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ABSTRACT

The motion of S-stars around the Galactic center implies that the central gravitational potential is dominated by a compact source,
Sagittarius A* (Sgr A*), which has a mass of about 4 × 106 M� and is traditionally assumed to be a massive black hole (BH). The
explanation of the multiyear accurate astrometric data of the S2 star around Sgr A*, including the relativistic redshift that has recently
been verified, is particularly important for this hypothesis and for any alternative model. Another relevant object is G2, whose most
recent observational data challenge the scenario of a massive BH: its post-pericenter radial velocity is lower than expected from a
Keplerian orbit around the putative massive BH. This scenario has traditionally been reconciled by introducing a drag force on G2
by an accretion flow. As an alternative to the central BH scenario, we here demonstrate that the observed motion of both S2 and
G2 is explained in terms of the dense core – diluted halo fermionic dark matter (DM) profile, obtained from the fully relativistic
Ruffini-Argüelles-Rueda (RAR) model. It has previously been shown that for fermion masses 48 – 345 keV, the RAR-DM profile
accurately fits the rotation curves of the Milky Way halo. We here show that the solely gravitational potential of such a DM profile
for a fermion mass of 56 keV explains 1) all the available time-dependent data of the position (orbit) and line-of-sight radial velocity
(redshift function z) of S2, 2) the combination of the special and general relativistic redshift measured for S2, 3) the currently available
data on the orbit and z of G2, and 4) its post-pericenter passage deceleration without introducing a drag force. For both objects, we
find that the RAR model fits the data better than the BH scenario: the mean of reduced chi-squares of the time-dependent orbit and z
data are 〈χ̄2〉S2,RAR ≈ 3.1 and 〈χ̄2〉S2,BH ≈ 3.3 for S2 and 〈χ̄2〉G2,RAR ≈ 20 and 〈χ̄2〉G2,BH ≈ 41 for G2. The fit of the corresponding z data
shows that while for S2 we find comparable fits, that is, χ̄2

z,RAR ≈ 1.28 and χ̄2
z,BH ≈ 1.04, for G2 the RAR model alone can produce an

excellent fit of the data, that is, χ̄2
z,RAR ≈ 1.0 and χ̄2

z,BH ≈ 26. In addition, the critical mass for gravitational collapse of a degenerate
56 keV-fermion DM core into a BH is ∼ 108 M�. This result may provide the initial seed for the formation of the observed central
supermassive BH in active galaxies, such as M87.

Key words. Galaxy: center – Galaxy: kinematics and dynamics – Galaxy: structure – (Cosmology:) dark matter – Elementary
particles

1. Introduction

The monitoring of the motion of the so-called S-stars near the
Galactic center over the past decades has revealed that the gravi-
tational potential in which they move is dominated by a massive
compact source at the center, Sagittarius A* (Sgr A*) (Gillessen
et al. 2009, 2017). The S-star dynamics implies a mass for
Sgr A* of ≈ 4.1 × 106 M�, which is traditionally associated in
the literature with a massive black hole (BH) (Gravity Collabo-
ration et al. 2018b; Ghez et al. 2008; Genzel et al. 2010).

Of the objects that move near and around Sgr A*, S2 and
G2 are the most interesting. The star S2 describes an elliptical
orbit that is focused on Sgr A* and has a period of 16.05 yr

and the second closest pericenter of the S-stars, rp(S 2) ≈ 0.6 mpc
(Gillessen et al. 2009, 2017). The S2 orbit constrains the Sgr A*
mass best, but its pericenter at ∼ 1500 rSch from Sgr A* is too
far to univocally infer a putative massive BH of Schwarzschild
radius rSch = 2GMBH/c2, where MBH is its mass.

The most recent measurements of the motion of G2 after the
peripassage around Sgr A* represent a further challenge for the
hypothesis of a massive BH. The G2 radial velocity is lower than
that from a Keplerian motion around the massive BH, which has
been reconciled by introducing the action of a drag force exerted
by an accretion flow (Plewa et al. 2017; Gillessen et al. 2019).

Our aim here is to show that the dense core – diluted halo
DM density distribution of a general relativistic system of
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56 keV fermions, following the extended Ruffini-Argüelles-
Rueda (RAR) model (Argüelles et al. 2018, 2019b) instead ex-
plains the orbits of S2 and G2 without invoking the massive BH
or a drag force. We use the most complete data of the S2 or-
bit over the last 26 yr (Gillessen et al. 2017; Gravity Collabora-
tion et al. 2018a), including the recent data released by Do et al.
(2019), and the four-year data of the G2 motion after its pericen-
ter passage (Gillessen et al. 2019).

2. Ruffini-Argüelles-Rueda model of dark matter

The Ruffini-Argüelles-Rueda (RAR) model equilibrium equa-
tions consist of the Einstein equations in spherical symmetry for
a perfect fluid energy-momentum tensor. Pressure and density
are given by Fermi-Dirac statistics, and the closure relations are
determined by the Klein and Tolman conditions of thermody-
namic equilibrium (Ruffini et al. 2015). The solution to this sys-
tem of equations leads to a continuous and novel dense core – di-
luted halo DM profile from the center all the way to the galactic
halo (see Siutsou et al. 2015; Argüelles et al. 2016; Mavromatos
et al. 2017, for its applications). Similar core-halo profiles with
applications to fermionic DM were also obtained in Bilic et al.
(2002) and more recently in Chavanis et al. (2015) from a statis-
tical approach within Newtonian gravity.

The above corresponds to the original version of the RAR
model, with a unique family of density profile solutions that be-
haves as ρ(r) ∝ r−2 at large radial distances from the center.
This treatment was extended in Argüelles et al. (2018), by in-
troducing a cutoff in momentum space in the distribution func-
tion (DF) (i.e., accounting for particle-escape effects) that allows
defining the galaxy border (see Appendix A). This extension of
the RAR model was successfully applied to explain the Milky
Way rotation curve, as shown in Figure 1, implying a more gen-
eral dense core – diluted halo behavior for the DM distribution
as follows:

– A DM core with radius rc (defined at the first maximum of
the twice-peaked rotation curve), whose value is shown to
be inversely proportional to the particle mass m, in which
the density is nearly uniform. This central core is supported
against gravity by the fermion degeneracy pressure, and gen-
eral relativistic effects are appreciable.

– Then, there is an intermediate region characterized by a
sharply decreasing density where quantum corrections are
still important, followed by an extended and diluted plateau.
This region extends until the halo scale-length rh is achieved
(defined at the second maximum of the rotation curve).

– Finally, the DM density reaches a Boltzmann regime sup-
ported by thermal pressure with negligible general relativis-
tic effects, and shows a behavior ρ ∝ r−n with n > 2 that is
due to the phase-space distribution cutof. This leads to a DM
halo bounded in radius (i.e., ρ ≈ 0 occurs when the particle
escape energy approaches zero).

