National parks influence habitat use of lowland
tapirs in adjacent private lands in the Southern

Yungas of Argentina

Luis OsvaLpo RIVERA, SEBASTIAN MARTINUZZI, NATALIA PoLITI
SOoF1A BARDAVID, SOLEDAD DE BusTos, SiLvia CHALUKIAN

LEoNIDAS L1ZARRAGA, VOLKER RADELOFF and ANNA PIDGEON

Abstract Protected areas are cornerstones of conservation
efforts worldwide. However, protected areas do not act in
isolation because they are connected with surrounding,
unprotected lands. Few studies have evaluated the effects
of protected areas on wildlife populations inhabiting pri-
vate lands in the surrounding landscapes. The lowland tapir
Tapirus terrestris is the largest terrestrial mammal of the
Neotropics and is categorized as Vulnerable on the TUCN
Red List. It is necessary to understand the influence of
landscape characteristics on the tapir’s habitat use to enable
effective conservation management for this species. Our
objectives were to (1) determine the potential distribution
of the lowland tapir’s habitat in the Southern Yungas of
Argentina, and (2) evaluate the role of protected areas and
other covariates on tapir habitat use in adjacent private
lands. We used records of lowland tapirs to model the spe-
cies’ potential distribution and determined habitat use with
occupancy modelling. Based on the covariates found to be
significant in our models, we constructed predictive maps
of probability of habitat use and assessed the area of poten-
tial habitat remaining for the species. Probability of habitat
use was higher in the vicinity of two national parks and
small households than further away from them. We found
that in 85% of the lowland tapir’s potential distribution the
probability of habitat use is high (> 0.5). These areas are
near the three national parks in the study area. The prob-
ability of detecting lowland tapirs increased with distance
to roads. We conclude that national parks play a key role
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in the persistence of lowland tapir populations on adjacent
private lands.
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Introduction

Protected areas are set aside to conserve species and
their habitats, and they are cornerstones of biodiver-
sity conservation worldwide (Ewers & Rodrigues, 2008).
Biodiversity is typically higher and deforestation lower
inside protected areas compared to the surrounding land-
scape, highlighting the effectiveness of area-based conserva-
tion (Joppa & Pfaff, 2010; Geldman et al., 2013; Gray et al.,
2016). However, protected areas do not work in isolation
because they are embedded within wider landscapes and
are connected with surrounding unprotected lands through
fluxes of organisms, energy and nutrients (Hansen & DeFries,
2007). Protected areas may act as refugia that sustain wild-
life populations in the surrounding landscapes, especially
for large mammals. Wildlife conservation across landscapes
thus requires a clear understanding of the interactions
between protected areas and the surrounding unprotected
lands (McNeely, 1994; DeFries et al., 2007).

Private lands have long been recognized as essential
for large mammal conservation (Simonetti, 1999; Hilty &
Merenlender, 2003; Soares-Filho et al., 2006) because lim-
itations in area and representation of habitats in protected
areas can impede long-term conservation of populations
and species. However, land use around protected areas is
considered a major threat to biodiversity (Joppa et al.,
2008; Radeloff et al., 2010). Increasing human popula-
tions, agricultural expansion and infrastructure development
around protected areas reduce wildlife habitat, limit species
movements, affect population source-sink dynamics and
expose wildlife to anthropogenic threats such as hunting,
poaching, invasive exotic species and diseases. These factors
potentially limit the conservation value of protected areas
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(Hansen & DeFries, 2007). Researchers commonly compare
habitats and wildlife populations inside vs outside protected
areas to assess the effectiveness of protected areas (DeFries
et al, 2005; Blake et al., 2008; Geldmann et al., 2013).
However, most studies assessing the interaction between
protected areas and surrounding lands have focused on
the effects of land use and anthropogenic pressures in the
surrounding landscape on wildlife populations within pro-
tected areas (Woodroffe & Ginsberg, 1998; Setsaas et al.,
2007; Balme et al.,, 2010; Harrison, 2011; Hakkild et al.,
2017). High levels of anthropogenic disturbance in areas
surrounding protected lands usually have a negative effect
on species within protected areas (Metzger et al., 2010;
Laurance et al., 2012; Hakkila et al., 2017).

