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Abstract

Monitoring the availability of phosphorus (P) in soil under continuous

cropping facilitates finding deficiency in crops and contributes to improving

crop growth and nutrient management models. Soil P availability for crops is usu-

ally estimated by soil test P (STP), such as Bray-1. This is widely used in the Ame-

ricas. The relationship between the decrease of STP Bray-1 and cumulative

removal of P was evaluated in non-P-fertilized areas in long-term studies. This

removal was the sum of annual P removal over the study period as P exported in

grains/crop outside the soil. The objectives were to: (a) quantify changes in STP as

a function of cumulative P removal, (b) assess the relationship between relative

decrease rate of STP and soil variables as well as annual removal of P by crops,

and (c) develop a model to predict decrease of STP Bray-1. Exponential decay

functions were used to describe annual cumulative removal of P and STP from

soil over time for 12 long-term studies where no addition of P fertilizer was carried

out. Changes in the relative rate of decrease of STP, relative to the initial STP

Bray-1 value at the onset of the experiment, were predicted by the ratio of soil

organic matter to clay and silt and the average annual P removal by exponential

decay (R2
adj = 0.64; RMSE = 3.2 mg kg−1). We propose this predictive model as

suitable to provide estimates of the relative decrease rate of STP by Bray-1 and

thereby improve management of P for optimizing crop yield.

Highlights

• STP Bray-1 decrease and cumulative P removal were related by exponential
decay functions.

• Relative decrease rate of STP Bray-1 was related to SOM/(clay+silt) ratio
and annual P removal.

• A predictive model of the relative decrease rate of STP Bray-1 was fitted and
validate.

• Our model is a useful tool to help predict soil P availability and nutrient
management.
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1 | INTRODUCTION

Crop productivity depends, among other factors, on the
supply of phosphorus (P), as one of the most relevant
nutrients (Raghothama, 2005). The main source of P
for crop production is fertilizers, mostly obtained from
non-renewable phosphate rock (Cordell, Drangert, &
White, 2009). In general, P fertilizers have been utilized in
agriculture, and occasionally applied in excess of plant P
requirement, resulting in both build-up of P in soil, loss to
soil water and hence producing eutrophication of water
systems (Sharpley et al., 1994). However, at a global level,
30% of the arable cropland, primarily concentrated in
South America, is deficient in P (MacDonald, Bennet, Pot-
ter, & Ramankutty, 2011). Consequently, P deficiency and
the related P fertilizer management compromise food
security, and predicting when soil available P becomes
deficient for crops is then critical.

Long-term field studies examining continuous
cropping sequences are major research investments for
assessing soil nutrient cycling and balances over time
(Dodd & Mallarino, 2005; Johnston, Poulton, White, &
MacDonald, 2016; McCollum, 1991; Messiga et al., 2015;
Messiga, Ziadi, Plénet, Parent, & Morel, 2010). Such stud-
ies provide a highly valuable source of information about
the effect of continual cropping sequences, P removal and
soil fertility, especially for slowly changing variables, such
as soil test P (STP). Quantification of P balances, as the
difference between P inputs (fertilizer) and P outputs
(P removal), is a relevant topic addressed by several
researchers (Johnston et al., 2016; McCollum, 1991;
Messiga et al., 2010). In non-P-fertilized systems, only
P removal by grain yield is considered to account for the
P balance, because there are no P inputs as fertilizer. In
non-P-fertilized fields, STP decreases due to P removal can
be better predicted by using exponential decay functions
than linear functions, because STP decreases less than pro-
portional than crop P removal (Johnston et al., 2016).