As was explicitly shown in Argüelles et al. (2019a,b, 2018),
this type of dense core – diluted halo density profile suggests that
the DM might explain the mass of the dark compact object in Sgr
A* as well as the halo mass. It applies not only to the Milky Way,
but also to other galactic structures from dwarfs and ellipticals
to galaxy clusters (Argüelles et al. 2019b). Specifically, a Milky
Way analysis (Argüelles et al. 2018) has shown that this DM
profile can indeed explain the dynamics of the closest S-cluster
stars (including S2) around Sgr A*, all the way to the halo ro-
tation curve without changing the baryonic bulge-disk compo-
nents. The analysis of the S-stars was made through a simplified
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Fig. 1. Milky Way rotation curve and DM density profile from the ex-
tended RAR model with a core mass of Mc = M(rc) = 3.5 × 106 M�.
Top: DM (black) and baryonic (bulge + disk) contribution to the rota-
tion curve vrot (total in red). Bottom: DM density profile. The baryonic
model and the data are taken from Sofue (2013). The parameters of the
extended RAR model in this case are fermion mass mc2 = 56 keV,
temperature parameter β0 = 1.1977 × 10−5, degeneracy parameter
θ0 = 37.7656, and energy cutoff parameter W0 = 66.3407. For the RAR
model fitting of the Milky Way, we follow Argüelles et al. (2018); see
also Appendix A.

circular velocity analysis in general relativity, constraining the
allowed fermion mass to mc2 ≈ 50 – 345 keV. We extend this
analysis by fully reconstructing the geodesic of the object in full
general relativity, and apply it to S2 and G2. Figure 1 shows the
DM density profile and its contribution to the rotation curve for
the Milky Way for 56 keV DM fermions.

3. Orbit and radial velocity of S2 and G2

To obtain the S2 or G2 positions (orbit) and the corresponding
line-of-sight radial velocity (i.e., the redshift function; see Ap-
pendix B) at each time, we solved the equations of motion for a
test particle (see Appendix C) in the gravitational field produced
by two possible scenarii that we describe below.

1. A central Schwarzschild massive BH. Gravity Collaboration
et al. (2018a) reported a BH mass of MBH = 4.1 × 106 M�
from the fit of the most recent measurements of the posi-
tion and velocity of S2. The more recent analysis by Do
et al. (2019) reported a BH mass of 3.975 × 106 M�. These
works used a second-order post-Newtonian (2PN) model to
describe the object motion. In order to compare and contrast
the BH and the DM-RAR hypotheses on the same ground,
that is, using the same analysis method and treatment, we
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performed our own fit of the data for the BH case using a
full general relativistic modeling by solving the equations
of motion in the Schwarzschild metric (see Appendix C).
From our analysis of S2, we obtain model parameters that
are very similar (but not equal) to those that were presented
in Gravity Collaboration et al. (2018a) and Do et al. (2019);
see Table 1. In particular, we obtain a BH mass of MBH =
4.075 × 106 M�.

2. A fermionic DM distribution obtained from the extended-
RAR model; see Appendix A. As was shown in Argüelles
et al. (2018), the fermion mass must be higher than 48 keV
and lower than 345 keV. We here present the results of the
solution of the equations of motion in the metric produced by
the DM distribution of 56 keV fermions, with corresponding
RAR model parameters as shown in Figure 1. We obtain an
excellent fit of the data for a mass of the DM quantum-core,
Mc ≡ M(rc) = 3.5 × 106 M�; see Table 1.

It has previously been reported that the BH mass, MBH, and
the Galactic center distance, D�, show some correlation (Gravity
Collaboration et al. 2018a; Do et al. 2019). We here adopted the
distance to the Galactic center as a fixed parameter, D� = 8 kpc.
Instead, as we described, we seek a best-fit value for MBH . It
may therefore in principle have some effect on the inferred val-
ues if D� and MBH are not considered together as adjustable pa-
rameters. However, Table 1 shows that our inferred values for the
parameters of the BH model agree with those reported in previ-
ous analyses, including the BH mass, see, for instance, Gravity
Collaboration et al. (2018a) and Do et al. (2019).

Because of the regular initial condition that is applied to
solve the equations of the extended RAR model, that is, ρ(r =
0) =const. (see Figure 1 and Appendix A for details), the DM
quantum-core is not directly comparable with a BH, which is
characterized by a central singularity. However, it is possible to
compare the mass that causes the innermost Keplerian behav-
ior (i.e., the power law ∝ r−1/2 in the velocity curve) of orbit-
ing objects in both scenarios. In the RAR model, the Keple-
rian behavior arises just outside the core radius (see Figure 1).
The corresponding ‘Keplerian mass’, MK , which describes the
Keplerian trend, is slightly higher than the DM core mass Mc
because of the slight mass contribution along the sharp density
drop. For larger radii, already in the diluted plateau density, the
mass contribution to MK is negligible, until the Keplerian trend
ends at about few 1 × 102 pc (curiously, this is at the peak of the
bulge velocity curve, see Figure 1). For a quantum-core mass of
Mc = 3.5 × 106 M�, we find the corresponding Keplerian mass
MK = 4.048 × 106 M�. This value is indeed very similar to the
value inferred for the BH scenario, MBH = 4.075 × 106 M�, and
should be kept in mind (in addition to Mc) when the two models
are compared regarding the (stellar) dynamics in the surround-
ings of Sgr A*.

We present the equations of motion for the general spher-
ically symmetric metric and the procedure we used to fit the
observational data of the apparent orbit and line-of-sight radial
velocity (i.e., the redshift function) in both scenarios in Ap-
pendix C. Figure 2 shows the results of these two theoretical
scenarios and how they compare with the observational data of
the orbit (observed right ascension, X, and declination, Y) for
the case of S2. The comparison with the data of the line-of-sight
radial velocity is shown in Figure 3. It is already noticeable by
visual inspection of the residuals that both theoretical models
can explain the observational data for the orbit with similar ac-
curacy. The reduced-χ2 of the model data fit of the S2 radial
velocity (χ̄2

z ) and orbit (χ̄2
X and χ̄2

Y ) leads to a comparable mean

for both scenarios (with some preference for the RAR model):
〈χ̄2〉RAR ≈ 3.072, 〈χ̄2〉BH ≈ 3.359. We refer to Table 1 for the
model parameters and to Appendix C for details of the fitting
procedure.

The situation becomes even more interesting in the analo-
gous analysis made for G2. As shown in Plewa et al. (2017);
Gillessen et al. (2019), the radial velocity of the G2 orbit is
slower than the velocity predicted by the geodesic motion in the
gravitational field of the massive BH. We therefore propose that
G2 is slowed down by a drag force caused by an accretion flow
onto the massive BH over which G2 should move. The novel
major result is that a geodesic in the gravitational field of the
DM profile of the extended RAR model naturally predicts this
slowing down (see Figures 4 and 5 and Table 1). The higher G2
deceleration arises because it moves in the gravitational field that
is produced by the spatially varying mass profile of the fermionic
DM. This deceleration effect is instead negligible in the case of
S2 because of the shape of the orbit, more precisely, because
of its size. From its pericenter at ∼ 0.6 mpc to apocenter at
∼ 10 mpc (see Table 1), S2 moves only a short distance in which
the density of the fermionic DM varies considerably less than in
the G2 case. The orbit of G2, from its pericenter at ∼ 0.8 mpc
to its apocenter at ∼ 85 mpc, crosses a much larger region where
the DM density drastically drops off from ∼ 1 × 1015 M�/pc−3

to ∼ 1 M�/pc−3 (see Figure 1).

