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and humic acids for degradation of diuron and amoxicillin

Jose L. Buitrago1
& Janeth Sanabria2 & Héctor M. Gútierrez-Zapata2 & Frankly J. Urbano-Ceron3

&

Alejandra García-Barco1
& Paula Osorio-Vargas1,4 & Julián A. Rengifo-Herrera5

Received: 10 March 2019 /Accepted: 7 October 2019 /Published online: 21 November 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Effect of ferric ions at concentrations typically found in natural waters (0.05 to 1.06mg L−1) and lowH2O2 concentrations (between
0.5 and 17.9mgL−1) on simulated sunlight-induced (300Wm−2) photo-Fenton degradation at initial neutral pH (7.0) of amoxicillin
and diuron in Milli-Q water was studied using an rotatable central composite experimental design 22 with a central and two axial
points. H2O2 concentration was the parameter playing the key role on the degradation of both pollutants. Despite that initial pH was
7.0 in Milli-Q water, this latter decreased rapidly in the first minutes, reaching values of 3.5 and 5.0 for diuron and amoxicillin
respectively after 15min of simulated sunlight irradiation. In contrast, in presence of bicarbonate/carbonate (HCO3

−/CO3
=), fluoride

(F−), and humic acids (HAs) at concentrations found often in surface and well waters with ferric ion and H2O2 concentrations of 0.3
and 9.7 and 15.2mgL−1 respectively, both pollutants exhibited a strong degradation keeping the circumneutral pH. Amoxicillin and
diuron degradation byproducts found by HPLC/MS were compatible with HO• and/or CO3

–• radical attack. Several photo-induced
processes such as photo-Fenton (by dissolved ferric-HA complexes), heterogeneous photocatalysis (by colloidal iron), UV-B H2O2

photolysis, irradiated-dissolved organic matter, and their reactions with pollutants would be the main oxidative route responsible of
degradations. These findings demonstrated that it could be possible using iron concentrations often found in natural waters to
oxidize via photo-Fenton processes among other events, organic pollutants at natural pH conditions.
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Introduction

Photo-Fenton processes have arisen as a promising alternative
to the abatement of chemical pollutants in water (Ikehata and

El-Din 2006; Pignatello et al. 2006; Oturan and Aaron 2014;
Leyva et al. 2018). This makes use of photoactive ferric aqua-
complexes, which are predominantly present at acid pH (~
2.7). Under UV-A irradiation, these aqua-complexes generate
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ferric ion reduction leading to the formation of ferrous iron
and HO• radicals. Then, in presence of hydrogen peroxide,
ferrous ions are oxidized to ferric and HO• radicals (Fenton
reaction) (Pignatello et al. 2006; Gutierrez-Mata et al. 2017).

Although photo-Fenton processes show encouraging char-
acteristics to degrade chemical pollutants in water, they exhib-
it two main drawbacks: the first one is related with using
acidic pH. Several strategies have been explored in the litera-
ture in order to expand the pH range of photo-Fenton process-
es towards circumneutral or neutral values (Clarizia et al.
2017; Nogueira et al. 2017). For instance, complexing ferric
ions with organics such as oxalate, EDTA, and other aliphatic
acids have arisen as a successful strategy since most part of
these ferric-complexes are stable and photoactive in pH ranges
close to the neutrality (Clarizia et al. 2017). However, some
questions about its implementation such as increasing of the
total organic carbon content and most importantly concerns
about the ecotoxicity and biodegradability of chelators and
byproducts formed after the photochemical event have
emerged (Clarizia et al. 2017). The second important draw-
back of photo-Fenton processes is the high amounts of both
iron and hydrogen peroxide often used. The former could
cause the production of important iron-sludge which must be
removed from water and subsequently disposed, and the latter
could produce alterations on aquatic environments (Wang
et al. 2016a).

In this study, two anthropogenic pollutants found often in
natural waters, diuron and amoxicillin, were chosen. Diuron
(3-(3,4-dichlorophenyl-1,1-dimethylurea) is a water-soluble
phenylurea herbicide (42.0 mg L−1 at 25 °C) with low biodeg-
radation and extensively used in cotton and citric crops in
USA. Environmental protection agency (USEPA 2003) re-
ported an annual consumption of 4500 ton in 2002 while in
Argentina, it was estimated 242 tons in 2016 (SENASA
2016). On the other hand, amoxicillin is a widely used β-
lactam antibiotic of broad spectrum (World Health
Organization 2018).

Regarding the abatement of diuron and amoxicillin by
photo-Fenton processes, several studies have been reported
(Mazellier et al. 1997; Malato et al. 2003; Nogueira et al.
2005; Farré et al. 2006, 2007; Maldonado et al. 2007;
Catalkaya and Kargi 2008; Trovó et al. 2008, 2011; Elmolla
and Chaudhuri 2009; Oturan et al. 2011; Klamerth et al. 2013;
Pereira et al. 2014; Rodríguez-Chueca et al. 2014; Alalm et al.
2015; Perini et al. 2018; Liu et al. 2018). A common point for
all these studies is the use of high amounts of both ferric and
ferrous salts (2–500 mg L−1), hydrogen peroxide (74.0–
1500.0 mg L−1), and acidic pH (2.8–3.5). In the literature,
there are just few studies about diuron and amoxicillin degra-
dation induced by photo-Fenton reactions at circumneutral
pH. All these studies have been performed using complexing
agents such as ethylenediamine-N,N-disuccinic acid (EDDS),
oxalate, and citric acid with iron and H2O2 concentrations of

1.6–5.0 and 17.0–70.0 mg L−1, respectively (Trovó et al.
2008; Klamerth et al. 2009, 2013; Pereira et al. 2014).

