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Fasciola hepatica is helminth parasite found around the world that causes fasciolosis, a

chronic disease affecting mainly cattle, sheep, and occasionally humans. Triclabendazole

is the drug of choice to treat this parasite. However, the continuous use of this

drug has led to the development of parasite resistance and, consequently, the

limitation of its effectiveness. Hence, vaccination appears as an attractive option

to develop. In this work, we evaluated the potential of F. hepatica Kunitz-type

molecule (FhKTM) as an antigen formulated with a liquid crystal nanostructure formed

by self-assembly of 6-O-ascorbyl palmitate ester (Coa-ASC16) and the synthetic

oligodeoxynucleotide containing unmethylated cytosine-guanine motifs (CpG-ODN)

during an experimental model of fasciolosis in mice, and we further dissected the

immune response associated with host protection. Our results showed that immunization

of mice with FhKTM/CpG-ODN/Coa-ASC16 induces protection against F. hepatica

challenge by preventing liver damage and improving survival after F. hepatica infection.

FhKTM/CpG-ODN/Coa-ASC16-immunized mice elicited potent IFN-γ and IL-17A with

high levels of antigen-specific IgG1, IgG2a, and IgA serum antibodies. Strikingly, IL-17A

blockade during infection decreased IgG2a and IgA antibody levels as well as IFN-γ

production, leading to an increase in mortality of vaccinated mice. The present study
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highlights the potential of a new vaccine formulation to improve control and help the

eradication of F. hepatica infection, with potential applications for natural hosts such as

cattle and sheep.

Keywords: Th17-dependent protection, nanostructure, ascorbyl palmitate, kunitz typemolecule, vaccine, Fasciola

hepatica

INTRODUCTION

Fasciolosis is a zoonotic and chronic disease caused by a helminth
parasite, F. hepatica, that causes huge economic losses in animal
production worldwide. These losses have been estimated to be
US$ 3 billion due to a reduction in milk, wool, and meat
production in cows and sheep (1, 2). On the other hand,
the World Health Organization (WHO) has reported that
approximately 2.4 million people are infected by this parasite
worldwide. Fasciolosis has recently been declared as an emerging
disease in humans with an increased number of cases in some
regions of the planet (3). The frontline drug against fasciolosis
is triclabendazole. However, the emergence of resistance to this
drug in diverse F. hepatica populations (4, 5), and its high
cost suggest the need for other control strategies. In this sense,
developing a vaccine against this parasite would be a better
preventive control strategy. Moreover, vaccines are considered
safe and environmentally friendly because their use ensures the
absence of chemical residues in food, as well as in pasture (1).

Both cattle and humans are infected by the ingestion of
metacercariae, the infective stage, encysted in aquatic plants.
After that, the newly excysted juveniles (NEJ) fluke emerges in
the intestine and penetrates the intestinal wall in its migration
through the peritoneum and liver parenchyma to finally allocate
in the bile ducts.

During its migration, the parasite releases an array of
molecules from its intestinal content called excretory-secretory
products (FhES) or its tegumental coat (FhTeg), which are the
main source of immune-modulatory molecules (6–8).

These complex parasite-derived molecules can interact with
the immune system and inhibit the Th1-driven protective
pro-inflammatory responses through the induction of M2
macrophages (9), mast cells (10), and Th2-type responses (11,
12), and promote regulatory T (Treg) cell development (6, 13).
Thus, the induction of an ineffective immune response against
this parasite allows the development of a chronic infection.

Over the last 25 years, there have been numerous attempts
to formulate a successful vaccine against F. hepatica by
using parasite extracts or individual antigens (14, 15).
These formulations achieved different levels of protection
in experimental models of mice, rats, sheep, and cattle
(1, 16, 17) by the induction of an antibody response and/or
Th1/Th17-mediated cellular immunity (18–22).

However, a commercially viable vaccine against F. hepatica
with an appropriate level of efficacy is not available yet.

Among the molecules released by the parasite, the most
abundant are proteases and protease inhibitors (14, 23, 24). The
proteases secreted by F. hepatica allow its migration through
the tissues and modulate the immune system, which enables

its establishment and permanence in the host. However, a
tight control of this enzymatic activity should be regulated by
protease inhibitors. Kunitz type molecule (FhKTM) is a member
of the inhibitory protease family expressed in the FhES and
FhTeg during the juvenile stage, suggesting an essential role
in controlling proteolytic activity (25). Thus, the physiological
function of FhKTM may be to protect the parasite from the host
and parasite proteases by inhibiting its activity. In our study we
tested a FhKTM peptide as a vaccine antigen.