4. S2 gravitational redshift

The instruments on the ESO Very Large Telescope (VLT) SIN-
FONI, NACO, and more recently, GRAVITY, have accumulated
exquisite data on the radial velocity (the redshift function) and
motion of S2 for about three decades (Gillessen et al. 2017;
Gravity Collaboration et al. 2018a). This has allowed the recent
observational detection of the combined gravitational redshift
and relativistic transverse Doppler effect for S2 by the GRAV-
ITY Collaboration (Gravity Collaboration et al. 2018a).

The total Doppler shift z(r) is a combination of the gravita-
tional redshift and the relativistic Doppler shift. The GRAVITY
Collaboration (Gravity Collaboration et al. 2018a) uses the 2PN
expansion of the redshift function for the case of a test particle
around a Schwarzschild BH. We now summarize their treatment
and refer to Zucker et al. (2006); Do et al. (2019) for its details,
and we refer to Appendix B for details on the full general rela-
tivistic treatment and a derivation of the 2PN approximation. At
2PN order, the redshift function is z(r) ≈ zg(r) + zD(r) +O(1/c2).
The first term zg is the 2PN expression of the pure gravita-
tional redshift zg(r) =

√
g00(R)/g00(r) − 1 ≈ MBH/r, where r

is the position of the emitted photon (emitter, or source), R is
the position of the receiver, and g00 is the 0-0 component of the
spacetime metric. Because R = D� = 8 kpc is the distance of
the Sun to the Galactic center, r � R, so that we safely ap-
proximated r/R → 0. The second term zD of the 2PN redshift
can be split into the Keplerian (Newtonian) contribution, zK(r),
and the purely relativistic transverse Doppler shift, ztD, that is,
zD(r) ≈ zK(r)+ztD(r). Here, zK(r) = v·n, where n is the unity vec-
tor in the direction of the line of sight, and ztD(r) = v(r)2/2 (see
Appendix B). To summarize, at 2PN order, z(r) = zK(r) + zGR(r),
where zGR(r) = ztD(r) + zg(r) is the total general relativistic cor-
rection. Therefore the deviation from a purely Newtonian be-
havior can be measured by the general relativistic excess of the
radial velocity, ∆z(r) ≡ z(r) − zK(r) = zGR(r) (Gravity Collab-
oration et al. 2018a). Because the extended-RAR model is fully
general relativistic, we used the full general relativistic expres-
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Table 1. Summary of the inferred best-fit values of the model and the (osculating) orbital parameters for S2 and G2 within the RAR model (fermion
mass 56 keV, DM core mass Mc = 3.5 × 106 M�) and the massive BH model (BH mass MBH = 4.075 × 106 M�). We refer to Appendix C for
details of the definition of the parameters and the fitting procedure.

Parameter S2 G2
RAR BH RAR BH

Semimajor Axis, a (as) 0.1252 0.1252 1.0960 1.1941
Eccentricity, e 0.8866 0.8863 0.9823 0.9853
Distance to Pericenter, rp (as) 0.0142 0.0143 0.0194 0.0180
Distance to Apocenter, ra (as) 0.2361 0.2362 2.1725 2.3701
Argument of Pericenter, ω (◦) 66.7724 66.4697 81.8391 82.0001
Inclination, i (◦) 134.3533 134.3505 121.8993 119.1000
Ascending Node, Ω (◦) 228.0240 227.9681 50.8398 50.7782
X0 (mas) −0.1557 −0.0830 0.0248 0.0251
Y0 (mas) 2.5527 2.4893 −0.0160 −0.0140
Orbital Period, P (yr) 16.0539 16.0506 416.3400 470.1610

χ̄2
X 1.5964 1.8004 33.3339 83.9950
χ̄2

Y 6.3411 7.2332 26.8419 11.2646
χ̄2

z 1.2799 1.0421 0.9960 26.3927
〈χ̄2〉 3.0725 3.3586 20.3906 40.5507

sion of the redshift function and the corresponding general rela-
tivistic excess (see Appendix B for details).

Figures 3 and 5 show the redshift function z computed in
full general relativity for the massive BH and the extended RAR
model for S2 and G2, respectively. In the top panel of Figure 6,
we show the redshift function z together with the corresponding
Keplerian contribution zK for S2 in the two models. The bottom
panels show the corresponding general relativistic excess, ∆z.
All these plots show that both models fit the data with compara-
ble accuracy. The reduced χ2 for the redshift function for this set
of parameters is χ̄2

z,RAR ≈ 1.28 and χ̄2
z,BH ≈ 1.04; see Appendix C

for details of the calculation of χ̄2. It is important to mention that
both models contain sets of parameters with slightly different
values than those that we presented in Table 1, which produce
χ̄2

z,RAR ≈ χ̄
2
z,BH ≈ 1. However, these models slightly increase the

χ̄2
X and χ̄2

Y and therefore increase the mean 〈χ̄2〉.

5. Discussion and conclusions

The vast amount of high-precision data (position and velocity)
collected in the past decade of objects orbiting Sgr A*, such
as S2 and G2, offers an unprecedented opportunity to test al-
ternative scenarios to the central BH in our Galaxy. In the work
here, this motivation is twofold. First, it has recently been shown
(Argüelles et al. 2019a, 2018, 2019b) that fermionic DM, which
self-consistently accounts for the Pauli principle and particle es-
cape effects in the underlying phase-space DF at DM halo for-
mation, leads to novel dense core – diluted halo profiles where
the degenerate core can produce analogous gravitational effects
of a central BH. Second, the post-pericenter passage of G2 chal-
lenges the BH scenario because in order to explain the G2 data
within this picture, Gillessen et al. (2019) had to introduce an
ad hoc drag force acting onto G2, caused by its motion through
an accretion flow. In addition, for this drag-force hypothesis to
work, it is necessary that G2 be a gas cloud. This scenario con-
trasts with the observations and results of Witzel et al. (2014),
who ruled out the gas cloud composition in favor of a stellar na-
ture. Moreover, even if G2 is assumed to be a gas cloud, and if a
radiatively inefficient accretion flow (RIAF) is also assumed (as
done in Gillessen et al. 2019), the strength of the drag force onto
G2 that is required to explain the post-pericenter observations
implies an ambient density n0 ∼ few 103 cm−3 at ∼ 103 rSch.
However, a density value like this at these pericenter scales ex-

ceeds the upper bound found in recent high-resolution numerical
simulations by nearly one order of magnitude 1 (Steinberg et al.
2018). An upper bound like this has been obtained from the con-
straint that G2 is not tidally disrupted at its pericenter passage.

For the core-halo DM profiles, formation scenarios in which
the quantum nature of the particle is considered (i.e., either
bosonic or fermionic) are still an open field of research, and our
aim here is to provide a further (precision) test for fermionic
models. Joint observational tests based on additional physics,
for example, strong lensing (Gómez et al. 2016) or DM-active
neutrino interactions (Penacchioni et al. 2020), can help in un-
ambiguously probing the existence of a central fermionic DM
concentration in the allowed region of the extended RAR model
parameter space. The results shown here imply that this free pa-
rameter space is slightly reduced with respect to the space de-
scribed in Argüelles et al. (2018). For fermion masses below
56 keV, the size of the DM core increases, and there is also
orbital precession. Data of the orbital precession of S2 (Grav-
ity Collaboration et al. 2020) might therefore further constrain
the allowed range of the fermion mass. The other free parame-
ters are well within the allowed range as broadly constrained in
Argüelles et al. (2019b) for each galaxy type.