Another approach, which has not extensively explored to-
wards removal of organic pollutants, is using photo-Fenton
processes under natural conditions. Some authors have argued
that natural surface waters irradiated with sunlight may pro-
mote low concentrations of HO• radicals through several pho-
tochemical processes, mainly photo-Fenton reaction with nat-
ural iron and H2O2 concentrations (Millero and Sotolongo
1989; Nakatani et al. 2007; De Laurentiis et al. 2014;
Gligorovski et al. 2015).

Sciacca et al. (Sciacca et al. 2010) published for the first
time that simple adding of 10.0mgL−1 of hydrogen peroxide
to natural Sahelian surface waters containing 0.3 mg L−1 of
total iron led to theE. coli and Salmonella inactivation under
natural sunlight irradiation demonstrating that H2O2 could
enhance natural photochemical events including photo-
Fenton. Recently, some authors have demonstrated that it is
possible to inducephoto-Fentonprocesses at lownatural iron
concentrations often present in natural waters (0.3–
0.6 mg L−1) and H2O2 concentrations ranging between 3
and 10 mg L−1 to achieve degradation of several pollutants
inwater byphoto-Fentonprocesses under simulated and sun-
light irradiation (Serra-Clusellas et al. 2018; Ulliman et al.
2018). Furthermore, Gutierrez-Zapata et al. (2016) and
Alvear-Daza et al. (2018a, c) have also applied this approach
in natural well waters, which already contain natural iron
concentrations (0.3 mg L−1), to remove simultaneously 2,4-
D and bacteria by the simple addition of H2O2 (10 mg L−1)
either at laboratory or pilot scale. 2,4-D removal was rapidly
achieved while bacteria inactivation required 6 h of either
artificial or natural sunlight irradiation. These authors also
found that the presence of some anions such as bicarbonate/
carbonate and fluorine could enhance the photochemical
processes responsible for herbicide and bacteria abatement
(Gutiérrez-Zapata et al. 2016, 2017a). Moreover, it is well
known that humic substances (HSs) which are common in
surface and well waters exhibit an interesting potential to
form stable and soluble complexes with ferrous and ferric
ions at neutral pH (Voelker et al. 1997; Fukushima and
Tatsumi 2001; Georgi et al. 2007; Lipczynska-Kochany
and Kochany 2008; Rao et al. 2009; Klamerth et al. 2011;
Wang et al. 2016b). These Fe-HS complexes can participate
in Fenton and photo-Fenton processes leading to the removal
of organic pollutants in water.

Herein, we reported a systematic study for photo-Fenton deg-
radation of diuron and amoxicillin both at initial concentrations
of 10.0 mg L−1, iron concentrations ranging from 0.05 to
1.06 mg L−1, and typically found in natural surface and well
waters (Sciacca et al. 2010; Avigliano et al. 2015; Gutiérrez-
Zapata et al. 2016) and low amounts of hydrogen peroxide (rang-
ing from 0.05 to 17.89 mg L−1) at circumneutral pH (~ 7.0) in
presence of amounts of bicarbonate/carbonate, fluoride, and
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humic acids often found in well and surface waters (Sciacca et al.
2010; Gupta et al. 2012; Sadat 2012; Gutiérrez-Zapata et al.
2016). The effect of ferric ion and hydrogen peroxide concentra-
tion on photo-Fenton degradation of both pollutants in Milli-Q
water was determinate by using a rotatable central composite
experimental design 22. Liquid chromatography coupled with
mass spectrometry (HPLC/MS) analyses were performed to de-
tect oxidation byproducts of diuron and amoxicillin. This study is
focused to show that using low amounts of iron such as those
typically found in natural surface or well waters is enough to
carry out photo-Fenton reactions at initial neutral pH to remove
amoxicillin (a common antibiotic widely used around the world)
and diuron (a water-soluble herbicide), and thus avoiding the
subsequent elimination of residual reactants.Moreover, the effect
of anions also typically found in natural waters such as bicarbon-
ate/carbonate, fluoride, and natural organic matter as humic acids
on degradation of both pollutants at initial neutral pH was stud-
ied. Detection of byproducts generated during pollutant degrada-
tion followed by HPLC/MS may give evidence if removal of
amoxicillin and diuron in natural waters should be possible by
simply adding hydrogen peroxide without the further addition of
ferric/ferrous salts and pH acidification since natural dissolved or
colloidal iron could be efficiently used in order to achieve both
pollutant removal by photo-Fenton processes at neutral pH.