On the other hand, new approaches have focused on the
design of innovative methods to improve immune response
involving mainly suitable adjuvant strategies (26). Over the
last decade, an area of extreme development has been the
application of nanomaterials to vaccine development. In this
line, the adjuvant capacity of the synthetic oligodeoxynucleotide
containing unmethylated cytosine-guanine motifs (CpG-
ODN) (agonist of TLR9) formulated with liquid crystal-type
nanostructures formed by self-assembly from ascorbyl 6-O-
palmitate ester (Coa-ASC16) has been demonstrated. The
immunization of mice with the ovalbumin (OVA) protein,
together with the adjuvant CpG-ODN/Coa-ASC16, induced a
potent antigen-specific antibodies and Th1/Th17/CD8 + T-cell
cellular responses without toxic systemic effects (27, 28).

In this work, we evaluated the potential of an FhKTM peptide
formulated in a nanostructure based on CpG-ODN/Coa-ASC16
as a vaccine during an experimental model of fasciolosis in mice
and we further dissected the immune response associated with
host protection.

MATERIALS AND METHODS

Animals
Wild-type 8- to 10-week-old female BALB/c mice were obtained
from the Faculty of Veterinary Sciences, National University of
Litoral (UNL, Argentina) and housed in the Animal Facility of the
Faculty of Chemical Sciences, National University of Córdoba.

Ethics Statement
All animal experiments were approved by and conducted in
accordance with the guidelines of the committee for Animal Care
and Use of the Faculty of Chemical Sciences, National University
of Córdoba (Approval Number HCD 881) in strict accordance
with the recommendation of the Guide to the Care and Use of
Experimental Animals published by the Canadian Council on
Animal Care (OLAW Assurance number A5802-01).

Antigens and Adjuvant
A FhKTM peptide according to the sequence described
by Bozas et al. (29) was synthesized by ONTORES
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TABLE 1 | Processing mice in each group.

Groups Treatments

Untreated Non-immunized and uninfected

Infected Non-immunized and infected

CpG-ODN/Coa-ASC16 Immunized with adjuvant and infected

FhKTM/CpG-

ODN/Coa-ASC16

Immunized with

FhKTM/CpG-ODN/Coa-ASC16 and

infected

Biotechnologies (Zhejiang, China). The identity and purity
of the peptide was analyzed by analytical reversed-phase
high-performance liquid chromatography (RP-HPLC) and
mass spectrometry MALDI-TOF (purity >95%). Class-B
CpG-ODN 1826 (5’-TCCATGACGTTCCTGACGTT-3’) with
total phosphorothioate-modification was provided by Operon
Technologies, Alameda, CA, United States. To prepare Coa-
ASC16-based formulations, FhKTM peptide and/or CpG-ODN
were added to a dispersion of 2% (w/v) ASC16 in 5% dextrose
solution, heated up to 72◦C for 15min, and then allowed to reach
room temperature as described previously (27).

Vaccination With
FhKTM/CpG-ODN/Coa-ASC16
BALB/c mice were randomly divided into four groups (n =

4–5) as described in Table 1. Immunizations were performed
three times at one-week intervals over 2 weeks. Each mouse
was subcutaneously immunized with an entire dose (250 µl)
equally distributed at five sites: tail, back, neck region, and
both hind limbs (50 µl/site). CpG-ODN was administered at
75 µg/mouse/dose. The FhKTM dose was 10 µg/mouse/dose.
One week after the last immunization, all groups were orally
infected with 6metacercariae of F. hepatica (Sanabria Laboratory,
Universidad Nacional de la Plata, La Plata, Argentina). Mice were
sacrificed at three different days, 0, 4, and 24, after infection.

Cytokine Detection Assay
Peyer patches (PPs) were harvested from the small intestine of
mice and then incubated in RPMI 1640 medium (Gibco BRL,
Life Technologies, Grand Island, NY) containing 0.5 mg/ml
collagenase, 2% (V/V) fetal bovine serum (FBS; Thermo Fisher
Scientific), 100 U/ml penicillin, and 100µg/ml streptomycin
for 30min. The PPs cells were filtered through a cell strainer
(100µm; BD) and washed with the medium without collagenase.
The cells were suspended in RPMI 1640 medium containing
10% (V/V) FBS, 55µM 2-mercaptoethanol, 100 U/ml penicillin,
and 100µg/ml streptomycin and then cultured at 1.0 × 105

cells/well in a U-bottom 96-well plate stimulated with FhKTM
(2 µg/well) for 3 days at 37◦C under 5% of CO2 and 95% air.
Spleen, mesenteric lymph nodes (MLNs), and inguinal lymph
node (ILNs) cells were obtained, homogenized, and suspended
in RPMI 1640 medium (Gibco BRL, Life Technologies, Grand
Island, NY) supplemented with 10% FCS (Gibco), 1mM
sodiumpyruvate, 2mM l-glutamine, 100U of penicillin/ml, and
100µg/ml of streptomycin (complete medium). Cultures were

incubated at 37◦C in a humidified atmosphere (5% CO2) and
stimulated with FhKTM (2µg/ml) for 72 h. At the end of the
incubations, cell culture supernatants were collected, aliquoted,
and frozen at −80◦C until being analyzed for IFN-γ, IL-
17A, IL-4, IL-5, and IL-10 by sandwich ELISA according to
the manufacturer’s guidelines (BD Pharmingen, San Jose, CA,
United States).