Previous studies have shown that there is a relation-
ship between decrease in STP and cumulative P removal
(the sum of annual P removal across years of the consid-
ered period) in non-P-fertilized cropping sequences associ-
ated with initial STP levels (Ciampitti, Garcia, Piccone, &
Rubio, 2011a; Selles et al., 2011; Sucunza, Gutierrez Boem,
Garcia, Rubio, & Boxler, 2018; Wyngaard, Echeverria,
Sainz Rozas, & Divito, 2012). McCollum (1991) proposed
two main processes driving the decrease in STP: (a) by
crop P removal, that is, P exported in grains outside the

system, and (b) by chemical P sorption related to P interac-
tion with soil organic matter (SOM) and mineral particles.
Therefore, the relationship between these constituents,
especially with more reactive particles such as clay and
silt, could be related to plant response to nutrient availabil-
ity (Quiroga, Funaro, Noellemeyer, & Peinemann, 2006).
Thus, the role of SOM/(clay+silt) ratio (Pieri, 1995) in STP
decrease should be further assessed, potentially reflecting
the interaction from the solid soil phase and P supply from
the SOM mineralization.

Although different analytical procedures are currently
utilized around the globe to evaluate STP (Fixen & Grove,
1990), Bray-1 (Bray & Kurtz, 1945) remains one of the
most commonly utilized to predict plant P availability in
several countries in both South and North America
(Beegle, 2005; Sharpley et al., 1994). The development of
predictive models for changes in STP Bray-1 as a function
of cumulative P removal would (a) provide for more pre-
cise P fertilizer recommendations, (b) provide for predic-
tions of P deficiency for crops, (c) contribute to nutrient
management models for optimizing crop growth, and
(d) provide forecasting of when system productivity will
be compromised by a decrease in STP Bray-1.

The main goals for this study were to: (a) quantify
changes in STP Bray-1 as a function of cumulative P
removal, (b) assess the relationship between relative
decrease rate of STP Bray-1 and soil variables as well as
removal of P by crops on an annual basis, and (c) develop
a simple model to predict the decrease of STP Bray-1.

2 | MATERIALS AND METHODS

2.1 | Data search criteria

A synthesis-analysis of data containing P removal and
STP Bray-1 was performed with peer-reviewed published
studies gathered from the scientific literature and from
our own studies. Studies were obtained from Scopus,
ScienceDirect, Springer, CAB Direct, Web of Science and
Google Scholar. Keywords utilized in the web search
engines were “phosphorus”, “Bray”, “yield”, “soybean”,
“maize or corn” and “budget or balance”. Studies
included in the dataset met the following requirements:
(a) performed under field conditions (neither glasshouse
nor pot trials), (b) evaluated over at least 5 years or more
of a grain cropping sequence, and (c) included grain
yields, STP Bray-1 at the topsoil (0–20-cm soil depth), soil
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subgroup (Soil Survey Staff, 2014), top soil texture
(0–20 cm), SOM, and crop P removal (kg ha−1) and/or
grain P concentration (g kg−1).

We used two datasets. The first one contains published
and unpublished studies carried out in Argentina
(Argentina dataset, Table 1, Figure 1) to consistently evalu-
ate studies located within a restricted geographical location
and fulfilling all the above-mentioned requirements. This
Argentina dataset was used to build up the exponential
decay model (n = 157 data points). For this dataset, to
avoid publication bias, unpublished field studies were also
collected (only those that met the standard inclusion
criteria) and included as a part of the dataset. Sites 4, 6, 7, 8
and 12 were reported by Ciampitti et al. (2011a) and Suc-
unza et al. (2018), but four additional years were added in
this study (Nutrition Network CREA Southern Santa Fe,
2014, http://research.ipni.net/project/IPNI-2000-ARG-12).

The second dataset contains studies carried out in the
USA from five long-term studies (>20 years) (Dodd &
Mallarino, 2005; Randall et al., 1997) (US data set,
Table 1), which met the stated requirements, and it was
used for model validation (n = 100 data points).

In both sets, data were retrieved from published text
and tables and, if needed, digitized from figures using the
GetData Graph Digitizer 2.26 program (Ferodov, 2013)
(Table 1) (error < 1 mg kg−1). In order to avoid potential
effects of P fertilizer management practices (i.e., source,
rate, timing and placement), only treatments without P
addition (neither organic nor inorganic P sources) were
considered. Information about sites, duration of study,
crop sequences, soil subgroup (Soil Survey Staff, 2014),
soil texture, SOM and initial STP Bray-1 are detailed in
Table 1. Soils under study were mainly Mollisols and
their SOM ranged from 21 to 55 g kg−1, clay from 118 to
428 g kg−1, and silt from 201 to 789 g kg−1.