Experimental methods

Reagents

Amoxicillin trihydrate, diuron (Sigma-Aldrich), acetonitrile
HPLC grade (Sigma-Aldrich), humic acids (Alfa-Aesar),
H2O2 at 30% (v/v) (Merck), Fe2(SO4)3·7H2O (Sigma-
Aldrich), NaF·10 H2O (Sigma-Aldrich), and Na2CO3

(Sigma-Aldrich) were used to perform all the experiments.
All reagents were used without further purification.

Experimental design and experiments performed
in Milli-Q water

Effect of ferric ions and H2O2 concentrations ranging between
0.1–0.9 and 1.0–15.0 mg L−1 respectively on photo-Fenton
degradation of diuron and amoxicillin was studied by a rotat-
able central composite experimental design 22 with 4 degrees
of freedom and one central and two axial points (Table 1).
Some experiments such as Fenton reaction (dark), UV-H2O2

photolysis, pollutant photolysis, and ions and HS effect were
carried out by using the H2O2 concentrations recommended
by experimental design and iron concentrations often allowed
by World Health Organization (WHO) (0.3 mg L−1) in drink-
ing water (WHO 1997). Results were analyzed using the soft-
ware Statgraphics Centurion XV. All experiments were car-
ried out by duplicate.

A total of 80.0 mL of Milli-Q water (at initial pH of ~ 7.0
which was adjusted with NaOH) containing suitable ferric iron
and H2O2 concentrations with diuron and amoxicillin initial con-
centrations of 10.0 mg L−1 was added to a cylindrical Pyrex
bottle. These initial concentrationswere chosen in order to permit
an adequate detection of photodegradation byproducts by
HPLC/MS. Then, these bottles were irradiated by a Hanau
Suntest (AM-1) solar simulator (total intensity 300Wm−2) under
constant magnetic stirring during 75min to diuron and 60min to
amoxicillin (Fig. S1 supportingmaterial). The lamp has a spectral
distribution with about 0.5% of emitted photons at wavelengths
shorter than 300 nm (UV-C range) and about 4% between 300
and 400 nm (UV-B and UV-A ranges). The distribution of the
photons emitted between 400 and 800 nm follows the solar spec-
trum. Temperature of the experiments was never superior to
38 °C. Samples were periodically collected, and H2O2 was elim-
inated by adding sodium bisulfite (NaHSO3) to follow the reac-
tion kinetics.

Diuron concentration was followed by HPLC (Shimadzu
LC20A) equipped with a UV-VIS detector and a C-18 RP col-
umn Nucleosil 100-5 with a mobile phase of acetonitrile/acetic
acid (45:55) at pH 3.0. Flow was 0.9 mL min−1 and the analyte
was detected at 254 nm. Amoxicillin was monitored with a mo-
bile phase acetonitrile/phosphate buffer (15:85) at pH 5.0, a flow
of 0.5 mL min−1, and a detection wavelength of 230 nm.

Salicylic acid (SA, 110 mg L−1) was used as trapping reagent
to detecting hydroxyl radicals. This reacts with H2O2

(10.0 mg L−1) under simulated solar light using the same exper-
imental conditions than those to diuron and amoxicillin. HPLC
(Shimadzu LC20A) determination of SA and its initial reaction
byproducts: catechol, 2,3-, and 2,5-dihydroxybenzoic acid (2,3-
DHBA and 2,5-DHBA) were achieved using a mobile phase
composed by citrate buffer (80%), acetonitrile (10%), and meth-
anol (10%) at pH 3.0, a flow of 0.5 mL min−1, and a C-18 RP
column Nucleosil 100-5. Detection wavelengths were 275 nm
(Catechol), 305 nm (AS and 2,3-DHBA), and 326 nm (2,5-
DHBA).

Table 1 Ferric ions and H2O2 concentrations determined by
experimental design 22

Experiments [H2O2] (mg L−1) [Fe3+] (mg L−1)

E1 (central point) 8.0 0.50

E2 0.5 0.50

E3 8.0 0.05

E4 (+1) 15.0 0.90

E5 1.0 0.90

E6 8.0 0.50

E7 15.0 0.10

E8 7.0 1.06

E9 17.9 0.50

E10 (−1) 1.0 0.10
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Degradation experiments in presence of fluoride,
bicarbonate/carbonate, and humic acids

These experiments were carried out in presence of H2O2 concen-
trations suggested by the experimental design for diuron and
amoxicillin and ferric iron concentrations recommended by
WHO for drinking water (0.3 mg L−1) (WHO 1997). Fluoride,
bicarbonate/carbonate, and humic acid concentrations were used
at values often found in surface and groundwater samples
(Sciacca et al. 2010; Gutiérrez-Zapata et al. 2016).

Determination of total iron by atomic absorption
spectroscopy

Total iron concentration was measured by flame atomic absorp-
tion spectroscopy (AAS) using a Shimadzu AA-7000 equip-
ment, at λ = 248.3 ± 0.2 nm (LoQ= 0.03 mg L−1). Aliquots of
25 mL were acidified and directly measured by AAS in order to
determine total (dissolved and suspended) iron of the solution.

