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Abstract. Given a bicategory C and a family W of arrows of C, we give conditions
on the pair (C,W) that allow us to construct the bicategorical localization with respect
to W by dealing only with the 2-cells, that is without adding objects or arrows to C.
We show that in this case, the 2-cells of the localization can be given by the homotopies
with respect to W, a notion defined in this article which is closely related to Quillen’s
notion of homotopy for model categories but depends only on a single family of arrows.
This localization result has a natural application to the construction of the homotopy
bicategory of a model bicategory, which we develop elsewhere, as the pair (Cfc,W) given
by the weak equivalences between fibrant-cofibrant objects satisfies the conditions given
in the present article.

1. Introduction

The subject of this article is the localization of a bicategory C, that is the process of
making a familyW of arrows of C into equivalences in an appropriate universal sense. As
far as we know, this situation was first considered in [?], where a bicategorical version of
the calculus of fractions of [?] is given and a localization construction is performed in this

case. This amounts to a pseudofunctor C i−→ C[W−1] which is universal in the following

sense: for any bicategory D, precomposition with i, Hom(E ,D)
i∗−→ HomW(C,D) is a

biequivalence of bicategories. Note that here HomW(C,D) stands for a subbicategory of
Hom(C,D) considered in [?]. Its objects are the pseudofunctors that map the arrows of
W to equivalences, and its arrows are the natural transformations between them that,
when interpreted as pseudofunctors from C into a cylinder category, again map the arrows
of W to equivalences (see [?, Th. 21] for details).

As a motivation, let us consider also the example of the homotopy category of a model
category [?]. The homotopy category of a given model category C is its localization
with respect to the weak equivalences, and a construction of it is given in [?] in which the
arrows are given by the homotopy classes of arrows of C. As is well-known, the localization
of a category always exists and can be constructed by adding formal inverses, that is by
identifying classes of zigzags; however this construction is unmanageable in practice. This
is a motivation for the constructions in [?], where zigzags of length 2 suffice, and in [?],
where the candidates for the inverses are already present in the model category and the
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localization can be constructed as a quotient (see also [?, 10.6], or [?, §3.1] for a detailed
explanation of this situation in an abstract context).

This paper deals with the situation analogous to that of [?], [?], that is the construction
of the localization as a quotient, but in dimension 2. This amounts to constructing a
localizing bicategory which has the same objects and arrows as the original bicategory.
All the difficulty is thus in the 2-cells of this bicategory, which should in a sense include
at the same time the original 2-cells of C and new 2-cells corresponding to a notion of
homotopy.

Note that if one starts with a category as a trivial bicategory, the quotient category
given by the homotopy relation is obtained from our localizing bicategory by applying π0

(connected components).
For an arbitrary bicategory C and a family W of arrows, we consider a notion of

homotopy between arrows of C, that is a bicategorical notion of homotopy which depends
only on the family W . The reader should be aware that homotopies have a direction and
are in general non-invertible. In fact, the homotopies can be thought of as something that
would be an actual 2-cell if the arrows of W were equivalences, and when this is the case
we can in fact associate to each homotopy H a 2-cell Ĥ. We can apply pseudofunctors

to homotopies, and thus for any pseudofunctor C F−→ D which maps the arrows of W to
equivalences we can construct in this way a 2-cell F̂H of D. The homotopies are the basic
ingredient for the following construction which we introduce in this paper.

The bicategory Ho(C,W) and the 2-functor C i−→ Ho(C,W). The objects and
the arrows of Ho(C,W) are those of C. The 2-cells correspond to equivalence classes
of paths of homotopies. Explicitly, a 2-cell f =⇒ g ∈ Ho(C,W) is given by the

class [Hn, . . . , H2, H1] of a finite sequence f
H1
+3 f1

H2
+3 f2 · · · fn−1

Hn
+3 g of homo-

topies, where [Hn, . . . , H2, H1] = [Km, . . . , K2, K1] if and only if, for every pseudofunc-

tor C F−→ D that maps the arrows of W to equivalences, F̂Hn ◦ · · · F̂H2 ◦ F̂H1 =

F̂Km ◦ · · · F̂K2 ◦ F̂K1. There is a 2-functor C i−→ Ho(C,W), which is the identity on
objects and arrows and maps a 2-cell µ of C to the class of a homotopy Iµ which satisfies
that F̂ Iµ = Fµ for any F as above (such homotopies exist and are explicitly constructed).