We have used the existing observational data of S2, includ-
ing the total Doppler shift, which has both special and general
relativistic contributions, and the orbit in the plane of sky and
its radial velocity. We solved the equations of motion for a test
particle (S2 and G2) in the gravitational field produced by two
cases of interest: 1) the central massive BH hypothesis, for which
we used the Schwarzschild metric, and 2) the fermionic DM hy-
pothesis within the extended-RAR model, which leads to a DM
core-halo profile that in turn leads to a metric obtained from the
extended RAR model equilibrium equations following the treat-
ment in Argüelles et al. (2018) and summarized in Appendix A.
We refer to Appendix C for details of the equations of motion
and the procedure to obtain the model parameters from the fit-
ting of the observational data. For S2, the massive BH model and
the RAR model can both explain all the observational data (or-
bit and velocity) with comparable accuracy, but the RAR model
is preferable with a lower 〈χ̄2〉; see Table 1, Figure 2, and Fig-
ure 3, including the general relativistic redshift, see Figure 6. In

1 There are systematic uncertainties in the estimation of n0 in Gillessen
et al. (2019) mainly due to the unknown size of the putative gas cloud,
the density profile, and the physics of the accretion process.
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Fig. 2. Theoretical and observed orbit of S2 around Sgr A*. The left panel shows the orbit (X vs. Y), and the right panel shows the X and Y position
as a function of time and the respective residuals of the best-fit for each model. The theoretical models are calculated by solving the equations of
motion of a test particle in the gravitational field of 1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue curves), and 2) the DM distribution
obtained from the extended RAR model for 56 keV fermions (red curves). The mass of the quantum core in the RAR model is 3.5 × 106 M�.
Table 1 shows the parameters of each model. We used the observational data reported in Do et al. (2019).

the case of G2, only the RAR model can explain both the orbit
and velocity, see Table 1, Figure 4, and Figure 5.

This remarkable result of the extended-RAR fermion-DM
model is further complemented with the successful applicabil-
ity of its ensuing dense core – diluted halo profile to other
galaxy types, from dwarfs to ellipticals (Argüelles et al. 2019b).

Moreover, it can be directly linked with the DM-halo formation
processes because the RAR model quantum-statistical phase-
space distribution (see Equation (A.1) in Appendix A) is not
given ad hoc, but can be obtained as a (quasi-) stationary solu-
tion of a generalized thermodynamic Fokker-Planck equation for
fermions (Chavanis 2004). This includes the physics of collision-
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Fig. 3. Theoretical and observed line-of-sight radial velocity (i.e., the redshift function z; see Appendix B) of S2. The theoretical models are
calculated by solving the equations of motion of a test particle in the gravitational field of 1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue
curves), and 2) the DM distribution obtained from the extended RAR model for 56 keV fermions (red curves). The mass of the quantum core in
the RAR model is 3.5 × 106 M�. Table 1 shows the parameters of each model. We used the observational data reported in Do et al. (2019).

less (violent) relaxation and evaporation, which is appropriate
for nonlinear structure formation. These phase-space distribu-
tions have been shown to fulfill a maximization (coarse-grained)
entropy principle (second law of thermodynamics) during the
(collisionless) relaxation process until the halo reaches the cur-
rently observed steady state.

Our results provide strong observational support to the
quantum-core hypothesis as an alternative to the massive BH hy-
pothesis in Sgr A* (Argüelles et al. 2019a, 2018), and also to the
fermionic nature of DM. In this line, it is desirable to further
test the presence of fermionic DM concentrations in our galac-
tic core from existing luminosity constraints on the variability of
the compact radio source Sgr A*, in addition to the dynamical
constraints. A study like this goes beyond the scope of our work,
which is devoted to the orbital dynamics of some of the closest

objects to Sgr A* and with accurate astrometric data. We would
like to recall, however, that the gravitational potentials produced
by a BH and by a most compact (stable) DM quantum core for a
fermion mass of about 100 keV practically coincide at distances
r & 10rSch (see Gómez et al. 2016, for details). The dynamics
of baryonic matter and its emission associated with its motion
at these scales is thus not expected to differ much between the
two pictures. Differences might occur in the innermost regions
owing to the transparency of the DM core, which might lead
to differences in the lensing properties (Gómez et al. 2016) and
possibly to any accretion process at these small scales. More-
over, although the emission around Sgr A* is often univocally
associated with a particular accretion flow (extremely underlu-
minous when compared to typical accretion expectations), this
is not confirmed by the observational data, and indeed, alterna-
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tive mechanisms or explanations for the observed radiation exist
(see, e.g., Yuan & Narayan 2014, for a review on this subject).
As of today, the most reliable observational data that allow us to
prove and test the validity of alternative models for Sgr A*, such
as we presented here, are the precision measurements of the or-
bital dynamics, together with the validity and demonstrated pre-
cision of general relativity. We look forward to the public release
of the latest data by the GRAVITY Collaboration on S2 and G2
(e.g., Gillessen et al. 2019), which will serve to further test our
theoretical prediction (e.g., Figure 5). We have shown the results
for a fermion mass of 56 keV, a value that is safely higher than
the lower limit of 48 keV estimated in Argüelles et al. (2018),
by equating the DM core radius to the up-to-then reported peri-
center distance of S2. The lower the fermion mass, the larger the
size of the DM core, and vice versa. It is therefore worthwhile
to explore whether the data of S2 and G2 together might further
constrain the allowed range of fermion masses. This investiga-
tion, however, goes beyond the scope of this work, and might be
a topic of joint collaboration.

The DM fermion mass of 56 keV inferred in this work would
produce (down to megaparsec scales) the same standard ΛCDM
power spectrum, hence providing the expected large-scale
structure (Boyarsky et al. 2009b). Because the fermion mass
is higher than > 5 keV, it does not contradict constraints from
the Lyman-α forest (Boyarsky et al. 2009a; Viel et al. 2013;
Iršič et al. 2017) and the number of Milky Way satellites
(Tollerud et al. 2008). Furthermore, for the present fermion
mass mc2 = 56 keV, the critical mass for gravitational collapse
of the DM quantum core (Mcr

c ∼ m3
Pl/m

2, with mPl the Planck
mass) into a BH is about 108 M�, providing a viable formation
scenario for the observed central supermassive BH in active
galaxies such as M87. A supermassive BH of ∼ 109 M� can
form starting from a ∼ 108 M� BH seed and accrete . 1% of the
(baryonic and/or DM) galactic environment of ∼ 1012 M�. Over
cosmological timescales, this would be achieved without unre-
alistic super-Eddington accretion rates, while providing a new
framework for studying the poorly understood formation and
growth scenarios of supermassive BH seeds in the cosmological
high-redshift Universe.
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Fig. 4. Theoretical and observed orbit of G2 around Sgr A*. The left panel shows the orbit (X vs. Y), and the right panel shows the X and Y position
as a function of time and the respective residuals of the best-fit for each model. The theoretical models are calculated by solving the equations of
motion of a test particle in the gravitational field of 1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue curves), and 2) the DM distribution
obtained from the extended RAR model for 56 keV fermions (red curves). The mass of the quantum core in the RAR model is 3.5 × 106 M�.
Table 1 shows the parameters of each model. The observational data are taken from Phifer et al. (2013), Plewa et al. (2017), and Gillessen et al.
(2019).
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Fig. 5. Theoretical and observed line-of-sight radial velocity (i.e., the redshift function z; see Appendix B) of G2. The theoretical models are
calculated by solving the equations of motion of a test particle in the gravitational field of 1) a Schwarzschild BH of 4.075 × 106 M� (dashed blue
curves), and 2) the DM distribution obtained from the extended RAR model for 56 keV fermions (red curves). The mass of the quantum core in
the RAR model is 3.5 × 106 M�. Table 1 shows the parameters of each model. The observational data are taken from Phifer et al. (2013), Plewa
et al. (2017), and Gillessen et al. (2019).
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Fig. 6. Redshift function z (top panel) and redshift function “excess” (middle panel for the RAR model and lower panel for the central massive
BH model) with respect to the Keplerian (Newtonian) contribution, i.e., ∆z = z − zK (see Appendix B), for the S2 motion at about its pericenter
passage. The theoretical models are calculated by solving the equations of motion of a test particle in the gravitational field of 1) a Schwarzschild
BH of 4.075 × 106 M� (dashed blue curves), and 2) the DM distribution obtained from the extended RAR model for 56 keV fermions (red curves).
The mass of the quantum core in the RAR model is 3.5 × 106 M�. Table 1 shows the parameters of each model.
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Appendix A: Extended Ruffini-Argüelles-Rueda
model

