
2). In the multivariable analysis, pregnancy per AI was also greater in the 5-d P+CoS than the 7-
There was also a significant effect of breeding season (P = 0.0002), estrous cycle status (P < 0.0001), and sire (P = 0.03), and an interaction between treatment group and breeding season (P = 0.03, Fig. 1) on pregnancy per AI.

In the subset of cows where ovarian ultrasonography was conducted, there was an effect of experimental day (P < 0.001) and treatment group (P < 0.0001), but not their interaction, on the size of the dominant follicle. The dominant follicle of cows in the 5-d P+CoS group (10.7 ± 0.29 mm) was larger than the dominant follicle of cows in the 7-d P+E group (9.0 ± 0.28 mm) on the day of TAI (Fig. 2 A). Considering the day from cloprostenol administration, there was an effect of day (P < 0.0001), treatment group (P = 0.01) and a tendency for interaction (P = 0.06) between treatment group and day from cloprostenol administration on the size of the dominant follicle. The dominant follicle of cows in the 5-d P+CoS group (10.1 ± 0.30 mm) was larger than the dominant follicle of cows in the 7-d P+E group (9.0 ± 0.30 mm) on the day of TAI (Fig. 2 B).

In the subset of cows were DPP, plasma progesterone concentration and fat depth were recorded on Day -9, there was no difference in the distribution of cows between groups (55.2 ± 1.4 d, 2.53 ± 0.39 ng/mL and 0.52 ± 0.02 mm for 5-d P+CoS group, and 56.8 ± 1.4 d, 2.95 ± 0.58 ng/mL, and 0.55 ± 0.02 mm for 7-d P+E group). In addition, there was no difference in the distribution of cows between groups according to category of DPP (P = 0.54), plasma progesterone concentration (P = 0.57) and fat depth (P = 0.19). There was an effect of treatment group (5-d P+CoS group, 44.0 %, 74/168, 7-d P+E group, 30.8 %, 53/172, P = 0.006), DPP (≤ 55 days, 29.6 %, 56/189, > 55 days, 47.0 %, 71/151, P = 0.001), fat depth (≤ 0.5 mm, 29.6 %, 50/168, > 0.5 mm, 44.7 %, 77/172, P = 0.004) plasma progesterone concentration (≥ 1 ng/mL, 47.2 %, 75/159, <1 ng/mL, 28.7 %, 52/181, P = 0.01) on pregnancy per AI. There was not interaction between treatment, DPP and fat depth. There was an interaction (P = 0.002) between...
breeding season and treatment group on pregnancy per AI. Moreover, there was a tendency for
the interaction between treatment and plasma progesterone concentration (P = 0.07, Fig. 3) on
pregnancy per AI. In cows with plasma progesterone concentration ≥1 ng/mL on Day -9,
pregnancy per AI was greater for cows in the 5-d P+CoS group (60.5 %, 46/76) compared to
cows in the 7-d P+E group (34.9 %, 29/83). On the other hand, there was no difference in
pregnancy per AI between treatment groups in cows with plasma progesterone concentration < 1
ng/mL on Day -9 (30.4 %, 28/92 for cows in the 5-d P+CoS group and 26.9 %, 24/89 for cows in
the 7-d P+E group). When fat depth and DPP were considered as continuous variables, there was
a significant effect of those variables on the probability of pregnancy in both treatment groups
(Fig. 4).

4. Discussion

This study was the first to compare two of the estrus synchronization protocols most
widely used in North America (5-day progesterone + GnRH-based or 5-day CIDR CoSynch) and
South America (7-day progesterone + estrogen-based) for Bos taurus beef cows. Pregnancy per
AI was greater with the 5-day CoSynch (50.9%) than the estrogen-based protocol (41.4%).
Protocols combining estrogen and progesterone are most commonly used in South America
reporting pregnancy rates between 41 and 60% [24]. However, there were no studies comparing
estrogen-based protocols with the 5-day CoSynch protocol that combines GnRH and
progesterone. The increase in fertility seen here with the 5-dP+CoS protocol could be attributed
to the larger size of the preovulatory follicle at the time of TAI and the longer duration of
proestrus [25] in this group of cows compared with cows in the 7-d P+E group. Greater
pregnancy per AI was reported using the 5-day CoSynch protocol when the second GnRH was
administered 72 h after progesterone device removal compared to 7-day CoSynch with GnRH
administered 60 h after progesterone removal [11]. In addition, the 5-day CoSynch protocol
resulted in greater estradiol concentrations during proestrus and greater plasma progesterone
concentration after induction of ovulation [26].

