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Morphological differentiation
across the invasive range in Senecio
madagascariensis populations

Bruno Dematteis, Maria S. Ferrucci & Juan P. Coulleri**

Invasive species are characterized by their ability to colonize new habitats and establish populations
away from their native range. In this sense, these plants are expected to have plastic responses to
adapt to the environmental pressures during the invasion process. Hence, the role of natural selection
is essential because it might favor the occurrence of advantageous traits. However, gene flow can
counteract natural selection because immigrants introduce genes adapted to different conditions,
with these introductions tending to homogenize allelic frequencies. In this work, we explore the
effect of natural selection in invasive populations of S. madagascariensis in Argentina. We quantified
leaf area, head number, and length of internodes and inflorescence from material spanning 54 years
(1962-2016) and then compared between the edge versus established ranges. Our results show
differences in all the measured plant traits among the sampled areas. However, only leaf area was
statistically significant, which evidences different responses under the same environmental pressures
in the areas located in the edge and established ranges. On the other hand, unlike homogeneous
areas, the areas characterized by phenotypically diverse individuals were related to higher dispersal
ability. In this sense, long-distance dispersal between neighboring areas may have had an important
role in the recorded values. Furthermore, the implications of natural selection and founder effect in
the invasion of S. madagascariensis are discussed.

Biological invasions cause global changes due to their impacts on ecosystems and biodiversity. In addition, inter-
national trade, transport and tourism have contributed to an exponential increase of the migration of non-native
plant species worldwide®. During range expansion, invaders colonize new habitats and establish populations
away from their native range; therefore, factors that affect spread and establishment become very important®*.

To ensure its survival and colonization of the new habitat, invasive plants are expected to have plastic
responses to adapt to the environment pressures faced during the invasion process>® The phenotype is the
result of the interaction between genetic components, evolutionary forces and natural selection”®. Hence, the
role of natural selection is essential because it might favor the occurrence of advantageous traits in survival and
dispersal terms’.

Natural selection is recognized by Darwinism as the main mechanism driving evolutionary changes, and
can take three forms, depending on the favored trait: (1) directional selection, which favors one of the extreme
phenotypes; (2) stabilizing selection, which favors phenotypes with mean values; and (3) disruptive selection,
which favors both phenotype extremes!?. However, Darwin also gives importance to what is currently known
as genetic drift and gene flow as forces that can counteract natural selection'!. This phenomenon tends to adapt
a population to local conditions (deme), but immigrants from other populations will introduce genes adapted
to different conditions, which tends to homogenize allelic frequencies. In the absence of gene flow, divergent
selection could favor traits that provide advantageous results in patterns of local adaptation”!?. The evolution of
locally adapted genotypes requires consistent geographical variation in selective regimes that cause directional
trait changes, as well as limited gene flow'. In contrast, genetic exchange and genetic diversity could contribute
to the presence of individuals with genotypes associated with a higher Darwinian fitness'*.

Senecio madagascariensis Poir. (Asteraceae) is a species native to South Africa and Madagascar that is cur-
rently considered invasive in Australia'®, south-east Asia'®, South America'”!® and North America'. In South
America, this species was recorded for the first time in Argentina, where it was found in the port area in Bahia
Blanca (Buenos Aires province) in the 1940s. In about 30 years, S. madagascarienis successfully invaded the
north of Buenos Aires province and nearby provinces. Currently, this species is widely distributed in northern
and central Argentina, and southeastern Brazil®.
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Figure 1. Distribution of the analyzed Senecio madagascariensis populations. The map was performed with
Diva Gis (https://www.diva-gis.org/) software using "Administrative Layers" for Argentina. The GIS shape files
were obtained from GADM database (https://www.gadm.org, version 3.6) in DIVA GIS (https://www.diva-gis.
org/gData).