We consider the full subbicategory Hom(W,Θ)(C,D) of Hom(C,D) in which the ob-
jects are the pseudofunctors that map the arrows of W to equivalences (note that,
unlike the definition of HomW given in [?] and mentioned at the beginning of the
present introduction, now the 1-cells are all pseudonatural transformations between
these pseudofunctors). We prove the following fundamental fact regarding the 2-
functor i (Theorem ??, which holds without any hypothesis on W): precomposing

with i, Hom(Ho(C,W),D)
i∗−→ Hom(C,D) is an isomorphism of bicategories between

Hom(iW,Θ)(Ho(C,W),D) and Hom(W,Θ)(C,D). Thus it will be an isomorphism of bi-
categories between Hom(Ho(C,W),D) and Hom(W,Θ)(C,D) as soon as i maps the arrows
of W to equivalences.

Going back to the example of the homotopy category of a model category, a reason
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why in this case the candidates for inverses are present is that, as is well known, any weak
equivalence between fibrant-cofibrant objects can be factored as a section followed by a
retraction. We say that an arrow is split if it is either a retraction or a section. Recall that
W is said to satisfy the “3 for 2” condition if, for any three arrows that satisfy fg = h,
whenever two of them are in W , so is the third.

We have weakened these notions to formulate their adequate bicategorical versions,
and we have shown (Proposition ??): if W satisfies 3 for 2, then any split arrow in W is
mapped to an equivalence by i.

We define a pseudofunctor C i−→ E to be the localization of C with respect to W
if it is universal in the following sense: for any bicategory D, precomposition with i,

Hom(E ,D)
i∗−→ Hom(W,Θ)(C,D) is a biequivalence of bicategories. We say that this lo-

calization is strict if these biequivalences are in fact isomorphisms. Combining the two
results above, that is Theorem ?? and Proposition ??, we obtain the main theorem of
this article (Theorem ??): If W satisfies 3 for 2 and each arrow of W can be written as

a composition of split arrows in W , then C i−→ Ho(C,W) is the strict localization of C
with respect to W .

We note that this is a stronger result than what one may expect to get in a bicategorical
context, since we get an isomorphism of bicategories and not just an equivalence or a
biequivalence. By the usual reasoning with universal properties, any other construction of
the localization of C with respect toW will yield a biequivalent bicategory, not necessarily
isomorphic.

The following is an application we have for this construction of Ho(C,W), and the
main reason why we have developed it. The axioms of model category can be generalized
in a natural way to define the notion of model bicategory ([?], [?], [?]). The theory of
model bicategories has potential applications in the homotopy theory of topoi and in
strong shape theory. Also, it is expected that this theory could provide a formal setting
in which to develop (∞, 2)-category theory (see the introduction of [?]). The pair (Cfc,W)
given by the weak equivalences between fibrant-cofibrant objects of a model bicategory C
satisfies the hypothesis of Theorem ??, and this allows for an application of this result to
the construction of the homotopy bicategory of a model bicategory, which we develop in
[?].

2. Preliminaries on bicategories

While the theory of bicategories is nowadays well-established, we prefer to explicitly define
its basic concepts in order to fix the notation that we will use throughout the paper.

A bicategory C consists of all the following:

1. A family of objects that we will denote by X, Y, Z, . . . .

2. For each pair of objects X, Y ∈ C a category C(X, Y ) whose objects are the arrows

X
f−→ Y of C and whose arrows are the 2-cells α : f ⇒ g between those arrows. Thus we

have a vertical composition of 2-cells which we denote by “◦”, and identity 2-cells “idf”.
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We abuse the notation by denoting indistinctly f
idf

=⇒ f or f
f

=⇒ f , thus f = idf as
2-cells. Note that for any 2-cell α as above we have α ◦ f = α = g ◦ α, and in particular
f ◦ f = f .