The benefit of a GnRH-based protocol on pregnancy per AI may not be applicable to Bos
indicus cattle since the ability of GnRH to induce an LH surge seems to be compromised
specially when plasma progesterone levels are high [27]. In addition, elevated progesterone
concentrations during follicular growth may reduce the size of the dominant follicle at the time
of ovulation in Bos indicus [28] and it may be a concern for CoSynch protocols that induce
accessory CL in cows that ovulate in response to GnRH. Protocols including estradiol and
progesterone generated better pregnancy per AI than protocols combining GnRH and
progesterone in Bos indicus cows and increasing the duration of progesterone treatment to 8 or 9
d and the inclusion of eCG at progesterone removal further enhance fertility in herds with high
incidence of anestrus [29]. In addition, the presence of CL at the beginning of the protocol were
associated with reduced pregnancy per AI in Bos indicus. [30]. Since the cows of the present
study were Bos taurus with good BCS at the first breeding season, we decided to use a 7-d
duration progesterone treatment for the estradiol-based protocol without the inclusion of eCG at
progesterone removal.

Optimization of the dominant follicle size has been an important target in synchronization
of ovulation and TAI protocols [31,32]. In beef cattle, increasing the size of the dominant follicle
resulted in increased estradiol concentration [33,34], improved ovulatory response [10, 35] and
CL function \([34,35,36,37]\), which may result in a greater pregnancy rate \([38,39]\). In the current study, the larger diameter of the ovulatory follicle in the 5-d P+CoS group could have been responsible for the observed greater pregnancy per AI. However, comparing the size of the dominant follicle and its effect on pregnancy outcomes between these two treatments is difficult since in the 5-day P+CoS protocol follicular recruitment has been documented to start 28 to 32 h after the first GnRH treatment \([40]\), progesterone treatment lasts 5 d, and proestrus lasts 72 h \([11]\). In contrast, in the 7-day estradiol-based protocol, follicular recruitment was reported to be initiated 4 d after the first administration of estradiol benzoate, progesterone treatment lasts 7 d, and proestrus lasts 48 h \([15]\). Therefore, cows in the 5-day group are expected to initiate follicular recruitment earlier and have a longer proestrus, allowing for further follicular growth until the time of AI. This was confirmed in this study, where the dominant preovulatory follicle was larger in cows in the 5-day group not only when experimental day was considered but also, considering the day of PGF\(_{2\alpha}\) administration as Day 0.

Another factor influencing fertility in protocols for synchronization of ovulation and TAI is the ability of PGF\(_{2\alpha}\) to induce luteal regression. The 5-d CoSynch protocol included GnRH on Day 0 which induces accessory CL in approximately 60 % of the cows and therefore two doses of PGF\(_{2\alpha}\) 8 to 24 h apart are recommended \([11]\). It has also been reported than two doses of PGF\(_{2\alpha}\) administered simultaneously at progesterone intravaginal device removal were also effective when compared with two doses 8 h apart \([41]\). However, in beef heifers, administration of PGF\(_{2\alpha}\) 6 h apart in a 5-d CoSynch protocol including GnRH on Day 0, improved pregnancy per AI compared with double dose of PGF\(_{2\alpha}\) at progesterone device removal \([42]\). Therefore, in the present study, we decided to administer two doses of PGF\(_{2\alpha}\) 24 h apart in an attempt to induce complete luteolysis.
Breeding season, estrous cycle status, DPP, fat depth and plasma progesterone concentrations at synchronization also affected pregnancy per AI in this study. Estrous cyclicity, DPP and BCS are the three most common factors affecting fertility in suckled beef cows [16]. The proportion of cows in anestrus considering clinical findings at transrectal palpation and ultrasonography was 38.7% in the present study, in agreement with previous reports [43]. Pregnancy per AI was 20% greater in cyclic than in anestrus cows, and there was no interaction between protocol and estrous cycle status. Pregnancy per AI was also greater in cows with plasma progesterone concentration ≥ 1 ng/mL, but the improvement was more pronounced in cows synchronized using the 5-d P+CoS protocol. Estradiol-based protocols in anestrus cows could result in failure to induce follicular turnover and induction of estrus without ovulation [25], explaining the lesser pregnancy per AI in cows in this group. For cows synchronized with the a 5-day CoSynch protocol, the ovulatory response to initial GnRH under reduced plasma progesterone concentration is high in cyclic cows [34] but low in anestrus cows [44]. However, there was no difference in pregnancy per AI in anestrous beef cows that ovulated or not after administration of GnRH at the time of a progesterone device insertion [45].