HPLC/MS measurements

Degradation byproducts of diuron and amoxicillin produced
during their photo-induced degradation were monitored by
using a HPLC (Hitachi Elite LaChrom) equipped with a RP
C18 column Nucleosil 100–5 at 30 °C (using the same chro-
matographic conditions previously mentioned) coupled with a
mass spectrometer (Bruker Amazon SL) with an electro-spray
ionization (ESI) at a voltage of 140 V and an ionization tem-
perature of 140 °C for diuron and 100 °C for amoxicillin.

Results and discussion

Effect of ferric ion and hydrogen peroxide
concentration on photo-Fenton degradation
of diuron and amoxicillin in Milli-Q water at initial
neutral pH by using an experimental design 22

Diuron removal experiments are shown in Fig. 1a at initial
pH 7.0 in Milli-Q water during 75 min of simulated sunlight
irradiation. Experiments with lower and higher hydrogen per-
oxide concentration (Table 1: E2, E5, E9, and E10) exhibited
low diuron removal. When H2O2 concentration oscillated be-
tween 8.0 and 15.0 mg L−1, it was obtained the highest diuron
removal. It is interesting to highlight that low ferric ion con-
centrations (0.05–1.06 mg L−1) were enough to achieve high
rates of diuron degradation under simulated sunlight expo-
sure. However, this removal was not performed at neutral
pH. Figure 1 b shows that in all experiments, pH dropped
rapidly to 3.5 in the first 15 min of simulated sunlight irradi-
ation. These findings were already reported by Romero et al.
(2016) and Barona et al. (2015) who claimed that in photo-

Fenton reactions at initial circumneutral pH, this pH dropping
could due to formation of resorcinol oxidation byproducts of
acidic nature.

Surface response for diuron degradation developed to
45 min of simulated sunlight irradiation (where greater vari-
ability in degradation was observed between experiments) re-
vealed that the optimal concentrations of ferric ion and hydro-
gen peroxide to obtain the highest diuron removal were 0.84
and 9.7 mg L−1, respectively (R2 = 0.9927) (Fig. 2a). Pareto
diagram (Fig. 2b) shows the main effects of the ferric and
H2O2 interaction after 45 min of irradiation. Results indicate
that the most representative effect in the model is the quadratic
term of the H2O2 concentration explaining why the surface
response exhibited its curvature. Meanwhile, terms of ferric
and H2O2 concentration and ferric-H2O2 interaction showed a
minor effect. Another important feature of the surface
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Fig. 1 aDegradation of diuron (10.0mg L−1) inMilli-Q water at different
concentrations of ferric ions and H2O2 (H2O2/Fe) and initial pH 7.0 under
simulated sunlight irradiation (300 W m−2). b pH monitoring under
sunlight irradiation. Numbers into figure correspond to hydrogen
peroxide and iron concentration respectively
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response was that at H2O2 concentration interval between 7.0
and 10.0mg L−1, diuron degradation was not strongly affected
by the ferric iron concentration. When hydrogen peroxide
concentration was high (15.0–18.0 mg L−1), a detrimental
effect caused on diuron degradation was observed. This could
be related by the fact that the hydrogen peroxide at these
concentrations could act as a HO• scavenger leading to the
production of HO2

• radicals (Eq. 1) which can undergo further
disproportion reaction producing H2O2 (Eq. 2) (Pignatello
et al. 2006):

HO•þ H2O2→HO�
2 þ H2O ð1Þ

HO∙
2 þ HO∙

2→O2 þ H2O2 ð2Þ

Amoxicillin (AMX) removal during 60 min of simulated
sunlight irradiation is depicted on Fig. 3a. Experiments E2, E5,
and E10 with low H2O2 concentration (Table 1) exhibited the
worse results, while those with intermediate and high ferric ion
concentrations (0.1, 0.5, 0.9, and 1.06mgL−1) and highest H2O2

concentrations of 7.0, 8.0, 15.0, and 17.89 mg L−1 (E4, E6, E7,

E8, and E9) showed the best removal results during 60 min of
simulated sunlight irradiation. In addition, Fig. 3b revealed that
pH dropped as well during the experiments; however, this de-
crease was minor (5.6) than the value obtained with diuron.

Analysis of surface response for amoxicillin degradation af-
ter 10 min of simulated sunlight irradiation (where greater var-
iability in degradation was observed between experiments)
showed that the optimal concentrations of ferric ions and
H2O2 were 1.06 and 15.2 mg L−1, respectively (R2 = 0.9987)
(Fig. 4a). Pareto diagram (Fig. 4b) showed this time that param-
eters involved in the process with positive effect were iron and
H2O2 concentration while the quadratic effect of hydrogen per-
oxide and the combination of ferric and H2O2 exhibited a minor
negative effect. A lineal relationship between AMX degrada-
tion and iron and hydrogen peroxide concentration was found.
This behavior generates a response surface with an upward
shape indicating that it was not possible to find an optimal range
in the ferric and hydrogen peroxide concentrations studied.