In contrast, the effects of protected areas on wildlife
populations inhabiting adjacent private lands have rarely
been analysed, especially not in a spatially explicit manner.
Typically, the presence of charismatic mammals such as the
jaguar Panthera onca, Baird’s tapir Tapirus bairdii, primates
and ungulates declines with distance from protected areas,
but factors such as land-cover type, distance from human
settlements and prey richness also influence habitat use
(Licona et al., 2011; Carretero-Pinzén et al., 2017; Schank
et al., 2017; Petracca et al.,, 2018). Nonetheless, habitats out-
side protected areas can have a high probability of wild-
life occupancy, as has been reported for the jaguar in
Nicaragua (Zeller et al., 2011). Understanding the distribu-
tion patterns of charismatic species in landscapes that con-
tain a mosaic of patches with different ownership is useful
for understanding the extent of influence of protected areas
and the role of adjacent private lands, and for informing
conservation decisions. This is particularly applicable in
regions with high levels of biodiversity, and where large
mammals can serve as indicators of the status of more cryp-
tic species. Such information is also vital in places such
as South America, which support high biodiversity and
where land is mostly privately owned but that often lack
the spatially explicit species-level information required for
effective conservation and management.

The lowland tapir Tapirus terrestris is the largest Neo-
tropical land mammal, occurring in forests from nor-
thern South America to northern Argentina (Emmons,
1999; Eisenberg & Redford, 2000). Lowland tapirs can
weigh up to 250 kg, with one young produced at most
every 18 months, are herbivorous and, although typically
occurring at low densities, can be locally abundant around
water sources and salt licks (Padilla & Dowler, 1994;
Naveda et al.,, 2008). The species has an important role as
a disperser of tree seeds, thereby engineering the struc-
ture and diversity of forests (Bodmer, 1991; Fragoso, 1997;
Chalukian et al., 2009), and is categorized as Vulnerable
on the IUCN Red List, with a declining population
(Naveda et al., 2008). Lowland tapirs use riparian forests
and avoid open areas such as grasslands and crops

(Tobler, 2008; Medici, 2010). They keep away from infra-
structure, including roads and oil and gas developments,
and are unlikely to persist in areas with human densities
>1/km® (Naveda et al, 2008; Taber et al., 2008). Well-
protected areas such as national parks are probably strong-
holds for the species (Novaro et al,, 2000; Chalukian et al.,
2009). In north-west Argentina the lowland tapir inhabits
both dry Chaco and Southern Yungas forests, at 100-2,100 m
altitude (Taber et al., 2008; Chalukian et al., 2009). Forest
loss and fragmentation, illegal hunting, and competition
with livestock are the main factors responsible for popula-
tion declines of lowland tapirs, and they are also chased and
killed by dogs (Naveda et al., 2008; Chalukian et al.,, 2012). In
Argentina, the species’ range has declined by 46% in the 20th
century, remaining populations are small and highly frag-
mented (Chalukian et al,, 2009), and the species is categorized
as Endangered nationally (Ojeda et al., 2012). Fifty-one Tapir
Conservation Units, areas with important or critical habitat
for the conservation of the species, have been identified
globally based on expert opinion (Taber et al., 2008).

The mountainous, forested region of north-west Ar-
gentina known as the Southern Yungas contains four
Tapir Conservation Units and three national parks, but
most of the land is privately owned. Here, we sought to de-
termine how much potential habitat remains for the low-
land tapir in both the Tapir Conservation Units and in
the Southern Yungas of Argentina. We also assessed the in-
fluence of small human settlements, roads and rivers, and
whether properties were categorized as private reserves, on
tapir habitat use in private properties adjacent to national
parks. We expected a higher degree of human influence
at the landscape scale, expressed as shorter distances from
human settlements and roads, to be associated with lower
habitat use by lowland tapirs. Conversely, proximity to na-
tional parks and to water, and categorization as private re-
serves, were expected to be associated with higher values
of habitat use by lowland tapirs.