Breeding season affected pregnancy per AI and also influenced the effect of treatment since there was a significant interaction between these two variables. The interaction between treatment and breeding season could be explained by differences in DPP, BCS and estrous cycle status among years. The breeding season during the first year of the study started on December 11th but was initiated approximately 20 d earlier in the following season due to operative circumstances (median DPP was 69 d, 54 d, 51 d and 52 d for breeding seasons 1, 2, 3 and 4, respectively). Pregnancy rate was lesser in cows < 55 DPP. Advancing the breeding season reduced the DPP at synchronization resulting in a dramatic reduction in pregnancy per AI in the
second year. Pregnancy per AI subsequently slightly recovered during the 3rd and 4th year. The reduction in fertility during early postpartum seem to be caused by delayed resumption of cyclicity rather than by lack of uterine involution [46]. Induction of ovulation of the first dominant follicle in early postpartum resulted in high incidence of short luteal phases [47].

The impact of BCS in pregnancy per AI in cows subjected to protocols of synchronization of ovulation and TAI has been reported [2,16,24]. In the present study, pregnancy per AI was greater in cows with fat depth > 5 mm. Fat depth was measured instead of BCS to reduce the variability of the data since the study was conducted during four different breeding seasons. Cows that maintained BCS during the postpartum period had a shorter interval to estrus, greater levels of basal LH and enhanced response to GnRH induced LH release [48]. A study including 3,269 cows in seven different studies reported a linear increase of 18 % in the number of cyclic cows for each unit of BCS increase from ≤ 3.5 to ≥ 6.0 of a 1 (thin) to 9 (fat) scale [45]. Rump fat and BCS were greater and serum concentration of BHB and NEFA reduced during the six weeks after parturition in cows that ovulated before first AI and become pregnant [49].

5. Conclusion

The 5-d P+CoS protocol resulted in greater pregnancy per AI compared to the 7-d P+E protocol in Bos taurus suckled beef cows subjected to TAI. Cows treated with the 5-d P+CoS protocol had larger dominant follicles at TAI than those receiving the 7-d P+E protocol. Estrous cycle status, DPP, fat depth and breeding season also affected pregnancy per AI. The increase in pregnancy per AI with the 5-d P+CoS protocol was greater when plasma progesterone concentration at initiation of the treatment was greater than 1 ng/mL.
Acknowledgments

The authors thank the personnel of the EEA INTA Anguil for assistance during the study and Project FITR 2013, Agencia Nacional de Promoción Científica y Tecnológica (Resolución 269/15) and Zoetis SRL for financial support. Thanks to Dr. Roy Berghaus, College of Veterinary Medicine, University of Georgia, for his contribution with regression analysis.

References

[22] Meikle, A, L Sahlin, A Ferraris, B Masironi, J E Blanc, M Rodríguez-Irazoqui, M Rodríguez-Piñón, H Kindahl, and M Forsberg. Endometrial mRNA Expression of Oestrogen

[26] Bridges GA, Mussard ML, Helser LA, Day ML. Comparison of follicular dynamics and hormone concentrations between the 7-day and 5-day CO-Synch + CIDR program in primiparous beef cows. Theriogenology 2014;81:632-8.

[42] White SS, Kasimanickam RK, Kasimanickam VR. Fertility after two doses of PGF2α concurrently or at 6-hour interval on the day of CIDR removal in 5-day CO-Synch progesterone-based synchronization protocols in beef heifers. Theriogenology 2016;86:785-90.