Treatment With αIL-17A Antibody
Monoclonal antibody was applied to the vaccinated group
to induce the functional inhibition of IL-17A. Two days
before and after infection, FhKTM/CpG-ODN/Coa-ASC16
vaccinated and infected mice were injected with 250 µg
(100 µl i.p./mouse/dose) of αIL-17A antibody (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, United States). The
FhKTM/CpG-ODN/Coa-ASC16 and infected groups were
alternatively injected with the non-specific isotype control
IgG (Invitrogen,Thermo Fisher Scientific, Waltham, MA,
United States) (100µl i.p./mouse/dose) (30).

Survival Curves
Mortality and survival of mice in different groups were observed
until the completion of the experiment and survival curves were
plotted until day 75 post-infection by using GraphPad Prism 6.01
software (GraphPad Software, San Diego, CA).

Liver Analysis
The analysis of livers consisted of two parts. Gross lesions were
scored (range 0 to 5) according to the method described by
Changklungmoa N et al. (31) taking into account the extension
of damage on the surface of livers. The histopathological
examination was done after livers were fixed in 10 % neutral-
buffered formalin for 48 h, followed by paraffin embedding.
Sections of 5µm were stained with hematoxylin and eosin (HE).
Histological samples were scored according to Chien-Chang
Chen et al. (32) with modifications. The lesions were scored
between 0 and 9 based on the following findings: infiltration
of inflammatory cells (score range, 0 to 3), together with the
evaluation of liver tissue damage (necrosis, hemorrhagic foci,
fibrosis, score range 0 to 3), and presence of tunnels and flukes
(score range, 0 to 3), with 0 as normal and 9 as the most diseased.

Antigen Specific Antibody Titers
FhKTM-specific titers of IgA in fecal extracts and IgG isotypes
(IgG1 and IgG2a) in serum were determined by ELISA. Fecal
extracts were prepared by suspending five fecal pellets in 0.5ml
of extraction buffer (100µg/ml soybean trypsin inhibitor, Sigma
Aldrich St. Louis, MO, United States), 10 mg/ml bovine serum
albumin (Sigma Aldrich, St.Louis, MO, United States), and
30mM disodium EDTA in PBS (pH=7.6). After homogenization
and centrifugation at 4◦C, the supernatants of the fecal extracts
were used for IgA determination in feces (33). Blood was allowed
to clot, and serum was removed and stored at −20◦C until
use. The small intestinal contents were flushed out with 3mL
of PBS. The intestinal lavage fluids were centrifuged at 9,200 g
for 5min at 4◦C and the supernatants were stored at −80◦C
until analysis. For ELISA, FhKTM was diluted at 10µg/ml in
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FIGURE 1 | Vaccination with FhKTM/CpG-ODN/Coa-ASC16 increases the survival rate in F. hepatica infected mice. (A) Scheme of the vaccination and challenge

experiments. BALB/c mice were injected s.c. in the upper and dorsal region on days 0, 7, and 14 with FhKTM/CpG-ODN/Coa-ASC16, CpG-ODN/Coa-ASC16, or

PBS (infected). One week later, the mice were oral-challenged with 6 metacercariae of F. hepatica. Non-vaccinated non-infected (untreated) mice were used as a

negative control group. The samples were obtained at 4 and 24 dpi. (B) Survival was monitored for >75 days. Each group comprised of five mice. Survival was

significantly higher in the FhKTM/CpG-ODN/Coa-ASC16-immunized mice than in the control groups. Kaplan–Meier curves were generated and survival was

compared across groups using the log-rank test **p < 0.05. This figure is representative of two experiments with similar results.

NaHCO3 1M (pH=9.6), and ELISA plates were coated in 100
µl/well overnight at 4◦C. Plates were blocked with 5% bovine
serum albumin (BSA) in PBS at 37◦C for 1 h and washed
with PBS-Tween 0.05%. Samples were incubated for 2 h at
room temperature and after washing, rat anti-mouse IgA-HRP
(BD Pharmingen, San Jose, CA, United States) or anti-mouse
IgG-HRP (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
United States) diluted in 1% PBS–BSA were added for 1 h
at room temperature. Finally, detection was performed with
BD Opt EIATM TMB Substrate Reagent Set (BD, San Diego,
CA, United States). Titers were calculated as the reciprocal of
the last serum dilution that yielded an absorbance at 490 nm
above that of twice the mean value of blank. The sera from
the non-immunized group (untreated) were represented by
a full line.

ALT and AST Measurement
The serum concentrations of alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) were determined using a
kinetic-UVmethod by BIOCON laboratory, Cordoba, Argentina,
under the established manufacturer’s protocols.

Statistical Analysis
Data were analyzed using GraphPad Prism 6.01 software
(GraphPad Software, SanDiego, CA). Data analysis included
one-way ANOVA followed by a Tukey’s post-test for multiple
comparisons and the unpaired Student’s t-test. In survival
experiments, Kaplan–Meier curves were analyzed with log-rank
test. All data were considered statistically significant for p-values
of ∗ < 0.05, ∗∗ < 0.01 or ∗∗∗ < 0.001 depending on
the experiment.