Study area

The Southern Yungas in north-west Argentina is the south-
ernmost Neotropical montane forest (Cabrera, 1976). It oc-
curs along the eastern Andean slopes between the Chaco dry
forests to the east and the Puna highlands to the west. The
area is considered a biodiversity hotspot with high species
richness and endemism (Myers et al., 2000). Human activ-
ities in the lowlands have transformed 75% of the Southern
Yungas forest into agriculture (Brown & Malizia, 2004). We
carried out our study in the provinces of Salta and Jujuy, in
forests that cannot be transformed to other land use accord-
ing to the current land-use planning scheme (Martinuzzi
et al.,, 2018) and that contain the four Tapir Conservation
Units of the Southern Yungas ecoregion (Fig. 1). The study
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area comprises 43,000 km® of forests and 6,870 km* of
transformed land (mostly agriculture and urban develop-
ment). Land tenure in the Southern Yungas is characterized
by large private properties, some > 1,000 km? in size, with-
in which local people occupy small households (so-called
puestos), where they grow crops for subsistence and practice
extensive cattle ranching (Reboratti, 1998). There are three
national parks in the study area (Calilegua, Baritu and El
Rey National Parks) that have implemented enforcement
against human activities, except research and tourism
(Burkart, 2005).

Methods

Camera-trap data

Camera traps are effective for detecting tapir presence and
have been used extensively throughout the Neotropics
(Trolle et al.,, 2007; Cove et al., 2014; Cruz et al,, 2014). We
selected 125 camera-trap sites within a matrix of Southern
Yungas forests, and surveyed them sequentially in groups of
5-10 sites. Camera-trap sites were located in private proper-
ties, within a 3° latitudinal range, and represented different
land management objectives (i.e. protection for wildlife vs
human use of forest). We did not set up any camera traps with-
in the national parks. Three of the sampled properties are
designated as private reserves, where the only permitted hu-
man activities are tourism and scientific research. However,
there is no enforcement against hunting, poaching or cattle
grazing, all of which commonly occur, so private reserves
are less protected than national parks. We set up one camera
trap (Bushnell Trophy Cam Aggressor, Bushnell, Overland
Park, USA) at each site to record lowland tapir presence.
Each camera trap was active continuously for 30 days during
May-November 2016 and was attached to a tree c. 30 cm
above the ground. We positioned camera traps to max-
imize detection of lowland tapirs, by placing them along
forest trails used by large mammals. Camera traps were
separated by at least 1 km (there is no information available
on home range sizes of lowland tapirs in the Southern
Yungas).

Our approach was similar to a hierarchical framework
(Pearson et al., 2004), and consisted of fitting a model
with bioclimatic variables at a larger scale and with low reso-
lution in Maxent 3.4.0 (Phillips et al., 2006), followed by oc-
cupancy modelling at a more local scale and with a higher
resolution (MacKenzie et al., 2006). Occupancy modelling
has recently been proposed as a tool for estimating probabil-
ity of occupancy, habitat use, or as a surrogate of abundance,
using co-variables that can influence those parameters at a
more local scale, allowing the inference about conservation
potential (MacKenzie et al., 2006).
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Species distribution model

We used Maxent (Phillips et al., 2006) to map the lowland
tapir’s potential distribution. We obtained occurrence data
from camera traps used in this study, and also used oc-
currence data from previous studies (Taber et al., 2008;
Fundacién CEBio, 2018). To minimize sample bias caused
by double counting of individual tapirs, we used only re-
cords that were =2 km apart. We used eight 1-km reso-
lution bioclimatic variables as predictors, following the
precedent of other distribution models for species in the
Southern Yungas: annual precipitation (BIO12), annual
mean temperature (BIO1), seasonality of precipitation
(BIO15) and temperature (BIO4), extreme data for pre-
cipitation of wettest quarter (BIO16), precipitation of driest
quarter (BIO17), maximum temperature of warmest month
(BIO5) and minimum temperature of coldest month
(BIOG6; Pidgeon et al., 2015, Martinuzzi et al., 2018). These
variables represented conditions in the area during 1950-
2000 (Hijmans et al., 2005). After testing different buffer
sizes, we selected a 100 km buffer and generated 10,000
pseudo-absences within the selected buffer for model train-
ing in Maxent (VanDerWal et al., 2009). When running
Maxent, we set all other options to default (Phillips, 2017)
and assessed model performance with a 1o0-fold cross-
validation (Bateman et al., 2012) and the area under the
receiver operating curve (AUC). To create a map of the
species’ potential distribution, we transformed predictions
from Maxent into a binary map of suitable vs unsuitable
habitat, using the 10th percentile presence logistic threshold.
Because in the Southern Yungas lowland tapirs occur only
in forests, we deleted non-forested areas from the species’
potential distribution map by intersecting the potential dis-
tribution with a land-cover map (Martinuzzi et al., 2018).
We did not include topographic variables in our modelling
because climate and elevation are often highly correlated
(Martinuzzi et al.,, 2018). Finally, we calculated the total
area of potential habitat for the species in the study area
and in each Tapir Conservation Unit, and the area of trans-
formed land inside each Unit, by intersecting the potential
distribution with the land-cover map.