The studies used for the validation were selected
based on similar soil properties to those of the sites
included for training the model. Thus, the validation data
included Mollisols and their SOM varied from 33 to
57 g kg−1, clay from 217 to 296 g kg−1, and silt from
389 to 498 g kg−1 (Table 1). Further details related to soil
features, management practices and field conditions for
the model validation dataset can be found in Randall
et al. (1997) and Dodd and Mallarino (2005).

2.2 | Data analysis

Phosphorus removal, that is, P exported in grains outside
the system, was calculated for each year from grain P
concentration (Sucunza et al., 2018) and grain crop
yields. For studies where grain P concentration was not
reported (sites 5 and 9), but grain crop yield was,

reference grain P concentration data from Sucunza et al.
(2018) were utilized to estimate P removal (i.e., 5.44 g P
kg−1 for soybean, 3.09 g P kg−1 for maize and 3.68 g P
kg−1 for wheat). For each site, average annual P removal
was calculated as the ratio between cumulative P removal
(the sum of annual P removal across years of the consid-
ered period) and the duration of the study in years.

Clay, silt, sand and SOM content were standardized
to g kg−1. Soil test P Bray-1 data from 0–20-cm soil depth
were utilized for the data analysis. The ratio SOM/(clay
+silt) (Pieri, 1995) was calculated for each site as:

SOM gkg−1� �
× 100= clay + siltð Þ gkg−1� �

: ð1Þ
The relationship between cumulative P removal (x) and
STP Bray-1(y) was fitted using an exponential decay func-
tion for each site as follows:

y= y0 exp kxð Þ, ð2Þ

where y0 is the initial STP Bray-1 concentration and k is
the relative decrease rate of STP Bray-1 decay constant.
This relative decrease rate of STP Bray-1 (k parameter of
equation) is relative to the initial STP Bray-1 value at the
onset of the experiment (y0).

Comparisons of y0 and k parameters among sites were
made by testing confidence intervals of each parameter
performed with GraphPad Prism 5 (Motulsky &
Christopoulos, 2003). Parameters were considered as dif-
ferent when confidence intervals were not overlapped.

In order to build a model to estimate the k parameter,
a stepwise procedure was applied to select the variables
that better explain the changes in the k parameter using
a maximum p-value of .05, by using the car package of R
software (R Development Core Team, 2018). Tested vari-
ables were SOM, clay, silt, sand, SOM/(clay+silt) ratio,
SOM/clay ratio, pH, initial Bray-1, and average annual P
removal. As a second test for model selection, we also cal-
culated Cp Mallows, which is based on the fact that not
including an important independent variable in the
model results in the fitted response values being biased
(Neter, Wassernan, & Kutner, 1990). Low values (<10) of
Cp Mallows indicate that the model is accurate.

To validate the obtained model, k was estimated from
SOM, clay, silt and yield from the US dataset. Predicted
and measured STP Bray-1 were tested by using the stan-
dardized major axis regression (SMA) (Warton, Wright,
Falster, & Westoby, 2006), evaluating if the slope differed
from 1 and the intercept from 0, with the smatr-3 pack-
age for R software (Warton et al., 2012). This method was
chosen because it considers that predicted and measured
Bray-1 present random errors, reflecting deviations in
both variables. Model performance to predict STP Bray-1
was evaluated by mean square error (MSE) and root
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mean square error (RMSE) using IRENE software (Fila,
Bellocchi, Acutis, & Donatelli, 2003). The MSE was par-
titioned into simulation bias and mean square variation
(MSV), which are orthogonal and can be analysed inde-
pendently (Kobayashi & Us Salam, 2000). The simulation
bias is the bias from the observation and the mean square
variation is the difference between simulated and
observed bias relative to the deviation from the means.