RESULTS

FhKTM/CpG-ODN/Coa-ASC16 Vaccination
Protects Against F. hepatica Infection
To study whether FhKTM/CpG-ODN/Coa-ASC16 protects
against F. hepatica infection, we followed an experimental
procedure of immunization and infection described in
Figure 1A. Samples from mice were obtained on days 25
and 45 after the first immunization (Figure 1A). In addition,
the survival rates of infected mice were evaluated until 75 days
post infection (dpi). Figure 1B shows that all infected mice
died by day 32 pi, while immunization with FhKTM/CpG-
ODN/Coa-ASC16 effectively increased mice survival, showing
no significant differences with untreated animals. Moreover,
mice injected only with CpG-ODN/Coa-ASC16 showed a
survival impairment, with their survival significantly lower than
it was observed for FhKTM/CpG-ODN/Coa-ASC16-vaccinated
mice (Figure 1B). Taking into account that vaccination with
FhKTM/CpG-ODN/Coa-ASC16 prolonged infected mice
survival, we investigated the level of damage in the liver, the
target organ of infection, establishing a macroscopical score
(range 0 to 5) according to the extension of surface liver
lesions. The infected and CpG-ODN/Coa-ASC16-injected mice
showed significantly higher scores of liver lesions than the
FhKTM/CpG-ODN/Coa-ASC16 vaccinated group, which did
not present damage in the liver (Figure 2A). All vaccinated
mice exhibited a microscopically preserved liver architecture
comparable to the untreated group (Figure 2B). In contrast,
livers from both infected and CpG-ODN/Coa-ASC16-injected
mice presented migratory tunnels (T) containing young flukes
(thin arrows), large areas of fibrosis that replace hepatic
parenchyma (thick arrows), and large leukocyte infiltrates
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FIGURE 2 | FhKTM/CpG-ODN/Coa-ASC16 immunization in mice prevented liver damage caused by F. hepatica infection. Gross lesions of livers from mice after 24

days of the infection with F. hepatica or without infection. (A) Untreated: tissue from mice without treatment showed a standard architecture with no observed lesions.

Infected: there are marked irregularities of capsule (thin arrow), changes in the tissue color (asterix) belonging to the growing fibrosis generated, and enlargement of

bile ducts (thick arrow). CpG-ODN/Coa-ASC16: multiple foci of fibrosis (asterix), also enlargement, thickening, and color changes due to hemorrhages in the

gallbladder (thick arrow) and the presence of worms on the liver surface (notched arrow). FhKTM/CpG-ODN/Coa-ASC16: the livers maintained a structure similar to

the untreated control mice without visible lesions. Right, the score was assessed by the extensión of liver damaged (score range 0 to 5). The data shown are pooled

from two independent experiments with total (n = 5–8 per group). (B) Histopatological evaluation of livers from the different groups was performed 24 days after

infection. Left, untreated control mice showed the expected mice hepatic architecture (left panel) [H/E, 100 × (top) 400× (middle panel) 900× (below)]. The infected

group exhibited migrating newly excysted juvenile fluke (NEJ) in the hepatic parenchyma (thin arrow), associated tract (T), extensive Inflammatory infiltrate (*), moderate

hepatocyte necrosis (N), and fibrotic connective tissue proliferation (thick arrow) at the chronic stage of the infection (center left panel). Likewise,

CpG-ODN/Coa-ASC16 control evidenced the presence of NEJ and the consequences thereof (center right). FhKTM/CpG-ODN/Coa-ASC16 mice maintained the liver

parenchyma structure despite infection (right panel). Right, histological samples were scored between 0 and 9 based on the following findings: infiltration of

inflammatory cells (score range, 0 to 3), together with the evaluation of liver tissue damage (necrosis, haemorragic foci, fibrosis, score range 0 to 3), and the presence

of tunnels and flukes (score range, 0 to 3), with 0 as normal and 9 as the most diseased. The data shown are pooled from two independent experiments with total (n

= 5–8 per group). (C) Serum was collected at the time of euthanasia, 24 days after challenge. The levels of AST (right), aspartate aminotransferase; ALT (left), and

alanine aminotransferase were determined by using a kinetic-UV method, under the established manufacturer’s protocols. Data were analyzed by one-way ANOVA

and Tukey’s post-test *P < 0.05; ***P < 0.001. Data are shown as mean ± SD. All data are representative of two individual experiments.