The extended RAR model conceives the DM in galaxies as a
general relativistic self-gravitating system of massive fermions
(spin 1/2) in hydrostatic and thermodynamic equilibrium. It uses
an equation of state (EOS) that takes into account (i) relativis-
tic effects of the fermionic constituents, (ii) finite temperature
effects, and (iii) particle escape effects at large momentum (p)
through a cutoff in the Fermi-Dirac distribution fc,

fc(ε ≤ εc) =
1 − e(ε−εc)/kT

e(ε−µ)/kT + 1
, fc(ε > εc) = 0 , (A.1)

which differs from the original RAR model version (see Sec-
tion 2) only in condition (iii). Where ε =

√
c2 p2 + m2c4 − mc2

is the particle kinetic energy, µ is the chemical potential from
which the particle rest-energy is subtracted, T is the temperature,
k is the Boltzmann constant, c is the speed of light, and m is the
fermion mass. The stress-energy tensor is that of a perfect fluid
whose density and pressure are associated with this distribution
function,

ρ = m
2
h3

∫ εc

0
fc(p)

(
1 +

ε(p)
mc2

)
d3 p , (A.2)

P =
1
3

4
h3

∫ εc

0
fc(p) ε

1 + ε(p)/2mc2

1 + ε(p)/mc2 d3 p. (A.3)

For the spherically symmetric spacetime metric,

ds2 = g00(r)dt2 − g11(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (A.4)

where (r,θ,φ) are the spherical coordinates. Using g00(r) = eν(r),
the Tolman (Tolman 1930), Klein (Klein 1949), and the cutoff
(Merafina & Ruffini 1989) conditions of thermodynamic equi-
librium and energy conservation are

eν/2T = constant, (A.5)

eν/2(µ + mc2) = constant, (A.6)

eν/2(ε + mc2) = constant. (A.7)

The Einstein equations together with the conditions given
by Equations (A.5) to (A.7) form a coupled system of integro-
differential equations,

dM̂
dr̂

= 4πr̂2ρ̂, (A.8)

dθ
dr̂

= −
1 − β0(θ − θ0)

β0

M̂ + 4πP̂r̂3

r̂2(1 − 2M̂/r̂)
, (A.9)

dν
dr̂

=
2(M̂ + 4πP̂r̂3)
r̂2(1 − 2M̂/r̂)

, (A.10)

β(r̂) = β0e
ν0−ν(r̂)

2 , (A.11)
W(r̂) = W0 + θ(r̂) − θ0 , (A.12)

where the subscript ‘0’ stands for variable evaluated at r = 0,
and we have introduced dimensionless quantities: β = kT/(mc2),
θ = µ/(kT ), W = εc/(kT ), r̂ = r/χ, M̂ = GM/(c2χ), ρ̂ =
Gχ2ρ/c2, P̂ = Gχ2P/c4, where χ = 2π3/2(~/mc)(mPl/m), being
mPl =

√
~c/G the Planck mass.

This system is solved for appropriate boundary conditions,
[M(0) = 0, θ(0) = θ0, β(0) = β0, ν(0) = 0,W(0) = W0], for dif-
ferent DM particle masses m to find a solution consistent with

the DM halo observables of a given galaxy. The RAR model
equations are solved for positive central degeneracy parameters
(i.e., θ0 > 10) in order to ensure that the Pauli principle is ful-
filled within the central core, as demonstrated in Ruffini et al.
(2015) and Argüelles et al. (2018). This property implies as a
consequence RAR DM profiles that develop a dense core – di-
luted halo morphology, where the central core is governed by
Fermi-degeneracy pressure, while the outer halo holds against
gravity by thermal pressure (resembling the Burkert or King pro-
files, as shown in Argüelles et al. 2018, 2019b). The extended
RAR model is the more general of its kind because it does not
work under the full Fermi-degeneracy approximation as in Ran-
dall et al. (2017), nor in the diluted-Fermi regime (de Vega et al.
2014).

The case of the Milky Way has recently been analyzed in
Argüelles et al. (2018). We adopted a similar boundary condition
problem as solved in Argüelles et al. (2018), with the only differ-
ence that we now allowed the dense DM core Mc to vary until the
mean reduced-χ2 of the S2 data fit (see Appendix C) achieved
the minimum. That is, we considered (i) a DM halo mass with
observationally inferred values at two different radial locations
in the Galaxy: a DM halo mass M(r = 40 kpc) = 2 × 1011 M�
(Gibbons et al. 2014) and M(r = 12 kpc) = 5 × 1010 M� (So-
fue 2013); and (ii) a DM dense quantum core to have a mass
M(r = rc) ≡ Mc = 3.5 × 106 M� with rc smaller than the peri-
center of star S2, resulting in rc ≈ 0.4 mpc by the extended RAR
model free parameters given in Figure 1. While the halo condi-
tion (i) exactly follows the method that was used in Argüelles
et al. (2018), the latter condition (ii) explicitly request the quan-
tum DM core to substitute the massive BH scenario while mini-
mizing the mean reduced-χ2 for the S2 data fit (see Appendix C).
We thus have three boundary conditions for three free RAR-
model parameters (β0, θ0, and W0) for a given particle mass of
mc2 = 56 keV. It is of interest to explore whether the data of
S2 and G2 together can further constrain the allowed range of
fermion masses. This investigation, however, goes beyond the
scope of the present work. The application of the extended RAR
model to other galaxy types from dwarfs and ellipticals to galaxy
clusters can be found in Argüelles et al. (2019b).