3 | RESULTS

3.1 | Relationship between STP Bray-1
and P removal

Annual P removal by crops ranged from 3.4 to
54 kg P ha−1 year−1 (Figure 2). Soybean P removal varied
from 3.4 to 49 kg P ha−1 year−1, maize P removal from
12 to 54 kg P ha−1 year−1, wheat/double-cropped soybean
P removal from 12 to 38 kg P ha−1 year−1, and barley/
double-cropped soybean P removal ranged from 9.2 to
46 kg P ha−1 year−1 (Figure 2). Initial STP Bray-1 ranged

from 6.1 to 67.7 mg P kg−1 across all evaluated sites. The
variation in STP Bray-1 (initial minus final STP Bray-1)
ranged from 1.9 in site 2 to 48.3 mg kg−1 in site 12. At the
end of each study, decrease in STP Bray-1 ranged from
26% (site 2) to 71% (site 12) relative to their initial value
at the onset of the study.

For each site, a significant (p < .05) exponential decay
function between STP Bray-1 and cumulative P removal
(Figure 3, Table 2) was fitted. The exponential decay analy-
sis was split into two groups according to the duration of the
studies, (a) more than 10 years and (b) less than 10 years, to
portray the changes in these two groups more clearly.

3.2 | Relative decrease rate of STP Bray-1
and predicting model

The relative decrease rate of soil test P Bray-1 varied from
1.17�10−3 to 6.12�10−3 (Table 2). Sites did not show signifi-
cant differences in their k parameters, but some of them dif-
fered in the “y0” factor, that is, the initial STP Bray-1
(Table 2). Results from the stepwise procedure showed that

FIGURE 1 Geographical distribution of sites under study in the pampas region of Argentina. Numbers refer to sites presented in Table 1

APPELHANS ET AL. 5



the SOM/(clay+silt) ratio and averaged annual P removal
were the main variables explaining variations in the
k parameter (relative decrease rate of STP Bray-1) by a first-
order model (Table 3). Thus, the final model obtained was:

k=43:0 �10−4 + 3:44 �10−4 SOM= clay + siltð Þð Þ
– 1:31 �10−4 average annual P removalð Þ�p< :05:

ð3Þ

The SOM/(clay+silt) ratio explained 44% of the varia-
tion in the relative decrease rate of the STP Bray-1,
whereas averaged annual P removal accounted for 20% of
this variation (Table 3). Other variables such as SOM,
clay, silt or sand content, pH and initial STP Bray-1 were
not significantly (p> .05) related to the relative decrease
rate of STP Bray-1.

3.3 | Validation for relative decrease rate
of STP Bray-1 predicting model

The SOM/(clay+silt) ratio ranged from 4.92 to 8.32 and
the average annual P removal from 8.7 to 21.5 kg P
ha−1 year−1 (Table 1). Estimated values of the relative
decrease rate of STP Bray-1 varied from 3.6 to 7.2�10−3
(Figure 4b). Soil test P Bray-1 was tested by the SMA
method, resulting in no differences from the 1:1 line
(Figure 4a). The RMSE resulted in 3.2 mg kg−1 with a
simulation bias of 4% and a mean square variation of
96%.Therefore, the model performance was adequate to
predict STP Bray-1 as most of the variability in the mean
square variation term was related to random error and
not to bias. According to Ojeda, Volenec, Brouder,
Caviglia, and Agnusdei (2017), a simulation bias below
20% indicates adequate model performance.

4 | DISCUSSION

4.1 | STP Bray-1 and P removal

Non-P-fertilized field studies presented curvilinear rela-
tionships for the STP Bray-1 versus P removal, with P
equilibrium with less labile soil P fractions more relevant
as STP Bray-1 decreases (McCollum, 1991). When STP
Bray-1 concentrations are low, P might be replenished
from inside of soil particles that are in equilibrium with
the soil solution. The decrease in labile P, rapidly in equi-
librium with soil solution, increases P gradient, diffusion
and overall plant supply (Barrow, 1983), showing a slight
decrease in STP Bray-1, although also P removal. More-
over, STP Bray-1 could be replenished from mineralization
of soil organic P, or crop residues, or recycled from deeper
to upper soil layers due to the plant uptake process

(Ciampitti, Garcia, Piccone, & Rubio, 2011b; Romaniuk
et al., 2018; Zhang, MacKenzie, Liang, & Drury, 2004).