diameter and ovulation rate after gonadotropin-releasing hormone in postpartum beef cows.
[45] Stevenson JS, Johnson SK, Milliken GA. Incidence of Postpartum Anestrus in Suckled
Beef Cattle: Treatments to Induce Estrus, Ovulation, and Conception. Prof Anim Scientist
2003;19:124-34.
[46] Short RE, Bellows RA, Staigmiller RB, J. G. Berardinelli JG, Custep EE. Physiological
mechanisms controlling anestrus and infertility in postpartum beef cattle. J Anim Sci
[47] Crowe MA, Goulding D, Baguisi A, Boland MP, Roche JF. Induced ovulation of the
first postpartum dominant follicle in beef suckler cows using a GnRH analogue. J
[48] Rutter LM, Randel RD. Postpartum nutrient intake and body condition: effect on
[49] Hill SL, Olson KC, Jaeger JR, Stevenson JS. Serum and plasma metabolites associated
with postpartum ovulation and pregnancy risks in suckled beef cows subjected to artificial
Table 1. Distribution of cows and baseline comparisons for breeding season, estrus cycle status and sire for both groups. P > 0.05.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>5-d P+CoS (n = 428)</th>
<th>7-d P+E (n = 428)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Group</td>
<td>%</td>
</tr>
<tr>
<td>Breeding season</td>
<td>1</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20.1</td>
</tr>
<tr>
<td>Anestrus</td>
<td>37.6</td>
<td>161</td>
</tr>
<tr>
<td>Cyclic</td>
<td>62.4</td>
<td>267</td>
</tr>
<tr>
<td>Sire</td>
<td>A</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Table 2. The effect of treatment group, breeding season, estrus cycle status and sire on pregnancy per AI (univariate analysis). \(^aP=0.004, \ ^bP<0.0001\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pregnancy per AI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Treatment (^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-d P+CoS</td>
<td>50.9</td>
<td>218/428</td>
</tr>
<tr>
<td>7-d P+E</td>
<td>41.4</td>
<td>177/428</td>
</tr>
<tr>
<td>Breeding season (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>59.4</td>
<td>165/278</td>
</tr>
<tr>
<td>2</td>
<td>32.9</td>
<td>64/194</td>
</tr>
<tr>
<td>3</td>
<td>42.2</td>
<td>89/211</td>
</tr>
<tr>
<td>4</td>
<td>44.5</td>
<td>77/173</td>
</tr>
<tr>
<td>Cyclicity (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anestrus</td>
<td>33.2</td>
<td>110/331</td>
</tr>
<tr>
<td>Cyclic</td>
<td>54.3</td>
<td>285/525</td>
</tr>
<tr>
<td>Sire (^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>58.5</td>
<td>55/94</td>
</tr>
<tr>
<td>B</td>
<td>47.6</td>
<td>49/103</td>
</tr>
<tr>
<td>C</td>
<td>68.5</td>
<td>61/89</td>
</tr>
<tr>
<td>D</td>
<td>37.0</td>
<td>40/108</td>
</tr>
<tr>
<td>E</td>
<td>51.6</td>
<td>49/95</td>
</tr>
<tr>
<td>F</td>
<td>32.9</td>
<td>64/194</td>
</tr>
<tr>
<td>G</td>
<td>47.1</td>
<td>41/87</td>
</tr>
<tr>
<td>H</td>
<td>41.9</td>
<td>36/86</td>
</tr>
</tbody>
</table>
Fig. 1. Pregnancy rate by breeding season and treatment group in all cows (n = 856), adjusted by estrus cycle status and sire (treatment group by breeding season, P = 0.03).
Fig.2. Size of the dominant follicle (mean ± SEM) for cows in both groups (5-d P+CoS group: n = 40; 7-d P+E group: n = 39). Effect of day, P < 0.0001, treatment group, P < 0.0001, day by treatment group interaction, P = 0.22 (A), and size of the dominant follicle (mean ± SEM) related to the day of cloprostenol administration (Day 0) for cows in both groups. Effect of day, P < 0.0001, treatment group, P < 0.01, day by treatment group interaction, P = 0.06, ** P = 0.006 (B).
Fig. 3. Pregnancy rate by treatment group and plasma progesterone concentration on Day -9 (n = 340), adjusted by breeding season, days postpartum, sire, fat depth and interactions on pregnancy per AI (treatment group by plasma progesterone concentration, P = 0.07).
Fig. 4. Predicted probabilities of pregnancy by treatment group (5-d P+CoS group: n = 168; 7-d P+E group: n = 172), using days postpartum, and fat depth as continuous predictors (P < 0.01).
COMPARISON BETWEEN THE 5-DAY COSYNCH AND 7-DAY ESTRADIOL-BASED PROTOCOLS FOR SYNCHRONIZATION OF OVULATION AND TIMED ARTIFICIAL INSEMINATION IN SUCKLED BOS TAURUS BEEF COWS

Highlights

The 5-Day Cosynch resulted in higher pregnancy per AI than a 7-Day estradiol protocol
The dominant follicle at TAI was larger for the 5-Day Cosynch protocol
Pregnancy per TAI was increased in cows with high progesterone
Days postpartum, body condition and breeding season affected pregnancy per TAI