Since pH decreased rapidly during the first minutes of sim-
ulated sunlight irradiation, it is possible to suggest that several
water-soluble ferric aqua-complexes could be generated. It is

Fig. 2 a Analysis of surface response and b Pareto diagram for diuron degradation obtained from the experimental design 22. r2 = 0.9927
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well known that Fe(OH)2+ complex is the main ferric specie at
pH values between 2.5 and 5.0. Fe(OH)2+ is a very
photoactive complex absorbing light comprised between 290
and 400 nm leading efficiently to the production of HO• rad-
icals (Eq. 3) (quantum yield of HO• radical production at λ =
280 nm = 0.31) (Faust and Hoigné 1990; Šima andMakáňová
1997; Feng and Nansheng 2000).

Fe OHð Þ2þ þ hv→Fe2þ þ HO• ð3Þ

Thus, once pH decreased at values between 5.0 and 3.5 in
Milli-Q water experiments, the photolysis of water-soluble
Fe(OH)2+ aqua-complex would be responsible for diuron
and AMX abatement by the formation of HO• radicals. In
addition, ferrous ions (Fe2+) could be re-oxidized to ferric
ones by molecular oxygen or by Fenton reaction. This latter
would lead the concomitant production of HO• extra (Eq. 4)
(Pignatello et al. 2006):

Fe2þ þ H2O2→HO•þ Fe3þ þ OH− k ¼ 53 M−1s−1 ð4Þ

Control experiments (Fig. 5a) revealed that diuron photol-
ysis under sunlight irradiation did not play an important role in
the herbicide oxidation. In contrast, Fenton reaction (dark
conditions) exhibited a diuron removal close to 20% and
UV-B photolysis of H2O2 achieved diuron removals of 80%
after 75 min of simulated sunlight irradiation.

Figure 5 b shows results about control experiments carried
out in AMX degradation. This time, AMX photolysis was
important since almost 55% of antibiotic was removed while
Fenton reaction (dark) exhibited an AMX removal close to
40%. In contrast, UV-B H2O2 photolysis led a high AMX
removal around 80% after 75 min of simulated sunlight irra-
diation. Several studies have reported that AMX undergoes
photolysis/hydrolysis reactions (Lamm et al. 2009; Pérez-
Parada et al. 2011; Arsand et al. 2018). However, these studies
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Fig. 3 a Degradation of
amoxicillin (10.0 mg L−1) in
Milli-Q water at different
concentrations of ferric ions and
H2O2 (H2O2/Fe) and initial
pH 7.0 under simulated sunlight
irradiation (300 W m−2). b pH
monitoring under sunlight
irradiation. Numbers into figure
correspond to hydrogen peroxide
and iron concentration
respectively
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reported that although AMX suffered photo-transformations,
it was still found after 24 h of simulated sunlight irradiation
(Arsand et al. 2018). On the other hand, AMX hydrolysis was
dependent on the pH values since this reaction was completed
quickly at basic pH (10), while at acidic pH, AMX residues
were present after 5 h (Nägele and Moritz 2005).

Despite that H2O2 absorbs mainly UV-C light leading to
the formation of HO• radicals (Shu et al. 2013; Lopez-Alvarez
et al. 2016), it exhibits low UV-B light absorption that also
could lead to its photolysis and to the consequent production
of these radicals. In our experimental conditions, UV-C light
cannot reach the solution because photo-reactor vessels are
built of Pyrex glass which cut-off wavelengths below
290 nm. Figure 6 shows the light absorption of H2O2 com-
prised between 290 and 350 nm together with the emission
spectrum of the solar simulator and the Pyrex glass light trans-
mission. As it can be observed in Fig. 6, in our experiments,

only UV-B light reaches the reaction solution, being respon-
sible for H2O2 photolysis (in a lower extent in comparison
with UV-C) and the concomitant production of HO• radicals.
This possible production of HO• radicals by UV-B light was
evaluated by using salicylic acid as HO• radical-trapping re-
agent. Production of 2,3-, 2,5-dihydrobenzoic acid and cate-
chol from salicylic acid (110 mg L−1) in presence of
10.0 mg L−1 of H2O2 at initial pH 7.0 under solar simulated
light is indicative of HO• radicals presence, as was reported by
Chang et al. (2008). Insert in Fig. 7 shows that salicylic acid
underwent a degradation of around 25% after 14 min of sim-
ulated sunlight irradiation and 10.0 mg L−1 of H2O2 with the
concomitant formation of 2,3- and 2,5-dihydrobenzoic acid
and catechol. 2,3- and 2,5-DHBA were formed after 10 min
of sunlight irradiation while catechol was produced during
whole experiment. These byproducts are compatible with at-
tack of HO• radicals on salicylic acid molecule which could be

Fig. 4 a Analysis of surface response and b Pareto diagram for amoxicillin degradation obtained from the experimental design 22. r2 = 0.9987

1614 Environ Sci Pollut Res (2020) 27:1608–1624



formed by UV-B H2O2 photolysis (Chang et al. 2008). Serra-
Clusellas et al. (2018) and others (Cataldo 2014; Huang et al.
2018) recently also showed evidence that UV-B light could
induce H2O2 photolysis and participate in the degradation of
organic pollutants. Therefore, in the same way, we could ex-
plain the strong removal of diuron and AMX observed in the
degradation control experiments by photolysis of H2O2.