4.2 | Soil test P Bray-1 relative
decrease rate

Some of the previous studies described the STP Bray-1
versus P removal relationship as linear regressions
(Ciampitti et al., 2011a; Messiga et al., 2010; Selles et al.,
2011) and others as exponential decay functions
(Johnston et al., 2016; Sucunza et al., 2018). Owing to
decrease rate of STP Bray-1 without P fertilization is
reduced less than in proportion to that of P removal
increase, exponential decay functions are more appropri-
ate to predict the decrease of STP Bray-1, which is not
constant along time (Johnston et al., 2016). Such a trend
is potentially masked in short-term studies (Sucunza
et al., 2018), but long-term experiments have been useful
in developing and understanding this relationship
(Johnston et al., 2016). Because long-term experiments
are expensive and time consuming, we have proposed an
innovative model that is able to predict the relative
decrease rate of STP Bray-1 from simple soil properties
(SOM, clay and silt content) and P removal, soil factors
that can be easily measured/estimated in a relatively
short time. There are no previous studies of simple (based
on a few soil variables) predictive models such as the one
presented in this paper, which can be utilized to estimate
Bray1-P decrease, reducing the dependence on long-term,
expensive and labour-intensive fertilization studies.

In general, the relationship between STP Bray-1 and
cumulative P removal varies on the initial STP Bray-1,
with an increase in the relative decrease rate of STP
Bray-1 with increasing initial STP Bray-1 (Ciampitti
et al., 2011a). In this study, initial STP Bray-1 is consid-
ered in the exponential decay function as the “y0”
parameter, thus the relative decrease rate of STP Bray-1
was not related to initial STP Bray-1. Previous studies in
soils located in the Pampas Region of Argentina have
shown that initial STP Bray-1 and clay content were
associated with P retention, and this last factor increased
as soil clay content increased (Rubio, Gutiérrez Boem, &
Cabello, 2008). Moreover, clay mineralogy influences P
retention in Mollisols related to the extractable alumi-
num and iron content, with greater P retention in soils
of the southern Pampas Region as related to their paren-
tal material (Cabello, Gutierrez Boem, Quinteros, &
Rubio, 2016). Even though clay content highly
influenced P sorption, in this study clay (as a single fac-
tor) was not related to the relative decrease rate of STP
Bray-1, which is plausible because of the narrow varia-
tion range for this factor.
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The relative decrease rate of STP Bray-1 was related to
the SOM/(clay+silt) ratio and averaged annual P removal.
In agreement with McCollum (1991), STP decrease was
driven by P removal and a chemical decrease by P

equilibrium with non-extractable soil P fractions. The
SOM/(clay+silt) ratio was proposed by Pieri (1995) as a
soil structure stability index, portraying that SOM is
protected by soil inorganic fine particles (clay+silt). For

FIGURE 3 Relationship

between soil test phosphorus

(STP) Bray-1 and cumulative P

removal during experimental

years for each site of the

Argentina dataset. (a) Sites with

≤10 years of duration;

(b) >10 years of duration.

Equations and parameters for

each site are shown in Table 2

FIGURE 2 Annual P removal and soil test phosphorus (STP) Bray-1 evolution for each year at each site of the Argentina dataset (see

numbers presented in each panel and details in Table 1). M: maize; S: soybean; W/S: wheat/soybean double crop; B/S: barley/soybean

double crop
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soils in Argentina, the SOM/(clay+silt) ratio was related to
soil N mineralization (Quiroga et al., 2006). In addition,
this ratio could be related to soil P supply from mineraliza-
tion of organic P fractions, representing 29–83% of total P
in Argentinean soils (Boschetti, Quintero, Benavidez, &
Giuffre, 2003; Galantini & Suñer, 2008; Zamuner,
Picone, & Echeverria, 2008). Phosphorus supply via
organic P mineralization becomes more relevant in soils
with low P concentrations (Sharpley, 1985; Stewart &
Sharpley, 1987; Thien & Myers, 1992), but this process is
not considered by STP Bray-1 determination (Appelhans,
Melchiori, Barbagelata, & Novelli, 2016; Ciampitti et al.,
2011b; Suñer, Galantini, Rosell, & Chamadoira, 2002;
Wyngaard, Vidaurreta, Echeverría, & Picone, 2013).