Occupancy modelling

We used occupancy modelling (MacKenzie et al., 2006) to
estimate the probability of the species occurring at a site (y,
probability of habitat use), and the probability of the species
being detected if present (p, detection probability), using re-
cords in a detection history matrix. We identified biologi-
cally meaningful variables known to influence the detection
of the species and included these variables in the occupancy
models (Long et al., 2011).

We partitioned the detection history of each 3o-day
camera-trap period into 5-day blocks for a maximum of
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Fi. 1 (a) Study area in the Southern Yungas of Argentina, showing national parks (NP), camera-trap sites, non-forested areas, and
Tapir Conservation Units (TCU). (b) Detail of (a) showing camera-trap sites in relation to roads, rivers and puestos.

six repeated lowland tapir surveys of each site. Camera de-
tections of lowland tapirs were defined as independent when
they occurred at intervals > 1 hour (Cove et al., 2014; Cruz
et al., 2014).

We selected covariates based on previous studies (Norris,
2014; Ferreguetti et al,, 2017) that identified relevant an-
thropogenic and environmental variables influencing pres-
ence and occupancy of lowland tapirs. Variables used were
distances to settlements, agricultural lands, roads, water
courses and national park boundaries. We did not consider
forest cover as a variable, given that all camera traps were
placed within forests. We calculated Euclidian distances (in
km) from camera traps to settlements, agricultural lands,
roads, water courses and national park boundaries in
ArcGIS 10.3 (Esri, Redlands, USA). We obtained spatial data-
sets of settlements, roads, water courses and national park
boundaries from governmental datasets (IGN, 2016), and
of agricultural lands from the available land-cover map
(Martinuzzi et al., 2018). Settlements were differentiated
into two types: (1) puestos, which are isolated small house-
holds inhabited by one or few people, in some instances
inhabited only seasonally, and (2) urban centres, defined
as settlements with > 2,000 people (IGN, 2016). To avoid
collinearity between covariates we calculated the Pearson
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correlation coefficient of variable pairs (Supplementary
Table 1), and removed one of each pair when correlation
was > 0.6 (McDonald et al,, 2015 Steenweg et al., 2016).
We retained distance from camera traps to nearest roads,
puestos, water courses and national park borders. We stan-
dardized these variables by converting them to Z scores
(to vary between +3 and —3; Donovan & Hines, 2007). Pro-
tection of private properties was included as a binary variable
(properties without protection = o, private reserves =1).

We developed 30 a priori models, including a constant
(null) and global set (Supplementary Table 2), to estimate
the influence of the five variables on the probability of
lowland tapir habitat use (y). We selected the best models
based on the Akaike information criterion (AIC; Burnham
& Anderson, 2002). Rather than choosing the single high-
est-ranked model, we estimated the mean of the high-
est-ranked models (i.e. models with AAIC < 2 with respect to
the top-ranked model; MacKenzie et al.,, 2006). We deter-
mined co-variable effects on ¥ and p using the model aver-
aged parameter estimate. If the 95% confidence intervals for
a parameter estimate excluded zero, its effect was considered
significant (MacKenzie et al., 2006).

We fitted detection histories and covariates in a single-
season occupancy model implemented in PRESENCE 11.7

doi:10.1017/50030605319000796
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(Hines, 2006). Lowland tapirs are large-bodied mammals
capable of travelling long distances between sites (Fragoso,
1997), therefore, y was considered to represent habitat use
instead of occurrence (MacKenzie et al., 2006). We deter-
mined a naive occupancy estimate for the lowland tapir
as the proportion of cameras at which the species was re-
corded. Finally, we generated a spatially explicit map of es-
timated habitat use, based on the model averaged variables.
For our maps, we established a hexagonal grid of 1 km diam-
eter cells over the study area. We calculated the value of each
variable included in the averaged model for each hexagon
using the centroid of each hexagon as the reference point
for determining the distances to the nearest national parks,
roads and puestos. Given the small size of the hexagons we
assumed that conditions at the centroids were representa-
tive of conditions in the entire hexagon. We constructed the
spatially explicit map of estimated habitat use considering
only the area within the potential distribution of the low-
land tapir determined with Maxent.