3. For each X, Y, Z ∈ C, a functor C(Y, Z) × C(X, Y ) −→ C(X,Z). This is a horizontal

composition which we denote by “∗ ”, for each configuration X

f1 //
α⇓
f2
// Y

g1 //
β⇓
g2
// Z we have

g1 ∗ f1
β∗α
==⇒ g2 ∗ f2.

All these data have to satisfy the following axioms:

H1. For each X
f−→ Y

g−→ Z ∈ C, idg ∗ idf = idg∗f .

H2. For each configuration X

f1

α⇓
//

f2

β ⇓
//

f3//
Y

g1

γ ⇓
//

g2

δ ⇓
//

g3//
Z , (δ ∗ β) ◦ (γ ∗ α) = (δ ◦ γ) ∗ (β ◦ α). This

is the “Interchange law”.

In order to avoid parentheses, we consider “ ∗ ” more binding than “ ◦ ”, thus
(δ ∗ β) ◦ (γ ∗ α) above could be written as δ ∗ β ◦ γ ∗ α.

4. Finally, part of the structure of C is given by the identities, the unitors and the
associator as follows:

I. For each X ∈ C, we have a 1-cell X
idX−→ X.

U. For each X
f−→ Y ∈ C, we have invertible 2-cells f ∗ idX

λ
=⇒ f , idY ∗ f

ρ
=⇒ f .

A. For each W
f−→ X

g−→ Y
h−→ Z ∈ C, we have an invertible 2-cell f ∗ (g ∗ h)

θ
=⇒

(f ∗ g) ∗ h.

We will use these same letters θ, ρ, λ for any bicategory, and we will denote the inverses
of these 2-cells also by the same letters. The unitors and the associators are required to
satisfy the well-known pentagon and triangle identities ([?, XII,6]) and are required to
be natural in each of the variables. These naturalities are expressed by the following
equalities of 2-cells which we record here for convenience:

Nλ. For each X

f //
α⇓
g
// Y ∈ C, λ ◦ α ∗ idX = α ◦ λ.

Nρ. For each X

f //
α⇓
g
// Y ∈ C, ρ ◦ idY ∗ α = α ◦ ρ.

Nθ. For each configuration W

f1 //
α⇓
f2
// X

g1 //
β⇓
g2
// Y

h1 //
γ⇓
h2
// Z ∈ C, θ ◦γ ∗ (β ∗α) = (γ ∗β)∗α◦θ.

2.1.. As is well-known, in order to have a horizontal composition of general 2-cells it is
enough to have horizontal compositions between an arrow and a 2-cell:
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Assume that for each X
f // Y

g1 //
α⇓
g2
// Z , X

f1 //
α⇓
f2
// Y

g // Z ∈ C, we have 2-cells

X

g1∗f //
α∗f⇓
g2∗f

// Z and X

g∗f1 //
g∗α⇓
g∗f2

// Z , subject to the axioms:

W1. For each X

f1 //
α⇓
f2
// Y

g1 //
β⇓
g2
// Z ∈ C, (g2 ∗ α) ◦ (β ∗ f1) = (β ∗ f2) ◦ (g1 ∗ α).

W2. For each X
f−→ Y

g−→ Z ∈ C, idg ∗ f = g ∗ idf = idg∗f .

W3. For each X
f // Y

g1//
g2α⇓ //
g3β ⇓ //
Z ∈ C, (β ∗ f) ◦ (α ∗ f) = (β ◦ α) ∗ f .

For each X

f1 //
f2 α⇓//
f3 β ⇓ //

Y
g // Z ∈ C, (g ∗ β) ◦ (g ∗ α) = g ∗ (β ◦ α).

Then these axioms allow to define, for each configuration as in W1, the horizontal
composition β∗α by either one of the two compositions there. The correspondence between
the sets of axioms “H” and “W” is thus clear.