The relative decrease rate of STP Bray-1 increased
with the SOM/(clay+silt) ratio, potentially related to a
combined effect of P contribution from SOM and P reten-
tion effects from clay plus silt soil particles. Greater
SOM/(clay + silt) ratios were recorded in soils with high

SOM content (e.g., Site 11), and in soils with both low
SOM and low clay content (e.g., Site 1). For the first sce-
nario, a larger STP Bray-1 relative decrease might be a
result of competition for P between soil solution and the
SOM fraction (Blake et al., 2000), whereas in the second
scenario, low clay content could be reflected as fewer soil
sorption sites (greater sand composition), less P buffer
capacity (Blake, Johnston, Poulton, & Goulding, 2003)
and low SOM content supplying less P via mineralization.
Soil P buffer capacity is the change in the quantity of P
sorption required per unit of change in solution P con-
centration (Moody, 2007). Thus, as P buffer capacity
decreases, few labile P fractions replenish STP Bray-1,
and thus, the relative decrease rate of STP Bray-1
increased, despite low P removal.

Soils with similar STP Bray-1 levels but different soil
texture, could differ in their P diffusion rate and P supply
(Quintero, Boschetti, & Benavidez, 2003; Silberbush &
Barber, 1983). In addition, soils with a higher relative
decrease rate of STP Bray-1 showed low annual P
removal. Thus, in those soils with STP Bray-1 below
15 mg kg−1 (average critical threshold for crops, i.e., sites
1 to 6), the annual P removal was low (18.9 kg P ha−1);
due to this the decrease is relative to the STP Bray-1 level
(average k = 3.16�10−3). In contrast, sites with initial STP
Bray-1 above the critical threshold showed a lower aver-
age relative decrease rate of STP Bray-1 (average
k = 2.42�10−3) and greater average annual P removal
(24.3 kg P ha−1). In addition, P removal is affected by crop
type and productivity, with crop productivity limited by P
deficiency when STP Bray-1 is below the critical threshold
(Beegle, 2005), consequently reducing P removal.

4.3 | Bray-P relative decrease rate
predicting model and validation

In this sense, the validation of the STP Bray-1 decrease
model with the US dataset was adequate because all stud-
ied variables for soils of the USA and the Pampas were
mainly in a similar range to that explored by our model,
including SOM/(clay + silt) ratio and P removal (Dodd &
Mallarino, 2005; Randall et al., 1997), with comparable
SOM, clay and silt contents (Table 1). In addition,

TABLE 2 Parameters and their standard errors (SE) for the

exponential decay function (Equation 2) fitted to the relationship

between soil test phosphorus (STP) Bray-1 and cumulative P

removal at each site

Site y0 (SE) (mg kg−1) k (�10−3) (S. E.) R2

1 6.7 (0.5) e* 6.12 (2.25) 0.59

2 7.0 (0.9) e 3.62 (1.24) 0.49

3 7.9 (0.6) e 2.11 (0.62) 0.51

4 12.5 (1.0) d 2.23 (0.48) 0.62

5 11.6 (0.9) d 3.72 (0.98) 0.65

6 12.6 (1.4) d 1.17 (0.54) 0.41

7 18.7 (1.4) c 1.18 (0.40) 0.57

8 20.6 (1.7) c 1.18 (0.47) 0.53

9 16.6 (1.5) bc 3.11 (1.05) 0.62

10 21.9 (1.0) b 1.69 (0.45) 0.39

11 24.0 (2.2) b 4.98 (1.42) 0.62

12 63.4 (3.4) a 2.38 (0.27) 0.85

Note: y0 refers to the initial STP Bray-1 and k indicates the relative decrease
rate of STP Bray-1. All fitted models were significant (p < .05).