(asterisk) (Figure 2B). Results showing the histopathological
analysis of the livers are summarized in Figure 2B. Accordingly,
FhKTM/CpG-ODN/Coa-ASC16-immunized mice showed
serum ALT and AST levels similar to those observed in
untreated animals (Figure 2C). As expected, ALT and AST
levels were significantly increased in sera from infected and

CpG-ODN/Coa-ASC16-injected mice (Figure 2C). In summary,
high survival rates and no significant changes in the liver
structure, together with normal concentrations of hepatic
enzymes (ALT and AST), demonstrate the effectiveness of the
FhKTM/CpG-ODN/Coa-ASC16 vaccine to protect mice against
F. hepatica infection.
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FIGURE 3 | FhKTM-specific IgG antibodies detection. (A) IgG1 and IgG2a subclass antibodies in the sera of the immunized mice by enzyme-linked immunosorbent

assay (ELISA). Serum samples were collected from the mice by retro-orbital bleeding at 0, 4, and 24 dpi. Humoral immune responses were analyzed. (B) IgA titles

were detected in the acute infection on days 0 and 4 in sera, feces, and intestinal lavage. Results have been expressed as the mean of OD 450 ± SD values (n = 15)

and are representative of at least three independent experiments. The data were analyzed by one-way ANOVA and Tukey’s multiple comparison tests*p < 0.05; **p <

0.01; ***p < 0.001.

FhKTM/CpG-ODN/Coa-ASC16
Immunization Elicits Strong
Antigen-Specific Humoral Immune
Responses
It has been reported that one important protective mechanism
against F. hepatica is the humoral response (14, 18, 34, 35).
Therefore, to evaluate whether FhKTM/CpG-ODN/Coa-
ASC16 promotes an antigen-specific antibody response and
primes the infection-induced humoral response, the levels of
IgG1 and IgG2a antibodies against FhKTM were determined
by ELISA in sera from FhKTM/CpG-ODN/Coa-ASC16-
immunized, infected, and CpG-ODN/Coa-ASC16-injected
mice on 0, 4, and 24 dpi. The anti-FhKTM IgG2a and IgG1
titers are depicted in Figure 3A, with the levels of anti-FhKTM
obtained in untreated mice indicated as a line. Seven days
after the third immunization (0 dpi, Figure 1A), FhKTM/CpG-
ODN/Coa-ASC16-immunized mice showed significantly
higher titers of FhKTM-specific IgG1 and IgG2a antibodies
than CpG-ODN/Coa-ASC16-injected mice (Figure 3A). In

addition, immunization worked as an effective stimulus for
boosting the infection-induced antibody response, because
at 4 and 24 dpi, FhKTM/CpG-ODN/Coa-ASC16-immunized
mice showed significantly higher titers of IgG1 and IgG2a

anti-FhKTM than those observed in serum from the other two

infected experimental groups (infected and CpG-ODN/Coa-
ASC16) (Figure 3A). Next, to evaluate the IgA immune

responses induced by the vaccine formulation systemically
and at a mucosal level, titers of FhKTM-specific IgA in
serum, fecal pellets, and intestinal lavage were determined

by ELISA (Figure 3B). According to what was observed
in the systemic response for IgG1 and IgG2a, strong IgA
responses were observed by vaccination with FhKTM/CpG-

ODN/Coa-ASC16. Together, these data indicate that this

vaccine is effective at inducing a specific antibody response
at a systemic level and also in the intestine, with the latter

being really important considering the migration period of

the parasite through the host intestine wall at an early time
after infection.
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FIGURE 4 | FhKTM-specific cytokine immune responses in BALB/c mice after vaccination. At 0, 4, and 24 dpi, spleens were collected and splenocytes were

stimulated in vitro with FhKTM for 72 h. The culture supernatants from spleen cells were assessed for the production of IL-17A, IFN-γ, IL-10, IL-5, and IL-4 by ELISA.

Results are shown as mean ± SD and levels of significance as indicated by p-values and are representative of two or three independent experiments. They were

assessed by one-way ANOVA and Tukey’s multiple comparison tests *p < 0.05; **p < 0.01.

Immunization With
FhKTM/CpG-ODN/Coa-ASC16 Enhances
Antigen-Specific IL-17A and IFN-γ
Production
Next, we evaluated whether vaccination with FhKTM/CpG-
ODN/Coa-ASC16 is also able to promote an antigen-specific
cellular response. To this end, BALB/c mice that were vaccinated
and infected according to the scheme of Figure 1A were
euthanized on 0, 4, and 24 dpi and the capacity of splenocytes to
produce IFN-γ, IL-17A, IL-10, IL-5, and IL-4 after restimulation
with FhKTM was assessed in the culture supernatants by
ELISA. As shown in Figure 4, vaccination with FhKTM/CpG-
ODN/Coa-ASC16 was able to induce a strong cellular response
characterized by enhanced secretion of IL-17A and IFN-γ,
whereas only a weak production of IL-4 and IL-5 was observed,
thereby suggesting the stimulation of dominant Th17 and Th1
responses. Moreover, the IL-17A and IFN-γ production was
markedly increased after the infection (Figure 4). As previously
described (36), F. hepatica infection induces an increase in IL-
4-, IL-5-, and IL-10-producing splenocytes, while FhKTM/CpG-
ODN/Coa-ASC16-immunized mice not only did not increase IL-
10- production but also decreased IL-4-producing splenocytes
after the infection (Figure 4). Taking into account that an early
IL-17A production has been previously demonstrated to promote
IgA class switching in lymph organs (37), and considering our
data showing increased IgA in feces as well as in intestinal
lavage, we examined cytokine production by lymphatic organs
for mucosal immunity, such as MLNs and PPs. Figure 5 shows