The studies about the rapid evolutionary changes in non-native species are of great interest because they may
prove if post-introduction success is due to a genetically based change*->*. Indeed, identifying the phenotypic
traits that might evolve to favor dispersal is an interesting topic?*. The aim of our study was to explore the evo-
lutionary forces that have acted to shape the invasive populations of Senecio madagascariensis in Argentina. We
quantified life history traits in individuals obtained during field collections as well as in herbarium specimens,
spanning 54 years (from the first record to the present). In addition, we analyzed how natural selection may have
acted during the invasions process. Since S. madagascariensis has a wide distribution range, we hypothesize that
natural selection may have favored individuals that invested more energy in rapid growth, increasing size and
reproduction (Fig. 1).
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Leaf area Internode length Inflorescence length Number of heads
Area Min Mean Max SD Min Mean Max SD Min Mean Max SD Min Mean Max SD
Source 36.3 856 | 130.0 361 |66 104 17.6 34 100 |217 460 108 |20 4.0 6.0 11
Core 328 | 1067 | 189.5 375 |66 21.6 289  |37.9 60 |17.7 315 69 |30 47 7.0 12
Intermediate | 51.4 942 | 1456 277 |73 11.0 153 2.7 60 [192 32.7 77 |20 4.5 6.0 11
NEA 221 |1672 [2945 1640 |56 14.8 47.5 9.3 06 |188 322 88 |30 4.9 7.0 11
NWA 53.2 | 189.8 [462.8 | 1745 |61 15.8 28.5 7.1 14 |229 360 [156 |30 5.2 7.0 15
CBA 220 | 1218 | 1747 680 |96 12.0 15.6 29 150 |213 35.0 92 |50 5.8 6.0 0.5
Table 1. Average values and standard deviation (SD) of the plant traits in the sampled areas.
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Figure 2. Boxplots of the traits analyzed in the sampled areas. Boxes represent s.d. and the median is shown as
a line across the box. Tukey’s test (p <0.05), the letters and (*) represents significant differences.
Results
Plant traits. Mean values of the analyzed morphological traits are presented in Table 1 and Table S1. The
NWA populations had the highest values of leaf area, and length of internode and inflorescences, whereas the
lowest values were reported in the source populations (Fig. 2a—c). Only leaf area presents statistically significant
differences among areas (Table 2). Regarding number of heads, the CBA populations had the highest values,
whereas the source populations had the lowest ones (Fig. 2d), but without statistically significant differences
(Table 2).
Comparisons among sampled areas and populations.  The dendrogram evidenced three area clusters
(1-3), which were determined by phenotypic distances (Fig. 3). Cluster 1 included NWA and CBA, which shared
number of heads. Cluster 2 involved only NEA, which had intermediate values between clusters 1 and 3 for all
traits. Cluster 3 included the core, intermediate and source areas, characterized by the lowest values for most of
the analyzed traits.
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Populations 42.69 41 0.39 59.61 |41 0.03% 49.48 |41 0.17 42.69 |41 0.39
Areas 14.880 | 5.000 |0.01% 9.330 | 5.000 | 0.090 1.170 | 5.000 | 0.940 7.770 | 5.000 | 0.160

Table 2. Results of the Tukey’s test and post-hoc multiple comparison. Ms, mean square; Chisq, chi square
value. *Indicates statistically significant differences.
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Figure 3. Dendrogram showing phenotypic distances among areas.
4,00
Internode length
Leaf area
2,00
NWA
°
Core
©
< Inflorescence length
&
& o000 —
~ Intermediate —
I
© ° ) —
ourc% \\
\‘ Number of heads
CBA
2,00 o
4,004 . . ;
4,00 2,00 0,00 2,00

PC 1 (55,0%)

Figure 4. Biplot showing relationships between life history (black circles) and sampled areas (gray circles).
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Variable PC1 |PC2

Leaf area 0.41 0.51
Internode length 0.330 0.65
Inflorescence length | 0.12 0.06
Number of heads 0.51 -0.24

Table 3. Contribution of plant traits to the first two components of the principal component analysis.
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Figure 5. Frequency histograms of the established areas showing the action of natural selection over time.

The PCA (Fig. 4) showed a cophenetic correlation (0.92) and the contribution of all the analyzed morphologi-
cal traits, except for inflorescence length, to the differentiation between areas (Table 3). Variability of phenotypic
traits (78.8%) was explained by the first two principal components (PC1, 55% and PC2, 23.8%).

Natural selection action. The frequency histogram of each range shows the action of the different types
of natural selection. In the established range, during the first three decades, the populations were subjected to
disruptive selection, which ultimately tended to increase leaf area and length of internodes and inflorescences
(Fig. 5a—c), unlike number of heads, which tended to decrease (Fig. 5d).

On the other hand, in the populations from the range edge the analyzed traits (i.e. leaf area, internode length,
inflorescence length and number of heads) showed directional selection, this led to the reduction of these
structures (Fig. 6a—c). However, the number of heads evidenced the opposite direction in the selection, i.e. their
number increased over time (Fig. 6d).

Discussion

The degree of morphological variation of invasive populations across a wide environmental range can be impor-
tant to determine their performance and shaping forces. The morphometric analyses performed in the invasive
populations of S. madagascariensis evidenced differences in all the measured plant traits. However, only leaf
area was statistically significant among areas. This non-significant differentiation among areas can be explained
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Figure 6. Frequency histograms of the edge areas showing the action of natural selection over time.

mainly by gene flow, which acts by homogenizing the allelic frequencies and constraining the adaptation to a
heterogeneous environment'.