Appendix B: Total orbital Doppler shift

The redshift is defined by the ratio between the measured wave-
length of a spectral line at emission and reception:

1 + z ≡
E(em)

E(obs)
=
λ(obs)

λ(em)
. (B.1)

We denote the four-momentum of photons measured by an ob-
server comoving with the emitter, kµ(em), and the one measured
by an observer comoving with the receiver, kµ(obs). The observer
comoving with the emitter has four-velocity uµ(em), so they mea-

sure a photon energy E(em) = k(em)
µ uµ(em). Analogously, the ob-

server comoving with the receiver measures a photon energy
E(obs) = k(obs)

µ uµ(obs). Therefore, theoretically, we can write Equa-
tion (B.1) as

1 + z =
k(em)
µ uµ(em)

k(obs)
µ uµ(obs)

=
k(em)

0

k(obs)
0

u0
(em) + ui

(em)n
(em)
i

u0
(obs) + ui

(obs)n
(obs)
i

, (B.2)

where ni = ki/k0 are the normalized spatial components of the
photon four-momentum. Defining the components of the three-
velocity, vi ≡ ui/u0, and the Lorentz factor (where the right-hand
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side of the equation below is obtained from the normalization
condition uµuµ = 1),

γ = u0 =
dt
dτ

=
1√

g00 − v2
, v2 = −vivi = −g11(vr)2 + (rvφ)2,

(B.3)

Equation (B.2) becomes

1 + z =
γ(em)

γ(obs)

1 + vi
(em)n

(em)
i

1 + vi
(obs)n

(obs)
i

, (B.4)

where we used the fact that along the photon geodesic, k0 is con-
served.

For the present purpose, we can neglect the motion of the
observer reference frame with respect to the one of the center of
the gravitational field with sufficient accuracy, that is, vi

(obs) = 0,

and the gravitational field at the observation point, g(obs)
00 = 1

(see, e.g., Do et al. 2019), then γ(obs) = 1, and Equation (B.4)
becomes

1 + z = γ (1 + v · n), (B.5)

where v · n = vini is the three-dimensional velocity of the emit-
ter projected onto the direction of the line of sight; this is often
called the observed “radial velocity” in the experimental litera-
ture, and we relaxed the notation of emitter and receiver because
only the emitter is considered to be in motion.

It is important to clarify that the redshift function z is often
referred to in the literature as “radial velocity”, the velocity in the
direction of the line of sight. The latter is actually v ·n, therefore,
as can be seen from Equation (B.5), the relation between it and
z is in general nonlinear.

In general, it is not possible to separate the contributions
to z of the gravitational field and of the relative motion of the
emitter or receiver, that is, they are combined or mixed in Equa-
tion (B.5). However, this equation already explicitly shows that
in the nonrelativistic limit (γ → 1), the redshift is given only
by the so-called Keplerian (Newtonian) contribution, z → zK ,
where

zK ≡ v · n. (B.6)

The gravitational and relative motion contributions become
clearly visible when a post-Newtonian expansion of the red-
shift is performed. For instance, when the gravitational field is
produced by a Schwarzschild BH of mass MBH, that is, g00 =
−1/g11 = 1 − 2MBH/r, the Lorentz factor, up to order 1/c2 (i.e.,
2PN order), is

γ ≈
(
1 +

MBH

r

) (
1 +

v2/2
1 − 2MBH/r

)
≈

(
1 +

MBH

r

) [
1 +

1
2

v2
(
1 +

2MBH

r

)]
≈

(
1 +

MBH

r

) (
1 +

1
2

v2
)
≈ 1 +

1
2

v2 +
MBH

r
+ O(1/c2), (B.7)

which, replaced into Equation (B.5), leads to the 2PN redshift
function:

z ≈ zK +
1
2

v2 +
MBH

r
+ O(1/c2). (B.8)

Equation (B.8) is the expression presented in Zucker et al. (2006)
(see Eq. 1 therein), and it is the radial velocity equation (S24) in
Do et al. (2019), setting vz0 = 0 there, and consistent with our
assumption of neglecting the relative motion of the gravitational
center of mass with respect to the center of the observer’s ref-
erence frame. The approximate Equation (B.8) has been used in
those works for the analysis of the gravitational contribution to
the redshift function in the case of the S2 star.

The GRAVITY Collaboration (Gravity Collaboration et al.
2018a) has claimed the detection of the gravitational redshift in
the orbit of the star S2. In practice, they verified the consistency
of the data of the redshift function of S2 with the presence of
what they call the “general relativistic excess of the radial veloc-
ity” (Gravity Collaboration et al. 2018a),

∆z ≡ z − zK , (B.9)

Equation (B.9) tells that the theoretical excess predicted by gen-
eral relativity at 2PN order is

∆z ≈
1
2

v2 +
MBH

r
, (B.10)

which has been shown to be consistent with the data of star S2
(Gravity Collaboration et al. 2018a).

The present RAR model is a fully general relativistic treat-
ment, therefore we used the full redshift function (B.5) in the
fit of the observational data (see Appendix C). In this case, the
general relativistic excess in the redshift, as defined by Equa-
tion (B.9), reads

∆z = (γ − 1)(1 + zK). (B.11)

It is manifest in the fully general expression Equation (B.11)
that in the nonrelativistic (Newtonian) limit, γ → 1, the excess
vanishes, that is, ∆z → 0. It is also easy to verify that Equa-
tion (B.11) reduces to Equation (B.10) at 2PN order, with the
aid of Equation (B.7).

Appendix C: Equations of motion and orbital
parameters of the real and apparent orbits

Appendix C.1: Orbital dynamics

The equations of motion of the test particle (S2 or G2) in the
spherically symmetric metric given by Equation (A.4), assuming
without loss of generality θ = π/2, are

ṫ =
E

g00(r)
, (C.1a)

r̈ =
1

2 g11(r)

[
dg00(r)

dr
ṫ2 −

dg11(r)
dr

ṙ2 − 2 r φ̇2
]
, (C.1b)

φ̇ =
L
r2 , (C.1c)

where E and L are the conserved energy and the angular mo-
mentum of the particle per-unit-mass, so E is dimensionless and
L has units of mass, and the overdot stands for derivative with
respect to the proper time, τ. In terms of Cartesian coordinates,
we denote the position and velocity components of the real orbit
as x, y, z, and vx, vy, vz. In our present case, θ = π/2, these are
obtained using the transformation from spherical Schwarzschild
coordinates to Cartesian coordinates:

x = r cos φ, (C.2)
y = r sin φ, (C.3)
z = 0, (C.4)
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Fig. C.1. Projection of the real orbit onto the plane of the sky. The axes
originate at Sgr A* (the focus of the ellipse). The picture illustrates the
orbital parameters: φ is the azimuth angle of the spherical system of
coordinates associated with the x, y, z Cartesian coordinates, i.e., for an
elliptic motion in the x-y plane, it is the true anomaly, i is the angle of
inclination between the real orbit and the observation plane, Ω is the
angle of the ascending node, and ω is the argument of pericenter. It is
worth noting that the Z-axis of the coordinate system is defined by the
vector pointing from the Solar System to the Galactic center.

and the corresponding three-velocities are

vx = vr cos φ − rvφ sin φ, (C.5)
vy = vr sin φ + rvφ cos φ, (C.6)
vz = 0, (C.7)

where vr ≡ ur/u0 = dr/dt and vφ ≡ uφ/u0 = dφ/dt, where
uµ = dxµ/dτ is the four-velocity of the particle.

The solution of Eqs. (C.1a)–(C.1c) allows us to trace the stel-
lar orbit, but to compare this with the observational data, it is
necessary to determine the apparent orbit on the plane of the
sky. Namely, we have to project the real orbit onto the observa-
tion plane, as shown in Figure C.1. On the plane of the sky, the
star traces an orbit with Cartesian positions Xobs and Yobs, de-
fined by the observed angular positions, that is, the declination δ
and the right ascension α (see, e.g., Ghez et al. 2008; Chu et al.
2018; Do et al. 2019):

Xobs = D�(α − αSgrA∗), Yobs = D�(δ − δSgrA∗), (C.8)

centering the coordinate system on Sgr A*. We adopted D� =
8 kpc (see, e.g., Gravity Collaboration et al. 2018a; Do et al.
2019).