that after three immunizations and prior to infection, MLNs or
PP cells from FhKTM/CpG-ODN/Coa-ASC16-immunized mice
produced high levels of IL-17A and IFN-γ after antigen-specific
stimulation. In addition, MLNs or PP cells from vaccinated
mice secreted higher levels of these cytokines compared to those
secreted by cells of MLNs or PP from CpG-ODN/Coa-ASC16
and infected mice (Figure 5).

These data suggest that IL-17A and IFN-γ production could
generate an inflammatory environment during the parasite
migration which might contribute to its elimination.

In vivo Neutralization of IL-17A Abolishes
the Protective Capacity of
FhKTM/CpG-ODN/Coa-ASC16 Vaccination
IL-17 production has been associated with plasma cells switching
to IgG2a antibodies and the promotion to IgA isotype (38,
39). In addition, IFN-γ has been involved in the protection
against F. hepatica (19, 20, 40). Moreover IL-17A can act
synergistically with IFN-γ to activate antiparasitic mechanisms
by macrophages (41). Taking into account these reports and
our results showing high levels of IL-17A after vaccination,
we decided to investigate the role of IL-17A on vaccine-
induced protection. Groups of FhKTM/CpG-ODN/Coa-ASC16-
immunized or PBS-treated (infected) mice received neutralizing
IL-17AmAb or isotype-matched control mAb 2 days before
and after the oral challenge with the metacercariae (Figure 6A).
Injection of neutralizing α-IL-17A mAb, but not control mAb,
significantly decreased the serum levels of vaccine-induced IgG2a
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FIGURE 5 | KTM/CpG-ODN/Coa-ASC immunized mice showed increased production of IFN-γ and IL-17A in supernatants from PPs and MLNs. Cell suspensions

from PPs and MLNs from treated mice at day 0 (uninfected) and 4 dpi were cultured for 3 days with FhKTM. The IFN-γ and IL-17A were measured in the culture

supernatants by ELISA test. Results are shown as mean ± SD and levels of significance as indicated by p-values, were assessed by one-way ANOVA and Tukey’s

multiple comparison tests *p < 0.05; **p < 0.01; ***p < 0.001.

and IgA as well as fecal IgA titles, but did not significantly
affect IgG1 production (Figure 6B). Likewise, splenocytes from
vaccinated mice that were treated with α-IL-17A mAb, but
not control mAb, showed diminished IFN-γ production after
antigen stimulation in culture (Figure 6C). In addition, the
vaccine-induced protection appeared to be mediated by an
IL-17A-driven immune response because treatment of mice
with neutralizing α-IL-17A mAb abolished the protective effect
evaluated as survival rate (Figures 7A,B). Thus, FhKTM/CpG-
ODN/Coa-ASC16-immunized mice and those treated with anti-
IL17A neutralizing antibody decreased their survival compared
with vaccinated animals without treatment (lines violet vs. fucsia)
(Figure 7B) and increased the gross liver damage (Figure 7C).
Interestingly, the IL-17A neutralization decreased the survival
of F. hepatica infected mice with or without treatment (lines
pink and light blue), suggesting an important role of IL-17A
in the protection against F. hepatica. These data highlight the
remarkable role played by IL-17A as a regulator of IFN-γ
production and specific antibody response which correlates with
the survival levels found in mice after the infectious challenge.

DISCUSSION

The production of an efficient vaccine against F. hepatica remains
a major challenge for the scientific community for different
reasons. The anti-helminthic resistance, high rates of reinfection

in endemic areas, and the acute infection cases provoking animal
death have raised the need for developing a vaccine against
fasciolosis (1, 14). However, the most important challenge in
vaccine design against this helminth is the possibility of beating
the Th2-type or immunosuppressive responses with a view to
an efficient response to eliminate the parasite. So far, numerous
vaccination attempts have included different purified parasite
molecules or their recombinant forms in cattle, sheep, and goats
with varying levels of protection (14, 42–44).

To date, the vaccination trials developed against F. hepatica
are not reproducible among animal models, in which variable
levels of protection are achieved regardless if the antigen is
native or recombinant. A number of antigens have been tested
as promising vaccine candidates in mice (22, 45, 46). However,
partial protection, insufficient improvement in animal survival,
or hepatic damage is not be enough to merit progress in the
development of a commercially viable vaccine for livestock
production. For these reasons, it is still important to define new
vaccine candidates and efficient adjuvant formulations in murine
models prior to the examination of the protective capacity in
natural hosts such as cows or sheep.