Removal of diuron and amoxicillin by photo-Fenton
process at neutral pH in presence of fluoride,
bicarbonate/carbonate, and humic acids

Two concentrations of fluoride ((−) 0.1 and (+) 1.0 mg L−1)
and humic acids (HA) ((−) 2.0 and (+) 5.0 mg L−1) were

chosen while bicarbonate/carbonate concentration was fixed
at 100.0 mg L−1 simulating typical concentrations of these
anions and HA present in natural surface and well water sam-
ples (Sciacca et al. 2010; Avigliano et al. 2015; Gutiérrez-
Zapata et al. 2017b; Alvear-Daza et al. 2018b).

Since WHO recommends values of ferric concentrations in
drinking water around 0.3 mg L−1 (WHO 1997), this concen-
tration was chosen to perform experiments containing anions
and humic acid. At this iron concentration (0.3 mg L−1), the
mathematical model calculated by the surface response to di-
uron (Eq. 5) and AMX (Eq. 6) revealed that pollutant removal
did not undergo a major change when optimal H2O2 concen-
trations were used (9.7 and 15.2 mg L−1 for diuron and AMX
respectively).

Diuron deg% ¼ 63:599þ 6:62256*H2O2

þ 7:74771*Fe3þ−0:448815* H2O2ð Þ2

þ 2:47637*H2O2*Fe3þ−18:8442* Fe3þ
� �2

ð5ÞEquation ID=t=t

AMX deg% ¼ 32:509þ 3:78914*H2O2

þ 34:8114*Fe3þ−0:0882313* H2O2ð Þ2

−1:03737*H2O2*Fe3þ−3:04702* Fe3þ
� �2

ð6Þ

Dark reactions in presence of ferric ions (0.3 mg L−1), hy-
drogen peroxide (9.7 mg L−1), fluoride, HA, and bicarbonates/
carbonates revealed that diuron underwent a partial degradation
(around 20 and 25%) (Figure S2a supporting material).
Experiments carried out in absence of ferric ions and only in
presence of 9.7 mg L−1 of hydrogen peroxide showed diuron
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removal close to 50 and 75% (Fig. 8a). The simultaneous pres-
ence of both ferric ions (0.3 mg L−1) and hydrogen peroxide
(9.7 mg L−1) under sunlight irradiation in presence of ions and
HA exhibited a high diuron degradation (85%) almost compa-
rable with those experiments performed in Milli-Q water (blue
line). The pH monitoring (Fig. 8b) revealed that during all
experiments where anions and HAwere present, this parameter
did not undergo changes since it keeps almost unaltered except
in experiments performed without the presence of F−, HCO3

−/
CO3

= and HAwhere pH dropped rapidly below 3.5.

Dark experiments in presence of anions, humic acids, iron,
and H2O2 revealed that amoxicillin underwent a partial deg-
radation around 40 and 60% (Fig. S2b supporting material).
On the other hand, amoxicillin degradation under sunlight
irradiation (Fig. 9a) exhibited the same behavior depicted for
diuron. In these experiments, both hydrogen peroxide photol-
ysis and photo-Fenton reactions were the photochemical
events responsible for antibiotic removal. In presence of ferric
(0.3 mg L−1) and hydrogen peroxide (15.7 mg L−1, the opti-
mal value found) and high concentrations of fluorine and HA,
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amoxicillin underwent a strong degradation comparable with
the same experiment performed in Milli-Q water (blue line).
pH values in experiments carried out in presence of anions and
HA are kept constant (pH neutral) (Fig. 9b) while experiments
performed in Milli-Q water exhibited a strong pH drop (3.5).

It is well known that humic substances form soluble com-
plexes with ferric ions. These complexes have been already
studied in Fenton and photo-Fenton reactions and they are
attributed the degradation of several pollutants in water
(Voelker et al. 1997; Fukushima and Tatsumi 2001; Georgi
et al. 2007; Lipczynska-Kochany and Kochany 2008;
Klamerth et al. 2011). It is likely accepted that ferric-humic
acid complexes absorb UV-A and visible light irradiation
leading to the reduction of ferric to ferrous iron (Eq. 7) and
the concomitant oxidation of the HA. Thus, ferrous iron could
participate in Fenton reactions with H2O2 yielding HO• radi-
cals (Eq. 4):Equation ID=b=t

Fe3þ−HA
� �þ hv→Fe2þ þ HA∙ ð7Þ

UV-A and visible light can photo-induce triplet excited
states in humic acids which can undergo further non-
radiative deactivation through energy and/or electronic trans-
fer to molecular oxygen leading to the production of O2

-•

radical and singlet oxygen (1O2) (Eq. 8). Both ROS exhibit a
poor oxidation capacity (Canonica et al. 1995; McNeill and
Canonica 2016):

3HS* þ O2→HSþ O∙−
2

�
or 1O2

�
ð8Þ

It is possible that at neutral pH, iron can also be forming
iron (hydr)oxides such as goethite and lepidocrocite which

have poor photocatalytic activity (Li et al. 2007; Chen et al.
2015). However, Du et al. (2008) have suggested that iron
(hydr)oxides in presence of fluoride can be more efficient in
the production of HO• radicals enhancing their photocatalytic
activity since it is possible the formation of surface Fe-F bonds
which could oxidize efficiently H2O.