We will use this fact in order to define the horizontal composition of a bicategory
by defining only the horizontal compositions of 2-cells with arrows. We note also that
the axioms Nλ and Nρ above involve only these sorts of compositions, and as for axiom
Nθ, it is an easy exercise to show that it is equivalent to the following three axioms,
corresponding to putting two identity 2-cells out of the three α, β and γ in Nθ:

Nθ1. For W

f1 //
α⇓
f2
// X

g // Y h // Z ∈ C, θ ◦ h ∗ (g ∗ α) = (h ∗ g) ∗ α ◦ θ.

Nθ2. For W
f // X

g1 //
β⇓
g2
// Y

h // Z ∈ C, θ ◦ h ∗ (β ∗ f) = (h ∗ β) ∗ f ◦ θ.

Nθ3. For W
f // X

g // Y

h1 //
γ⇓
h2
// Z ∈ C, θ ◦ γ ∗ (g ∗ f) = (γ ∗ g) ∗ f ◦ θ.

Coherence. There is a well-known coherence theorem (see for example [?]) which gen-
eralizes the coherence theorem for tensor categories. Given any sequence of composable
arrows, the parentheses determine the order in which the compositions are performed.
The coherence theorem states that the arrows resulting of any choice of parentheses (and
adding or removing identities) are canonically isomorphic by a unique 2-cell built from the
associators and the unitors. This justifies the following abuse of notation which greatly
simplifies the computations:

2.2.. We write any horizontal composition of arrows omitting the parentheses and the
identities. In this way, the associators and the unitors disappear in the diagrams of
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2-cells.

Elevator calculus. In addition to the usual pasting diagrams, we will use the Elevator
calculus1 to write equations between 2-cells. In this article, each elevator represents a
composition of 2-cells in a bicategory. Objects are omitted, arrows are composed from
right to left, and 2-cells from top to bottom. Axiom H2 shows that the correspondence
between elevators and 2-cells is a bijection. Axiom W1 is the following basic equality for
the elevator calculus.

g1

β

f1

g2 f1

α

g2 f2

=

g1 f1

α

g1

β

f2

g2 f2

=

f2

β

f1

α

g2 g1

(1)

This allows to move cells up and down when there are no obstacles, as if they were
elevators.

Using the basic move (??) we form configurations of cells that fit valid equations in
order to prove new equations.

2.3. Definition. A pseudofunctor C F−→ D between bicategories is given by a

family of functors C(X, Y )
F−→ D(FX,FY ), one for each pair of objects X, Y of

C, invertible 2-cells idFX
ξX=⇒ F (idX), one for each object X of C and natural

isomorphisms ∗ ◦ (F × F )
φ

=⇒ F ◦ ∗ : C(X, Y )× C(Y, Z) −→ C(X,Z) with components

Fg ∗ Ff
φf,g
==⇒ F (g ∗ f), one for each triplet X, Y, Z of objects of C. As with the asso-

ciators and unitors, we will omit the subindices of ξ and φ, and use the same letters for
the inverses. The following equalities are required to hold:

For each X
f−→ Y ∈ C, P1.

Ff

ξ

Ff FidX

Ff

φ

=

Ff

Ff

P2.

ξ

Ff

FidX Ff

Ff

φ

=

Ff

Ff

For each W
f−→ X

g−→ Y
h−→ Z ∈ C, P3.

Fh FgXXFf

F (hg)

φ

Ff

F (hgf)

φ

=

FhXXFg Ff

Fh F (gf)

φ

F (hgf)

φ

1Developed in 1969 by the second author for draft use.
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We will often use the naturality of φ, thus we make it explicit:

For each X

f1 //
α⇓
f2
// Y

g1 //
β⇓
g2
// Z ∈ C, Nφ.

Fg1 Ff1

F (g1f1)

φ

F (βα)

F (g2f2)

=

Fg1

Fβ

Ff1

Fα

Fg2 Fg1

F (g2f2)

φ

A 2-functor is a pseudofunctor such that all the 2-cells φ and ξ are identities.