The rationale for the vaccine design in this work was based
on the properties of FhKTM. Apart from being an abundant
protein within the parasite gut, the parenchymal tissue, and the
tegument of juvenile (NEJ) (25) and adult (29), its role as protease
inhibitor enables the parasite to avoid both its own and the
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FIGURE 6 | IL-17A neutralizing reduced the immune response against FhKTM inFhKTM/CpG-ODN/Coa-ASC16 immunized mice. (A) Mice were administered with

anti-IL-17A antibody and the corresponding isotype control (250 µg i.p) 2 days before and after infections. (B) Twenty-five days after the first immunization, serum and

feces samples were obtained and FhKTM antibody levels were measured by ELISA. Their titers were detected by serial serum dilution and the limit was determined by

twice the value of the blanks mean. (C) Both IL-17A and IFN-γ secretion were evaluated in the splenocytes supernatant culture by ELISA. dpi: days post infection.

Data are representative of two independent experiments. One-way ANOVA + Tukey’multiple comparison tests. *p < 0.05, **p < 0.01, ***p < 0.001.

host’s deleterious protease action. Along with this, the antigen
was formulated with a novel adjuvant strategy, CpG-ODN/Coa-
ASC16, that constitutes a nanoplatform. This adjuvant strategy
is able to induce potent Th1 and Th17 responses, and elicit
long-term antibody responses (27, 28). In this study we
demonstrated that the immunization of mice with FhKTM/CpG-
ODN/Coa-ASC16 increases the survival against F. hepatica
challenge. Accordingly, the immunized animals presented a
highly preserved liver structure, suggesting that mice vaccination
somehow prevented worms from reaching the liver. This idea
is also supported by results showing that immunization induces
early production of specific antibodies and cytokines associated
with INF-γ and IL-I7 protection, both systemically and locally in
MLNs and PPs after infection. On the one hand, high levels of
FhKTM-specific IgA in the intestinal content as well as in feces
from vaccinated mice could favor the hypothetical expulsion of
parasites. Although F. hepatica is a trematode that remains for a
short period of time in the intestine, the mechanisms of parasite
expulsion in the gut as a result of vaccination could also be

operating against the larval stage of this parasite. As described
by others, the transference of IgA or IgG1 antibodies from
resistant mice to helminth infections confers partial resistance to
different nematodes (47, 48), probably through their neutralizing
effect on secreted parasite antigens, or by trapping larvae (49–
51). In addition, we cannot not rule out the possibility that
antibodies generated during immunization with the vaccine
might participate in mechanisms of antibody-dependent cell-
mediated cytotoxicity (ADCC) and reactive oxygen and nitrogen
species (ROS and NOS), according to results reported in in vitro
studies by Piedrafita et al. (52). On the other hand, a critical
role for IL-17A in the protective immunity against F. hepatica
shown in this study is an interesting finding, whereas the Th1
profile has been the response mostly associated with protective
mechanisms (19, 20, 53). The fact that IL-17A was crucial to
induce the IgA isotype in the fecal content of vaccinated mice
correlates with the ability of Th17 cells shown by other authors
to become precursors for the follicular helper T cells in PPs and
to induce IgA class switching (54). This fact could be explained
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FIGURE 7 | IL-17A neutralization decreased the efficacy of FhKTM/CpG-ODN/Coa-ASC16 vaccination. (A) Mice were administered with anti-IL-17A antibody and the

corresponding isotype control (250 µg i.p) 2 days before and after infections. (B) Kaplan–Meier graphs show survival curves for those mice immunized three times

with FhKTM/CpG-ODN/Coa-ASC16 or PBS. IL-17A-mAb and corresponding isotype control (mAb Isotype) were administered 2 days both before and after infection.

dpi: days post infection. (C) Left: infected liver showing marked enlargement with distended gallbladder (thick arrow), areas of fibrosis extending (asterix), and larvae

on the parenchyma surface (notched arrow). FhKTM/CpG-ODN/Coa-ASC16: liver showing normal size with no observed lesion except in 1 out of 8 mice.

Infected-mAb-IL-17A: the liver showing marked severe macroscopic damage (thin arrow) and presented irregular surface denoting hepatic fibrosis (asterix). The

presence of larvae on the surface can be seen (notched arrow). FhKTM/CpG-ODN/Coa-ASC16 -mAb-IL-17A: The hepatic parenchyma is severely reduced, firm, and

presents an irregular surface (thin arrow) denoting hepatic fibrosis (asterix). Abnormal gross appearance of the distended gallbladder with presence of blood inside

(thick arrow). infected-mAb Isotype: the liver is smaller than normal and presents irregular surface tissue denoting hypertrophied (thin arrow) and replaced with fibrosis

(asterix) and a fluke released after the rupture of the gallbladder (notched arrow). FhKTM/CpG-ODN/Coa-ASC16-mAb Isotype: liver showing no apparent gross

pathology except for in 2 out of 8 mice. Right, the score damage was assessed by the extensión of liver damaged (score range 0 to 5). The data shown are pooled

from two independent experiments with total (n = 5–8 per group). The statistical differences among survival curves were calculated by using Mantel–Cox test. ***p <