Total iron determination experiments of filtrated water by
0.22 μm membranes were performed by atomic absorption
spectroscopy. Results showed presence of insoluble iron. A
strong iron removal by filtration was observed especially in
experiments with low HA concentrations (2.0 mg L−1) where
iron removal was around almost 50% (iron concentration after
filtration was 0.144 mg L−1) while those experiments where
water contains 5.0 mg L−1 of HA exhibited an iron removal of
38% (iron concentration after filtration was 0.216 mg L−1).
Presence of highest HA concentrations in water would lead
to the high formation of dissolved HA-Fe complexes.

On the other hand, it is well known that bicarbonate/
carbonate anions act as efficient HO• radical scavengers lead-
ing to carbonate radical (CO3

-•) formation (Eqs. 9 and 10)
(Busset et al. 2007). Equation 10 could explain why there
was a slight increasing of pH during the experiments:

HCO−
3 þ HO•→CO−∙

3 þ H2O k ¼ 8:5� 106M−1s−1 ð9Þ
CO¼

3 þ HO•→CO−∙
3 þ OH− k ¼ 3:9� 108M−1s−1 ð10Þ

Although CO3
–• has a lower oxidation potential (CO3

–

• /CO3
= E° = 1.7 V vs NHE) (Busset et al . 2007;

Dell’Arciprete et al. 2012) than hydroxyl radical, there are
several studies reporting its ability to oxidize organic pollut-
ants in water (Busset et al. 2007; Pétrier et al. 2010;
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Dell’Arciprete et al. 2012). Thus, in our experimental condi-
tions, bicarbonate/carbonate anions could generate carbonate
radicals by reaction with HO• and the former could also par-
ticipate in diuron and AMX degradation.

Evaluation of diuron and amoxicillin degradation
byproducts by HPLC/MS

Diuron degradation byproducts found in Milli-Q water and
samples containing anions and HA are presented in Table 2.
The most characteristic feature was the presence of N-
demethylated byproducts in both experimental conditions cor-
responding to m/z ratios of 232, 248, 250, and 264. A peak
with retention time of 4.2 min and m/z of 220 was related to
the presence of a diuron metabolite produced by the attack of
HO• radicals on the aromatic ring of a demethylated
byproduct. All these findings were accorded to previous

studies reported on the literature where it was argued that the
main oxidation route of diuron in photo-Fenton process is
related with the attack of HO• radicals on the methylurea
group of the molecule (Fig. 10) (Farré et al. 2007).
However, in experiments carried out in presence of anions
(F− and HCO3

−/CO3
=), the possible formation of CO3

–• could
also lead to the formation ofN-demethylated byproducts since
carbonate radical can also attack electrophilic sites of the mol-
ecule by electron transfer or hydrogen abstraction reactions,
such as was reported by Dell’Arciprete et al. (2012) in the
oxidation of some neonicotinoid insecticides in the presence
of CO3

–•. Byproducts obtained during the reaction demon-
strated the possibility of electron transfer and hydrogen ab-
straction. Regarding toxicity of some byproducts generated
by photo-Fenton treatment of diuron aqueous solutions,
Farré et al. (2007) found that presence of methylurea or 1,1-
methylurea as degradation byproducts could be linked to high

Table 2 m/z, chemical structures, retention times, and experimental
conditions of diuron byproducts obtained from HPLC/MS
measurements in photo-Fenton experiments ([Fe3+]: 0.3 mg L−1;
[H2O2]: 9.7 mg L−1) realized in Milli-Q water and in presence of

fluorine ((−): 0.1 mg L−1; (+): 1 mg L−1) humic acids ((−) 2.0 mg L−1;
(+) 5.0 mg L−1) and carbonates (100.0 mg L−1) under simulated sunlight
irradiation (300 W m−2) at initial pH 7.0

m/z Chemical structure Retention time
(min)

Sample

232
(Diuron) 4,7

Standard

Photo-Fenton Milli-Q water

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

220 4,2
F

-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

248 4,1

Photo-Fenton Milli-Q water

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

250 4,3
F

-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

264 4,2

Photo-Fenton Milli-Q water

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

1618 Environ Sci Pollut Res (2020) 27:1608–1624



toxicity of treated effluents. Although toxicity assessment was
not evaluated in this study, further experiments about this
issue are necessary.