2.4. Definition. A pseudonatural transformation θ : F ⇒ G : C → D between pseudo-

functors consists of a family of arrows FX
θX−→ GX, one for each X ∈ C and a family of

invertible 2-cells

Gf

θf

θX

θY Ff

, one for each X
f−→ Y ∈ C, satisfying the following axioms:

PN0. For each X ∈ C,

θX

ξ

θX FidX

=

ξ

θX

GidX θX

θidX

θX FidX

PN1. For each X
f→ Y

g→ Z ∈ C,

Gg Gf θX

θf

Gg θY

θg

Ff

θZ Fg Ff

θZ Fgf

φ

=

Gg Gf θX

Ggf

φ

θX
θgf

θZ Fgf

PN2. For each X

f //
α⇓
g

// Y ∈ C,

Gf

Gα

θX

Gg θX

θg

θY Fg

=

Gf θX

θf

θY Ff

Fα

θY Fg

As a special case, we have the notion of pseudonatural transformation between
2-functors. A 2-natural transformation between 2-functors is a pseudonatural transfor-
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mation such that θf is the equality for every arrow f of C.

2.5. Definition. A modification ρ : θ → η : F ⇒ G : C → D between pseudonatural
transformations is a family of 2-cells θX

ρX=⇒ ηX of D, one for each X ∈ C such that:

PM. For each X
f−→ Y ∈ C,

Gf θX

θf

θY

ρY

Ff

ηY Ff

=

Gf θX

ρX

Gf ηX

ηf

ηY Ff

Pseudofunctors, pseudonatural transformations and modifications can be composed in
order to define, for each pair C,D of bicategories, a bicategory Hom(C,D). We omit the
details as they are ubiquitous in the literature.

2.6. Definition. Let C F−→ D be a pseudofunctor. A configuration X
f1 //

f2
// Y

g1 //

g2
// Z ∈

C and another one FX

Ff1 //
α⇓
Ff2
// FY

Fg1 //
β⇓
Fg2
// FZ ∈ D determine a 2-cell F (g1 ∗ f1)

β∗Fα===⇒

F (g2∗f2) as the composition F (g1∗f1)
φ

=⇒ F (g1)∗F (f1)
β∗α
==⇒ F (g2)∗F (f2)

φ
=⇒ F (g2∗f2).

Note that if F is a 2-functor, β ∗F α = β ∗ α.

2.7. Remark. Given a configuration X

f1 //
α⇓
f2
// Y

g1 //
β⇓
g2
// Z ∈ C, from Definition ?? and

axiom Nφ in Definition ??, it follows that (Fβ) ∗F (Fα) = F (β ∗ α).

2.8.. Factorization of F . Let C F−→ D be a pseudofunctor. We give now a factorization

of F which will be very useful later. We define a bicategory CF , a pseudofunctor CF
F1−→ D

and a 2-functor C F2−→ CF such that F = F1F2.
We define the 0 and 1-dimensional aspects of CF (that is objects, arrows, identity

arrows and horizontal composition of arrows) as the ones of C. We define the 2-cells

of CF by putting exactly one 2-cell f
α̃

=⇒ g for each 2-cell Ff
α

=⇒ Fg of D. Vertical
composition of 2-cells is computed in D, and idf in CF is given by the 2-cell idFf of D.
The composition β̃ ∗ α̃ in CF is given by β ∗F α in Definition ??. The axioms H follow
immediately by the definition of ∗F and the corresponding axioms of C. The unitors and
associators of CF are obtained by applying F to the ones of C, i.e. they are the 2-cells
F̃ λ, F̃ ρ, F̃ θ. Their naturalities and the pentagon and triangle identities all follow in a
straightforward way from those of C, composing when needed with the isomorphism φ. We
leave the necessary details to the reader.
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The 2-functor F2 is defined by the formulas F2X = X, F2f = f , F2α = F̃α. The
pseudofunctor F1 is defined by the formulas F1X = FX, F1f = Ff , F1α̃ = α. Its
structural 2-cells ξ, φ are given by those of F .