*Different letters between sites indicate differences among y0
values (p < .05).

TABLE 3 Multiple linear regression model for relative decrease rate of STP Bray-1 (k) as affected by soil and crop variables

Variable Regression coefficient�10−4 SE�10−4 p-value Partial R2 Adj R2 Cp Mallows

Intercept 43.0 14.0 .014

SOM/(clay+silt) 3.44 1.30 .027 0.44 0.64 8.3

Averaged annual P removal −1.31 0.50 .030 0.20 8.1

Abbreviations: Adj R2: adjusted coefficient of determination; SE: standard error.
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soybean and maize yields (538 to 4,308 kg ha−1, and 1950
to 12,038 kg ha−1, respectively) in the USA were compa-
rable to those obtained in the Pampas. Future research
should evaluate variation in soil parameters such as soil
P buffer capacity (Quintero, Boschetti, & Benavidez,
1999) to improve the prediction power of the proposed
STP Bray-1 model.

Even though more data are becoming readily avail-
able, issues related to completeness of data for the main
factors required to investigate changes in STP with time
remain a limitation. Only a few articles were obtained
studying P removal and STP Bray-1 in long-term studies
under our a priori established criteria (see sub-section
2.1). During the data-searching process, although a few
long-term studies with STP Bray-1 were found, yield or
grain P concentration data, or P balance itself (or P
removal), were not available in many of them. The focus
on Argentina and only on STP Bray-1 (most widespread
STP method used in the country; Sainz Rozas,
Echeverría, & Angelini, 2012) was also a result of a lack
of consistency in the collected data (fewer studies) and
different STP methods (e.g., Mehlich-3, Olsen or Colwell,
among others; Beegle, 2005) used around the globe,
increasing the challenges in presenting a more compre-
hensive and global synthesis analysis.

Long-term studies generate useful knowledge for plan-
ning management strategies for nutrient mobilization,
transformation and recycling (Zicker, Von Tucher,
Kavka, & Eichler-Löbermann, 2018). These field studies
present an overview of interpretation of complex processes
such as changes of P with time (Dodd & Mallarino, 2005;
Messiga et al., 2010), providing useful data to build predic-
tion models for changes in STP. The development and
improvement of prediction tools for STP would require fur-
ther research investments in maintaining long-term P stud-
ies and enhancing data storage and sharing to ensure the
utilization of these valuable datasets in the near future.

5 | CONCLUSIONS

The main outcomes from this study were: (a) the rela-
tive decrease rate of STP Bray-1, from the exponential
decay relationship between STP Bray-1 and cumulative
P removal, was mainly explained by the SOM/(clay+silt)
ratio and average annual P removal, and (b) utilization
of these variables to fit a predictive model on the rela-
tive decrease rate of STP Bray-1 was successfully
implemented. The proposed model represents a rela-
tively simple and effective approach to forecast changes
in STP dynamics and to better understand the effect of P
removal and some soil characteristics in continuous
crop sequences, mainly for Mollisols. Our finding would
help in predicting and anticipating potential future crop
P deficiencies for crops, based on improving the estima-
tion of annual and long-term P balance for farming sys-
tems. Likewise, the function may be potentially useful
to include in crop growth and nutrient management
simulation models. Further research should explore uti-
lization of different soil types and cropping systems, and
evaluation of multi-soil P tests to provide a more global
STP prediction model.
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FIGURE 4 (a) Relationship
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exp(kx)). (b) Predicted STP Bray-

1 decreases estimated by the

proposed model

(k = 43.0�10−4 + 3.44�10−4*SOM/

(clay+silt) – 1.31�10−4*averaged
annual P removal) in five long-

term US studies (Dodd &

Mallarino, 2005; Randall et al.,

1997). RMSE: root mean square

error
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