Because phenotypic expression is the result of the interaction between genetic components and environmen-
tal pressures, neighboring areas are expected to present a greater morphological similarity due to the gene flow
between them. This assumption is supported by the dendrogram of the sampled areas, since the core, source
and intermediate areas are grouped in the same cluster. In addition, our results evidenced that the NWA and
CBA areas had the lowest diversity of those studied which could be due to the dispersion process among the
neighboring areas. This hypothesis is supported by a previous study performed in invasive populations of S.
madagascariensis, which shows that the areas of lower altitudes (such as the source, core, intermediate and NEA)
were characterized by populations with a greater dispersal ability?®. Conversely, the areas of higher altitudes (such
as NWA and CBA) presented a lower dispersal®.

The role of local adaptation and natural selection is often mentioned to explain the distribution range. The
individuals that reached Argentina (located in the established range) were probably pre-adapted to the environ-
mental conditions of the new range due to the rapid evolution of some traits. In this sense, the increase of leaf
area could be advantageous, since water availability and temperatures in Argentina are similar to those in the
native range; therefore, selection would have favored the photosynthetic capacity®®. Regarding number of heads
in the established range, the increase in the number of individuals in each population could favor their density,
which could facilitate the conformation of an invasion front, particularly in S. madagascariensis®.

In the range edge, directional selection tended to reduce leaf area. These populations occur under environ-
mental conditions characterized by drought and high temperatures; therefore, a reduced leaf area can prevent
water evaporation. Likewise, length of internodes and inflorescences was also reduced, likely due to the windy
conditions and higher altitudes prevailing in this region. Similar results have been reported in populations of
Senecio inaequidens DC. along altitudinal gradients®, where the increasing altitude was found to negatively affect
plant height and above-ground biomass. Finally, the reduction of these structures can be offset by the increase
in the number of heads driven by directional selection. This compensation ensures the scattering of a greater
number of diaspores.
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Further, phenotypic diversity of invasive species can be affected by the number of introduction events to the
new region, which increases the genetic novelties’~?. For example, numerous introductions of Phalaris arundi-
naceae L. to the invasive range in North America have been found to increase phenotypic and genetic diversity.
Those events stimulated the rapid evolution and phenotypic plasticity, facilitating range expansion®. Likewise,
the multiple introductions of S. madagascariensis in Brazil are a gene source that might ensure a higher variability
in dispersal traits of the invasive populations®..

Nevertheless, due to the large geographical range of this species, it is likely that multiple events have occurred
in Buenos Aires province. This hypothesis can explain the variability of population clusters observed in the inter-
mediate and neighboring areas. However, molecular data are needed to determine the source of S. madagascarien-
sis populations and to establish relationships with the phenotypic variation recorded across the invasive range.

In conclusion, this work constitutes a background on the invasion history of S. madagascariensis in Argen-
tina. The results have shown the importance of the environment and the dispersion processes in the phenotypic
variability of the sampled areas. In this context, determining this variability and the processes that affect them
could be useful in order to establish priority areas of control in invasive species.

Methods

Plant material and sampling locations. We analyzed traits of 49 specimens collected in specific field
trips and 50 specimens from vouchers of several herbaria (BA, CORD, CTES, LIL, LP, SE SI) of Senecio madagas-
cariensis; specimens span 54 years of collection efforts. The individuals are grouped in 42 populations distributed
across the invasive range in Argentina (Fig. 1). In order to ensure independence among populations, we consid-
ered a group of individuals separated by at least 10 km between them as a population. The sampled areas follow
the delimitations previously proposed for this invasive species in Argentina®. The areas located in the range edge
were: NEA (Northeast of Argentina), NWA (Northwest of Argentina) and Cérdoba province (CBA), whereas the
remaining areas were located in the established range (intermediate, core and source).

Morphological traits. We studied vegetative (leaf area and internode length) and reproductive (inflores-
cence length and number of heads) traits. Observations and measurements were performed using a stereoscopic
microscope; 5-10 samples per specimen were taken for each trait.

Statistical analysis. We performed a clustering analysis using Euclidean distances to assess the relation-
ship among the studied populations and areas. In addition, we analyzed the morphological traits to establish
the presence of significant differences through an analysis of variance (ANOVA) and a Tukey’s test (p <0.05).
Finally, in order to define which morphological traits are responsible for population structuring, we performed
a principal component analysis (PCA). The clustering analysis and PCA were performed using the INFOSTAT
statistical software®? and the Tukey’s test was performed using R studio software®.

Additionally, to determine the form of natural selection acting in the sampled areas (edge vs. non-edge), we
performed frequency histograms for all the analyzed traits. Histograms were constructed considering four time
windows of approximately 10 years each. Using this methodology, we considered the population introduced
during the first time period as the population previous to natural selection in the new habitat, both in edge and
non-edge ranges. Therefore, the deviations from the average values of the frequencies would determine the form
of selection involved: stabilizing, directional or disruptive.
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