On the other hand, AMX exhibited the presence of several
oxidation byproducts (Table 3). Among them, it was found
metabolites with m/z of 383 and 366 related to AMX
hydrolysis. Trovó et al. (2011) and others (Nägele and
Moritz 2005; Lamm et al. 2009; Pérez-Parada et al. 2011)
have argued that AMX hydrolysis could produce the opening
of β-lactam ring leading to the formation of amoxicillin

penicilloic acid with m/z around 383. Then, this molecule
can undergo further hydrolysis yielding a metabolite with
m/z 339. Arsand et al. (2018) have suggested that amoxicillin
penicilloic acid could be also formed by amoxicillin photoly-
sis. The molecule with m/z 366 is often assigned to amoxicil-
lin diketopiperazine 2′,5′, and it has been also detected as
photolysis and hydrolysis byproduct in water (Fig. 11).

The molecule with m/z 400 could be produced by the attack
of HO• radicals on aromatic ring of amoxicillin penicilloic acid
as it was claimed by Trovó et al. (2011). However, in presence

Fig. 10 Mechanism of diuron degradation by photo-induced HO• or CO3
–• radicals obtained from HPLC/MS measurements

Environ Sci Pollut Res (2020) 27:1608–1624 1619



of bicarbonates/carbonates, it could be possible that carbonate
radicals attack the aromatic ring of amoxicillin molecule lead-
ing to formation of hydroxylated byproducts as well. Busset
et al. (2007) have suggested that CO3

–• radical could attack
phenol molecules resulting in the formation of phenoxyl radical
by electron transfer or hydrogen abstraction. The subsequent
reaction of phenoxyl radical with dissolved oxygen leads to
peroxyl radical formation whose disproportionation reaction
could produce benzoquinone and dihydroxybenzene.

Especially under conditionswith high fluoride and humic acid
concentrations where amoxicillin underwent the highest degra-
dation at neutral pH, a molecule with m/z around 176 was de-
tected. This byproduct was also detected by Trovó et al. (2011),
and it could come from a strong attack of HO•/CO3

–• radicals to
amoxicillin molecule or on hydrolysis/photolysis byproducts.

Experimental results would suggest that both diuron and
amoxicillin molecules can be degraded by photo-Fenton pro-
cesses using iron at concentrations present naturally and low

Table 3 m/z, chemical structures, retention times, and experimental
conditions of amoxicillin byproducts obtained from HPLC/MS
measurements in photo-Fenton experiments ([Fe3+]: 0.3 mg L−1;
[H2O2]: 9.7 mg L−1) realized in Milli-Q water and in presence of

fluorine ((−): 0.1 mg L−1; (+): 1 mg L−1) humic acids ((−) 2.0 mg L−1;
(+) 5.0 mg L−1) and carbonates (100.0 mg L−1) under simulated sunlight
irradiation (300 W m−2) at initial pH 7.0

m/z Chemical structure Retention time
(min)

Sample 

365 
(AMX) 4.7

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

Photo-Fenton Milli-Q water

176 4.9 F
-
(+), HA (+), Fe

3+
H2O2

339 4.8

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

Photo-Fenton Milli-Q water

366 4.9
F

-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

383 4.5

F
-
(-), HA (-), Fe

3+
H2O2

F
-
(+), HA (+), Fe

3+
H2O2

Photo-Fenton Milli-Q water

400 4.9
Photo-Fenton Milli-Q water

F
-
(+), HA (+), Fe

3+
H2O2
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H2O2 concentrations mainly through the attack of photo-
induced hydroxyl radicals. On the other hand, presence of
anions such as bicarbonates/carbonates and fluoride and hu-
mic acids leads to the several photochemical reactions such as
photo-Fenton (dissolved ferric-humic acid complexes),
photocatalysis (colloidal iron) and UV-B H2O2 photolysis,
photo-inducing HO•, and CO3

–• radicals at circumneutral pH.

Conclusions

An experiment design 22 evidenced the feasibility to use low
ferric ion concentrations as those likely found in natural water
sources and low concentrations of H2O2 to degrade diuron and
amoxicillin in Milli-Q water at initial pH of 7.0. However, this
latter parameter decreased during the first minutes of simulated
sunlight irradiation reaching acidic value; thus, diuron and
amoxicillin were removed by a classical photo-Fenton reaction
at acidic pH. In contrast to this, when experiments were per-
formed in presence of HCO3

−/CO3
=, F−, and humic acids (sim-

ulating natural conditions), pH did not undergo strong changes
maintaining its value around 7.0–6.5. Under these experimental
conditions, several photochemical events such as photo-Fenton,
photocatalysis, and UV-B H2O2 photolysis could be induced
being responsible of diuron and amoxicillin abatement. On the

other hand, amoxicillin exhibited the presence of several deg-
radation byproducts, some of them related with hydrolysis/
photolysis reactions and others possibly coming from the attack
of photo-induced HO• or/and CO3

–• radicals. Regarding diuron,
it was observed that this molecule underwent an oxidative at-
tack on the methylurea group which could be achieved by the
reaction with both HO• and CO3

–• radicals. Finally, it could be
possible to obtain the degradation of amoxicillin and diuron in
natural sources of water containing ferric ions with the addition
of low amounts of H2O2 by photo-Fenton reaction carried out
to circumneutral pH in presence of HCO3

−/CO3
=/, F− and hu-

mic acids at natural concentrations.
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