We introduce the same notation as in Do et al. (2019) for the
classic Thiele-Innes constants, that is, A, B, C, F, G, and H. The
theoretical apparent orbit (i.e., the position in coordinates X, Y ,
and Z) can then be obtained from the real orbit positions x and y
by (see Figure C.1)

X = x B + y G, (C.9a)
Y = x A + y F, (C.9b)
Z = x C + y H, (C.9c)

and the corresponding components of the apparent coordinate
velocity are

VX =
dX
dt

= vxB + vyG, (C.10a)

VY =
dY
dt

= vxA + vyF, (C.10b)

VZ =
dZ
dt

= vxC + vyH, (C.10c)

where

A = cos Ω cosω − sin Ω sinω cos i, (C.11a)
B = sin Ω cosω + cos Ω sinω cos i, (C.11b)
C = sinω sin i, (C.11c)
F = − cos Ω sinω − sin Ω cosω cos i, (C.11d)
G = − sin Ω sinω + cos Ω cosω cos i, (C.11e)
H = cosω sin i, (C.11f)

where ω, i, and Ω are the osculating orbital elements: the argu-
ment of pericenter, the inclination between the real orbit and the
observation plane, and the ascending node angle, respectively.
These orbital elements are strictly defined (fixed constants) only
for a Keplerian (Newtonian) elliptic orbit. In this case, the radial
position is simply given by r = a(1 − e cos E), where a is the
semimajor axis of the ellipse, e its eccentricity, and E is its ec-
centric anomaly. The latter is related to the true anomaly, which
is the azimuthal angle φ, by cos φ = (cos E − e)/(1 − e cos E).
In this case, Equation (C.9) and Equation (C.10) reduces to
Eqs. (S8)–(S10) of Do et al. (2019). However, in the full gen-
eral relativistic case, it is not possible (in general) to determine
a closed form in which an analytic function r(φ) describes the
orbit. For the simpler case of a test particle that moves around a
Schwarzschild BH, r(φ) can be written in terms of Jacobi ellip-
tic functions. In the RAR model, we obtain r(τ) and φ(τ), or for
the sake of comparison with observations, r(t) and φ(t), by nu-
merical integration of the equations of motion, Equation (C.1).
Clearly, we can then obtain r(φ) numerically.

Appendix C.2: Fitting procedure of the observational data

To fit the observed positions, Do et al. (2019) introduced time-
varying offsets of the position of the gravitational center of mass
with respect to the center of the reference frame, adopting a lin-
ear drift. For our purpose, it is sufficient to introduce the constant
offsets X0 and Y0,

Xobs(tobs) = X[r(t), φ(t);ω, i,Ω] + X0, (C.12a)
Yobs(tobs) = Y[r(t), φ(t);ω, i,Ω] + Y0, (C.12b)

where X and Y are given by Equation (C.9), tobs is the time mea-
sured at the observer point, and t = tem is the time at emission.

In general, tobs and t are not equal: a time delay exists in the
observations that is caused by light-propagation effects along the
line of sight. An obvious cause of the time delay is the fact that
the speed of light is finite. Along the line of sight (i.e., the Z-
direction), this is called Rømer delay (see, e.g., Do et al. 2019),

tobs = tem +
Z(tem)

c
, (C.13)

where Z is given by Eq. (C.9c). Equation (C.13) is an implicit
nonlinear equation for tem , but it can be inverted at first order as
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Fig. C.2. Ratio tobs/tem as given by Equation (C.14), calculating Z(tobs)
with Eq. (C.9c), for the best-fit model parameters of the BH model Ta-
ble 1, derived assuming Equation (C.15).

(see, e.g., Do et al. 2019)

tem ≈ tobs −
Z(tobs)

c
. (C.14)

We neglected any photon delay time in our fitting procedure,
therefore we adopted

tem = tobs, (C.15)

which is sufficiently accurate for the purposes of this work. The
model parameters we inferred (see Table 1) of S2 in the case of a
Schwarzschild BH are similar to those that were previously pre-
sented in the literature, see, for instance, Gravity Collaboration
et al. (2018a) and Do et al. (2019) for a comparison. Figure C.2
shows that tobs ≈ tem with high accuracy (≈ 0.001% error). Our
estimate shown in Figure C.2 agrees with the estimate in Do
et al. (2019), who reported that this delay modulates the light-
propagation time by ∆t = tobs − tem ≈ −0.5 days at pericenter
and ∆t ≈ 7.5 days at apocenter.

The assumption of zero relative motion of the center of mass
and the center of the observer’s frame introduces only a differ-
ence of order vz0/vZ ∼ 0.1% in the radial velocity, being z the
redshift function (see Appendix B for details).

In general, the four-velocity component uZ is not directly
accessible from the observations as it is the redshift function z
given by Equation (B.5). Therefore we obtained the parameters
that best fit the equation

zobs(tobs) = z[r(t), φ(t), ṙ(t), φ̇(t);ω, i], (C.16)

where in terms of the orbital parameters,

z = γ − 1 + uZ , (C.17a)

uZ = γVZ =
[
ṙ sin(φ + ω) + rφ̇ cos(φ + ω)

]
sin i. (C.17b)

Here we introduced the notation VZ ≡ v · n, where n is the unit
vector pointing from the emitter to the observer (i.e., the unit
vector in the direction of the line of sight), and we recall that
ṙ = dr/dτ, φ̇ = dφ/dτ, and γ is given by Equation (B.3).

It is now clear that at every time, the possible available obser-
vational data are the coordinates of the apparent orbit in the sky
plane, that is, Xobs and Yobs, and the measured redshift function,
zobs. The real orbit at every time is obtained by solving the equa-
tions of motion, Equation (C.1), which give the coordinate posi-
tions r(t), φ(t), and the corresponding velocities ṙ(t) and φ̇(t).

First, to solve Equation (C.1), we must set the value of E and
L. From the definition of the Lorentz factor, Equation (B.3), and
the equation of motion for t(τ), Equation (C.1), we obtain the
first integral:

−g00(r)g11(r)ṙ2 = E2 − U2
eff(r), (C.18)

where

U2
eff(r) ≡ g00(r)

(
1 +

L2

r2

)
, (C.19)

is the well-known effective potential governing the radial mo-
tion. The relevance of this equation is that it allows us to per-
form a turning-point analysis, analogously to the classical Ke-
pler problem. Equation (C.18) shows that the request of having
a bound, closed orbit within two known turning points, that is,
the pericenter (rp) and the apocenter (ra), where ṙ = 0, implies
a unique solution for E and L; see Figure C.3. The value of Ueff

at the turning points has to be the same, so that we obtain L by
solving the algebraic equation

Ueff(L, rp) = Ueff(L, ra), (C.20)

and with the knowledge of L, we obtain the energy by

E = Ueff(L, rp), or E = Ueff(L, ra). (C.21)

The metric functions g00(r) and g11(r) in the BH case are set
by the mass of the BH, MBH. In the extended RAR model, the
parameters θ0, β0, W0 , and the fermion mass m are well con-
strained by the rotation curves of the Galaxy (see Appendix A
and Argüelles et al. 2018, 2019b, for details). Each possible set
of parameters gives a mass of the quantum core, Mc (or alterna-
tively, of the central density; see Argüelles et al. 2019b for de-
tails), therefore the metric functions are known when we chose
a value of Mc for given halo boundary conditions in agreement
with observables (see Appendix A).