0.001.

by the capacity of IL-17A to increase the transport and secretion
of IgA into the intestinal lumen (38). Moreover, Th17 cell-
deficient mice had an impaired antigen-specific intestinal IgA
after immunization with cholera toxin, pointing out that Th17
cells were responsible for inducing the switch of GC B cells
toward the production of high-affinity T cell–dependent IgA (54).
Given the important role of IL-17 in the protective immunity
induced by the vaccine, we cannot rule out the presence of
innate as well as adaptive cells as a possible source of Th17,
since both CD4+ and CD4−IL17A-producing cells were found
in the spleen of vaccinated animals (data not shown). Among the
effector mechanisms of IL-17A there appears the ability to recruit
neutrophils, which destroy the pathogen through the production

of cytokines, chemokines, and anti-microbial peptides ormyeloid
cells which in turn restrict pathogen survival through activation
and recruitment of Th1 cells (55). In the present study, a low
neutrophil recruitment at the peritoneal cavity was observed in
all experimental mice without significant differences among the
groups (data not shown). On the other hand, the passage of
worms through the intestinal wall that could induce neutrophil
recruitment is random and transitory, so its finding might be
difficult. The uncoupled IL-17A-dependent effector mechanisms
from the neutrophil response have already been demonstrated
in barrier tissues, in mouse models oropharyngeal, or skin
fungal infections where IL-17A provided immunity through anti-
microbial peptide generation (56), independently of neutrophils
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(57). These data suggest that the mechanism by which IL-17A
plays a crucial role in the protective immunity against F. hepatica
might be independent from neutrophil recruitment, and is still to
be determined.

In addition, high systemic production of IFN-γ and IgG2A
levels in vaccinated animals is in agreement with previous reports
showing the association of these responses with increased levels
of protection against the parasite (34). A close relationship
between IL-17A and IFN-γ production was demonstrated in this
work since the blockade of IL-17A significantly decreased IFN-
γ levels in splenocyte supernatants and, consequently, animal
survival. The precise mechanism by which the production
of IFN-γ is dependent on IL-17 is unknown, however, it
could be speculated that after this cytokine is produced,
responder cells such as epithelial or myeloid cells through IL-
17R signaling might induce the recruitment of Th1 cells. These
cells could secrete pro-inflammatory cytokines, chemokines,
and anti-microbial peptides to restrict the pathogenesis of the
disease (55). Although these mechanisms have been proposed
in different bacterial (58, 59) or protozoal infections (60), we
cannot rule out that IL-17A might play a similar role during
F. hepatica infection.

Data from other authors support the idea of a synergistic
effect between IFN-γ and IL-17A in protective mechanisms
against different pathogens through the potentiation of NO
production in macrophages (41, 61, 62). Although a mucosal
response in the intestine after subcutaneous immunization with
FhKTM/CpG-ODN/Coa-ASC16 might seem surprising, recent
findings have shown that parenteral immunization can generate
a potent IgA response in mucosal tissues (63, 64). This fact
could be explained in two hypothetical ways: in one of them,
the antigen is captured by APC in the injection site and then
transported to mucosal-associated lymphoid tissues (MALT) for
antigen presentation. In the other, the antigen can be presented
peripherally to naive T cells and B cells which are in turn
home to mucosal tissues. The high levels of IFN-γ and IL-
17A observed in inguinal lymph nodes after immunization with
FhKTM/CpG-ODN/Coa-ASC16 (data not shown) suggest that
the APC carrying the antigen might spread to the draining
peripheral lymph nodes, either prior to or simultaneously with
the antigen presentation to lymphocytes in the MALT. One
limitation in this type of approach to studying protective
immunity is the difficulty to decide whether protection comes
frommucosal or systemic immunity, suggesting that induction of
mucosal immunity by parenteral injection is an important issue
for vaccine design. Finally, we believe that the CpG-ODN/Coa-
ASC16 platform might allow FhKTM-long term release. Coa-
ASC16 nanostructure have a certain rigidity, which can either
modulate the release of molecule/s into the biological medium
or provide stability to loaded molecules (65). Previously, it has

been reported by in vitro approaches that Coa-ASC16 generates a
sustained release of both OVA and CpG-ODN (27). In addition,
Coa-ASC16 could exert a protective effect, avoiding FhKTM
antigen protease degradation. This strategy may work in vivo
as a depot effect, which often makes it possible to reduce the
dose and/or the number of immunizations required for an
optimal response.

The precise protective immunity mechanism as induced by
FhKTM remains to be investigated. However, our data highlight
the importance of designing vaccines that induce a potent
response in mucosa and systemic levels capable of preventing
the parasite from reaching the liver. Given the high levels of
protection shown in mice susceptible to the infection, our next
step is the validation of this vaccine system to the natural hosts
of the infection, such as sheep, upon which our regional livestock
economy is based.
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