This factorization has the following (universal) property:

2.9. Proposition. For any other factorization C G2−→ H G1−→ D of F that satisfies that
the 0 and 1-dimensional data of H are those of C and that G2 is a 2-functor which is the
identity on objects and arrows, there is a unique 2-functor E such that F2 = EG2 and
F1 = EG1, as in the following diagram:

C F //

G2

  

F2

  

D

H
E
��

G1

>>

CF

F1

MM

Proof. At the level of objects and arrows, EX = X, Ef = f is the only possible definition
such that F2 = EG2. Now, for each 2-cell f

α
=⇒ g of H the only possible definition

of Eα such that F1Eα = G1α is Eα = G̃1α (recall the definition of F1 on 2-cells).

Setting Eα = G̃1α, we must check that this determines a 2-functor. It is clear that E
preserves vertical compositions if and only if G1 does, and for the horizontal composition

we have that for X

f1 //
α⇓
f2
// Y

g1 //
β⇓
g2
// Z in H, E(β ∗ α) = Eβ ∗ Eα in CF if and only if

G1(β ∗ α) = G1β ∗F G1α = φ ◦ (G1β ∗ G1α) ◦ φ, which is precisely equation Nφ for
G1 (note that, since G2 is a 2-functor, the structural 2-cells φ of G1 are exactly the
ones of F ). We check now that for every 2-cell µ of C, EG2µ = F2µ: we have that

F2µ = F̃ µ = G̃1G2µ = EG2µ. Since both EG2 and F2 are 2-functors, we can conclude
that they coincide. Also, as we mentioned before, the structural 2-cells of G1 are the ones
of F which is also the case for F1. Then, since E is a 2-functor, the structural 2-cells
of F1E and G1 coincide and so we conclude that they are the same pseudofunctor which
finishes the proof.

2.10.. Equivalences and quasiequivalences. An arrow X
f−→ Y of a bicategory is

an equivalence if there exists an arrow Y
g−→ X (which we call a quasiinverse of f) and

invertible 2-cells g ∗ f ∼= idX , f ∗ g ∼= idY . It is well-known that these 2-cells can be taken
to satisfy the usual triangular identities, and we will assume that this is the case when

needed. It is also well-known that X
f−→ Y is an equivalence if and only if for every object

Z we have that the functor C(Z,X)
f∗−→ C(Z, Y ) is an equivalence of categories, and if

and only if for every Z so is C(Y, Z)
f∗−→ C(X,Z). We denote the family of equivalences

of a bicategory with the letter Θ. We say that f is a quasiequivalence if for every object
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Z the functors C(Z,X)
f∗−→ C(Z, Y ) and C(Y, Z)

f∗−→ C(X,Z) are full and faithful. Note
that in this case invertible 2-cells are preserved and reflected by these functors. We denote
the family of quasiequivalences of a bicategory with the letter Θq.

A pseudofunctor C F−→ D is a biequivalence of bicategories if there exist a pseudo-

functor D G−→ C (which we call a bi-inverse of F ) and pseudonatural transformations

GF
α

=⇒ idC, FG
β

=⇒ idD which are equivalences (that is, its components αX , βX are
equivalences in C, D). Note that in an equivalence of bicategories αX , βX are isomor-
phisms, and G is called a quasi-inverse, while in an isomorphism of bicategories αX , βX
are the identity arrows, and G is the inverse of F .

2.11. Remark. Regarding the factorization F = F1F2 of ??, for any X
f−→ Y in C,

if Ff is a quasiequivalence, so is F2f . We show that (F2f)∗ is full and faithful, the

case of (F2f)∗ being dual. Let g, h : Z −→ X and f ∗ g α̃
=⇒ f ∗ h, corresponding to

F (f ∗ g)
α

=⇒ F (f ∗ h). We have to show that there is a unique 2-cell g =⇒ h of CF whose
composition with f equals α̃. Consider the composition φαφ : Ff ∗ Fg =⇒ Ff ∗ Fh.

Since Ff is a quasiequivalence, there is a unique Fg
β

=⇒ Fh such that Ff ∗ β = φαφ,
and it is easy to check that β̃ is the unique desired 2-cell.