After setting the metric functions (i.e., given Mc in the
extended-RAR model or MBH in the BH model), calculating the
values of E and L with given pericenter rp and apocenter ra dis-
tances (or alternatively, the semimajor axis a and the eccentric-
ity e), we can integrate the equations of motion (C.1a)–(C.1c)
giving appropriate initial conditions at initial proper time τ0.
We give them at the apocenter, that is, we set t0 ≡ t(τ0) = 0,
r0 ≡ r(t0) = ra, φ0 ≡ φ(t0) = π, and ṙ(t0) = 0. We nu-
merically integrate the equations of motion through an adap-
tive integrator based on the fourth-order Runge–Kutta (RKF45)
method (Fehlberg 1970). We thus obtain t(τ), r(t) = r[τ(t)],
φ(t) = φ[τ(t)]. We recall that t is the coordinate time at emis-
sion point, which is within our adopted approximation of zero
time-delay of the photons; see Equation (C.15).

When the variables of the dynamics of the real orbit were cal-
culated, we proceeded to obtain the orbital elements i, ω, Ω, and
the constant offsets X0 and Y0 from the request that the predicted
orbit, that is, X(t) and Y(t), Equation (C.9), and the predicted
redshift function z fit the observational values, that is, Xobs, Yobs
, and zobs, respectively.
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Fig. C.3. Effective potential Ueff given by Equation (C.19) for selected values of the conserved angular momentum L. Left: Massive BH case, i.e.,
Schwarzschild solution, g00 = 1− 2M/r. Right: DM case; g00 obtained from numerical integration of the general relativistic equilibrium equations
of the extended RAR model for a fermion mass mc2 = 56 keV, see Appendix A for details. Imposing a bound orbit within given values of the
pericenter and apocenter (vertical dashed lines), in this example, rp/M = 2.976 × 103 and ra/M = 4.714 × 104, respectively, implies a unique
solution of E (dashed horizontal value) and L (value associated with the blue curve). In this example, the adopted mass of the massive BH for the
Schwarzschild solution is MBH ≡ M = 4.075 × 106 M�, and for the mass of the DM RAR core, it was set to Mc = 3.5 × 106 M�.

In order to quantify the goodness of fit, we computed the
reduced-χ2 for each of the observables,

χ̄2
X =

1
NX − p

NX∑
j=1

[
Xobs, j − (X + X0)

]2

∆X2
obs, j

, (C.22a)

χ̄2
Y =

1
NY − p

NY∑
j=1

[
Yobs, j − (Y + Y0)

]2

∆Y2
obs, j

, (C.22b)

χ̄2
z =

1
Nz − p

Nz∑
j=1

(
zobs, j − z

)2

∆z2
obs, j

, (C.22c)

where the subscript j indicates the j-th data element of the ob-
servable {Xobs, j,Yobs, j, zobs, j}, {∆Xobs, j,∆Yobs, j,∆zobs, j} is the asso-
ciated standard deviation of the j-th measurement, {NX ,NY ,Nz}

are the number of data elements of the observable, and p is the
number of model parameters.

For the best match with the observational data at the observa-
tional times, which are presented in J2000 convention, we per-
formed a time shift of the theoretical data, ∆t. To do this, we
introduce the new time t′ ≡ t − ∆t, that is, we must calculate
r(t′) = r(t − ∆t), φ(t′) = φ(t − ∆t), etc. Thus, the time shift ∆t
becomes one of the parameters of the fitting process. With this,
Eqs. (C.12a)–(C.12b) and Equation (C.16) are solved in iterative
fashion by varying ∆t and calculating the orbital parameters that
minimize χ̄2

X , χ̄2
Y , and χ̄2

z for each value of ∆t. In general, we find
that the fit of the redshift function is better than the position fits.
This holds for S2 and G2 because the observational data of the
position are somewhat scattered at times. In any case, in addition
to the individual χ2 values, we evaluated the overall performance
of every set of parameters by computing the mean of the χ2,

〈χ2〉 ≡
1
3

(
χ̄2

X + χ̄2
Y + χ̄2

z

)
. (C.23)

The values of the model parameters reported in Table 1 corre-
spond to those that generate the smallest mean 〈χ2〉 for the range
of parameters explored. We also report the individual χ̄2

X , χ̄2
Y ,

and χ̄2
z . It is important to note that for different values of the pa-

rameters we were able to obtain a better fit of a specific single

observable, for example, zobs. For instance, we found some set of
parameters for S2 that yield for χ̄2

z a value as low as 1.03, with
respect to the value χ̄2

z ≈ 1.28 of the set of parameters that leads
to the smallest 〈χ2〉 (see table 1).

To summarize, our fitting procedure for a given core mass
Mc of the RAR model or for a BH mass MBH in the massive BH
model performs the following steps:

1. Set a value for the eccentricity e.
2. Set a value for the semimajor axis a.
3. Calculate the pericenter rp and apocenter ra for the chosen e

and a.
4. Using Equation (C.20) and Equation (C.21), calculate L and

E to integrate the equations of motion (C.1a)–(C.1c) with
initial conditions at apocenter: t0 = 0, r0 = ra, φ0 = π and
ṙ(t0) = 0;

5. Set a value for the constant time shift ∆t;
6. Calculate all quantities of the real orbit at the shifted time

t′ = t − ∆t, that is, r(t′), φ(t′), ṙ(t′), and φ̇(t′).
7. At this stage, the redshift function depends only on the or-

bital elements ω and i, see Equation (C.16), so that we obtain
them by minimizing χ̄2

z , eq. (C.22c).
8. We iterate the above steps 5–7 in an appropriate range of ∆t,

calculate the sets {∆t, ω, i} that lead to each minimum χ̄2
z , and

identify the set leading to the infimum χ̄2
z , that is, the smallest

χ̄2
z .

9. Set a value of Ω.
10. At this stage, the X position only depends on the offset X0,

see eqn. (C.12a), so that we obtain it by minimizing χ̄2
X ,

eq. (C.22a).
11. Likewise, the Y position only depends on the offset Y0,

see eqn. (C.12b), so that we obtain it by minimizing χ̄2
Y ,

eq. (C.22b).
12. We iterate the above steps 9–11 in an appropriate range of

Ω, calculate the sets {Ω, X0,Y0} that lead to each minimum
of χ̄2

X and χ̄2
Y , and identify the set leading to the infimum of

χ̄2
X and of χ̄2

Y , that is, the smallest χ̄2
X and χ̄2

Y .
13. Based on the lowest values of χ̄2

X , χ̄2
Y , and χ̄2

z , calculate the
mean 〈χ2〉 given by Equation (C.23).
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14. Steps 1–13 are iterated for different values of e and a in some
appropriate range.

15. Identify the best-fit parameters as those that lead to the small-
est 〈χ2〉.

16. Steps 1–15 can be repeated for different values of the mass
of the DM core Mc in the extended RAR model, or of the BH
mass MBH in the central massive BH model.
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