Results

Of the 125 camera traps set, 116 were active for 30 days,
resulting in 3,480 trap nights. This trapping effort yielded
222 photographic records of lowland tapirs, with 146 inde-
pendent records. Lowland tapirs were recorded at 69 camera
traps in 11 of the 12 private properties. The mean nearest
distance from camera traps to puestos was 8.7 £ SE 0.3 km
(range 3.3-19.6), to roads 7.0 £ SE 0.3 km (1.7-14.5), to a na-
tional park border 33.4 = SE 2.0 km (1.0-65.2) and to water
courses 1.1 SE o.1km (0.1-6.0).

Potential tapir habitat

We obtained a total of 95 tapir locations for species distribu-
tion modelling. The AUC value of the species distribution
model was 0.93. Current forest area with potential distribu-
tion of the lowland tapir in the study area was 14,452 km?,
with 8,301 km® (57%) located within Tapir Conservation
Units (Supplementary Table 3), and 6,151 km?* (43%) outside
these Units. Privately owned properties represent 85% of
the total area of the four Tapir Conservation Units in the
Southern Yungas of Argentina (Supplementary Table 3),
and 21% (3,844 km?®) of potential habitat have been lost
because of forest transformation to other land uses.

Tapir habitat use

The naive occupancy estimate for the lowland tapir was
0.59. Our single season model assuming constant detec-
tion probability at all sites produced a habitat use estimate
¥ =0.65% SE 0.05 (8= 0.61% SE 0.23) with a detection prob-
ability p = 0.32 £ SE 0.03 (8= —0.73 £ SE 0.12). The value of
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v of Tapir Conservation Unit 33 was almost half of the
value of the other Tapir Conservation Units (Supplementary
Table 3). The model-averaged estimate for all sites, based
on the five models with AAIC < 2, was y=0.68 £SE 0.24
and p =0.32+ SE o.10. Variables in these well supported
models included distances to national parks, roads and
puestos, and protection of forests in private reserves. Dis-
tance to nearest watercourses was not included in the
best models (Table 1). Distance to national park borders
and distance to puestos were significantly negatively asso-
ciated with y (Table 2). Detection probability p was sig-
nificantly positively associated with increasing distance to
roads (Table 2).

The spatially explicit map of estimated habitat use showed
that the majority (85%) of the area with potential lowland
tapir distribution has a high probability (> 0.5) of habitat
use (Fig. 2). Areas with the highest probability of habitat
use were located near the three national parks (Fig. 2). Con-
versely, the area of the Southern Yungas with the lowest
probability of habitat use was the north-eastern part of the
study area, where there are no national parks (Fig. 2).

Discussion

Habitat use by the lowland tapir on private lands adjacent to
national parks was strongly negatively associated with in-
creasing distance to national park borders in the Southern
Yungas forests. A clear association between national parks
and tapir habitat use is further supported by the low pre-
dicted habitat use values in the north-eastern sector of the
study area, where there is no strictly protected area. This
pattern of association with protected areas corresponds
with patterns of lowland tapir habitat use in the Peruvian
Amazon (Bodmer, 2000; Bodmer & Robinson, 2004), and
with Baird’s tapir persistence in Costa Rica (Cove et al.,
2014). We suggest that national parks act as refugia for
tapirs, and as sources of tapir dispersal into unprotected
areas (Novaro et al., 2000), given that the national parks
harbour healthy populations of lowland tapirs in the
Southern Yungas (Chalukian et al., 2009). National parks
in the Southern Yungas are strictly protected, with surveil-
lance by park rangers and strong law enforcement (Burkart,
2005). The continuous matrix of privately owned forests in
which national parks are embedded provides habitat con-
nectivity and facilitates tapir dispersal into the unprotected
areas near the national parks. In other regions, where areas
immediately adjacent to national parks are exposed to high
levels of land transformation and human disturbance, mor-
tality of charismatic species is often high and population de-
clines are common in the surrounding landscape, as a result
of edge effects, poaching and conflict with humans (Setsaas
et al.,, 2007; Balme et al., 2010; Hékkila et al., 2017). For ex-
ample, in Iguacu National Park in Brazil, there are strong

Downloaded from https://www.cambridge.org/core. IP address: 190.52.34.159, on 15 Apr 2020 at 16:32:00, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5S0030605319000796


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0030605319000796
https://www.cambridge.org/core

L. O. Rivera et al.

TasLE 1 Top-ranked models for the probability of habitat use y and detection probability p of the lowland tapir Tapirus terrestris in the
Southern Yungas forest of Argentina, based on Akaike’s information criterion (AIC) with a AAIC <2 (difference in AIC from the
best-ranked model). The table shows the relative model weight (Akaike weight), the likelihood of each model being the best-performing
model, the number of model parameters (k) and the —2 log-likelihood output from the occupancy model, implemented in PRESENCE 11.7

(Hines, 2006).

Model' AIC AAIC  Akaike weight ~ Model likelihood k  —2 log-likelihood
v (NatParks, Puestos); p(Roads) 653.66 0.00 0.35 1.00 5 643.66
v (NatParks, Puestos); p(Roads, Puestos, Protection)  654.86  1.20 0.19 0.55 7  640.86
v (NatParks, Puestos); p(Roads, Protection) 655.07 1.41 0.17 0.49 6 643.07
y (NatParks, Puestos, Roads, Protection); p(Roads) 655.65 1.78 0.14 0.41 7  641.44
v (NatParks, Puestos, Roads); p(Roads) 655.94 1.99 0.13 0.37 6 643.65

'Variables: NatParks, distance of camera trap to the nearest national park border; Protection, designation as private reserves; Puestos, distance of camera trap
to the nearest puestos (small households); Roads, distance of camera trap to the nearest road.

TasLE 2 Model averaged beta values, standard errors, and 95% con-
fidence intervals for the variables that affected the probability of
habitat use () and the detection probability (p) of lowland tapirs
in the Southern Yungas Forest of Argentina.

Parameter
Variable estimates £+ SE 95% CI
Probability of habitat use (y)
Distance to national park —1.23+0.43* —2.07--0.39
Distance to puestos —0.63£0.31* —1.24-—0.01
Distance to roads —0.01£0.09 —0.19-0.19
Private reserve —0.24+0.17 —0.58-0.10
Detection probability (p)
Distance to roads 0.41£0.14* 0.15-0.68
Distance to puestos 0.05%0.03 —0.01-0.12
Private reserve —0.09+0.12 —0.33-0.14

edge effects from adjacent transformed lands inside the
protected area, affecting occupancy of several mammals,
including lowland tapirs (da Silva et al., 2018). In contrast,
in the Southern Yungas the unprotected forests in private
lands surrounding national parks appear to have low hu-
man disturbance levels, allowing tapirs to persist.

The establishment of Tapir Conservation Units aims to
ensure the long-term viability of entire tapir populations,
by prioritizing habitats for conservation and identifying
and managing threats in those key areas. As we collect
more information on the tapir’s habitat use and distribution
we can refine strategies and improve the delineation of the
existing Tapir Conservation Units. In three of the four Tapir
Conservation Units in our study area higher habitat use
values were partly attributable to the presence of national
parks (i.e. Tapir Conservation Unit 37 includes Baritd
National Park, Unit 38 includes Calilegua National Park,
and Unit 41 includes El Rey National Park). The lower va-
lues of habitat use in Unit 33, where there is no national
park, further highlight the importance of strict protection
of forests for the persistence of lowland tapir populations.

The majority (57%) of the potential lowland tapir
habitat in the Southern Yungas is included in the Tapir

Oryx, Page 6 of 10 © 2020 Fauna & Flora International
Downloaded from https://www.cambridge.org/core. IP address: 190.52.34.159, on 15 Apr 2020 at 16:32:00, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5S0030605319000796

Conservation Units, but 43% remains outside. Therefore,
we recommend as a priority to evaluate the conservation
status of the potential habitat area located outside Tapir
Conservation Units. Only 15% of the forest area in the
Tapir Conservation Units is within national parks, where-
as 85% is in private properties. The national parks in the
Southern Yungas are probably too small to maintain viable
populations of lowland tapirs in the long term. It has been
estimated that the home range of lowland tapirs in semi-
deciduous Atlantic Forest is 4.7 km* and that 200 tapirs
would be required to ensure long-term population viability
(Medici, 2010). Therefore, in the Southern Yungas the
conservation strategy for the lowland tapir should include
private forests surrounding national parks in schemes of
sustainable management.

We found no evidence that tapir habitat use was higher
on protected private reserves than on private lands without
protection. This suggests that the protection level afforded
by protected private lands, which is lower than that of
national parks, is not sufficient to influence habitat use by
tapirs. However, these findings must be interpreted cau-
tiously because our sample size was small. Currently, in
Argentina the National Forest Law No. 26,331 (Seghezzo
et al., 2011) provides a legal framework and financial support
for the protection of private land (Rivera et al., 2015), assist-
ing private land owners in supporting the populations of
tapirs and other wildlife.

Contrary to our expectations, habitat use by the lowland
tapir was higher closer to puestos. One possible explanation
is that puestos are in relatively inaccessible locations, with
no association with distance to roads, cities, or agricultural
lands. Inaccessibility of puestos could offset the effect of
some human disturbance such as cattle grazing and small-
scale crop farming. It is also possible that tapirs benefit from
small-scale forest disturbance caused by local people, as
tapirs are known to forage in open and secondary forests
(Painter, 1998). Another possible cause of the positive asso-
ciation is that local people living in puestos persecute large
predators to reduce cattle predation (Perovic et al., 2015),

doi:10.1017/50030605319000796
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which may also reduce predation pressure on the lowland
tapir. Local people also appear not to rely on hunting tapirs
as a protein source. The only evidence of hunting in the
study area is from areas with good accessibility by urban
hunters (S.C. Chalukian, 2018, pers. comm.), which is why
roads affected lowland tapir detectability, as in other regions
where roads have provided access for hunters (Licona et al.,
20115 Cruz et al.,, 2014; Schank et al., 2015). Care is thus ne-
cessary when planning and building new transport infra-
structure in the Southern Yungas, to avoid increasing ac-
cess to unprotected forested areas (Martinuzzi et al., 2018).

Given the key role of national parks for the conservation
of lowland tapir populations in the Southern Yungas, the
management effectiveness and implementation of protec-
tion actions in these conservation areas must be maintained
or improved, with adequate funding and personnel. Tapir
Conservation Unit 33 is under increasing anthropogenic
pressure, with oil and gas prospecting, extensive cattle
ranching, illegal forest logging and wildlife poaching (Salta
Government, 2013). We suggest that the lowland tapir and
other wildlife species would benefit from the creation of a
strictly protected area in Tapir Conservation Unit 33. Other-
wise, if the creation of a strictly protected area is not pos-
sible, efforts should be made to limit the extent of cattle
ranching and strengthen the enforcement of laws against
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poaching and illegal logging. Given that most of the land
within the Tapir Conservation Units is privately owned,
collaboration with the private sector is required to protect
the lowland tapir and its habitat. This should happen within
the framework of the National Forest Law, which aims to
support land planning and forest management, including
conservation and restoration of ecologically important ele-
ments. Connectivity between Tapir Conservation Units is
threatened by land-use change, and thus strategies to main-
tain the remaining structural connectivity are needed ur-
gently, for the benefit of the lowland tapir and other species.

More broadly, our study highlights the importance of
protected areas for large mammals, not only by protecting
populations inside the protected areas themselves, but also
by potentially supporting populations outside, on adjacent
private lands. In addition, surrounding areas can increase
the total area of available habitat, and hence support larger
subpopulations with better chances for long-term survival.
However, we caution that studies based on camera traps,
such as ours, cannot identify sink habitat, and we were
not able to examine demographics and age structure of
tapirs inside and outside protected areas. Nevertheless, we
suggest that our findings highlight the broader importance
of national parks, and the need to carefully examine their
value for surrounding areas, especially if those areas are
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not heavily influenced by humans. In the oceans, marine
protected areas have been shown to increase fisheries in
the surrounding areas in some cases (McClanahan &
Mangi, 2000; Roberts et al., 2001; Lester et al., 2009), and
in terrestrial systems, theory and empirical data suggest
that spatial controls on hunting, such as those provided by
protected or sacred areas, can allow wild populations to
persist (McCullough, 1996; Brandt et al.,, 2013). It may be a
missed opportunity that the benefits of protected areas for
wildlife populations in unprotected landscapes are not
typically considered in conservation planning (Margules &
Pressey, 2000; Naidoo et al., 2006; Keppel et al., 2015).
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