This remark is false in general for equivalences, which is our reason for considering
quasiequivalences in this paper. Since F2 is always a 2-functor, this allows to consider
2-functors instead of arbitrary pseudofunctors in some parts of the paper, which simplifies
the computations.

3. The homotopy bicategory

We fix a bicategory C and a family W of arrows of C containing the identities. We will
use the notation · ◦ // · for the arrows of W . We develop a theory of homotopies and
cylinders with respect to the class W (instead of working with three distinguished classes
as is the case for model categories). The main result we show is that the homotopies form
the 2-cells of a bicategory which, under two natural hypotheses onW , is the localization of
C with respect toW , in the sense that it universally turns these arrows into equivalences.

3.1. Definition. Let X ∈ C. A cylinder C (for X, with respect to W) is given by the

data C = (W,Z, d0, d1, x, s, α0, α1), fitting in

X
d0 //

d1

��

MMxMM

  

∼= ⇓ α0

W

◦s

��
∼= ⇑ α1

W ◦
s

// Z

. We denote the invertible

2-cell s ∗ d0
α0=⇒ x

α−1
1==⇒ s ∗ d1 by α = α−1

1 ◦ α0.

For comparison with Quillen’s definition of cylinder object in [?], assume that C is
a model category that we regard as a discrete bicategory, and W is the family of weak
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equivalences. Then a cylinder object as in [?, I.1, Def. 4] is a cylinder as in Definition ??
that satisfies some extra conditions, in particular Z = X, x = idX .

Consider now any cylinder (either as in the present paper or a cylinder object as

in [?]) C for an object X, and any arrow X ′
`−→ X. Then we can define a cylinder

C ′ = (W,Z, d0 ∗ `, d1 ∗ `, x ∗ `, s, α0 ∗ `, α1 ∗ `) for X ′, which we think of as the composi-
tion C ∗ `. Now, if C is a classical cylinder object as in [?], this is not anymore the case
for C ′ (note that this provides in particular new examples of cylinders as defined here).
In this way this new notion of cylinder arises as a natural way to define the composition
of arrows with homotopies (see ?? below for details). This is not only convenient for
the computation of such compositions, but also turns out to be unavoidable in order to
construct the homotopy bicategory with respect to a single class of weak equivalences
instead of a full model structure.

3.2. Definition. Given a cylinder C as above, we define the inverse cylinder
C−1 = (W,Z, d1, d0, x, s, α1, α0).
Also, for X ∈ C we define an identity cylinder CX = (X,X, idX , idX , idX , idX , idX , idX)
(recall our abuse of notation ??).

3.3. Definition. Let f, g : X → Y ∈ C. A left homotopy (with respect to W) H from

f to g, which we will denote by f
H +3 g, is given by the data H = (C, h, η, ε), where

C is a cylinder for X as in Definition ??, h is an arrow W
h−→ Y and η, ε are 2-cells

f
η

=⇒ h ∗ d0, h ∗ d1
ε

=⇒ g. We organize the data of a homotopy as follows

f
H +3 g:

X

x
  

d0 //

d1
//W

h //

◦s
��

Y

Z

f
η

=⇒ h ∗ d0

s ∗ d0
α0=⇒ x

α1⇐= s ∗ d1

h ∗ d1
ε

=⇒ g

(2)

We say that H has invertible cells if η and ε are invertible (recall that α0 and α1 are
always required to be invertible).

Throughout this article we will work only with left homotopies, and thus omit to write
the word “left”. As in dimension 1, left homotopies suffice to construct the localization
and right homotopies (which correspond to considering the same classW in Cop) are only
needed for the construction of the homotopy bicategory of a model bicategory that we
develop elsewhere.

3.4. Definition. If H as in Definition ?? has invertible cells, we define a homotopy
H−1 = (C−1, h, ε−1, η−1) from g to f .

3.5. Definition. Any cylinder C as in Definition ?? determines a homotopy d0
HC
+3 d1,

(recall our abuse of notation ??):
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d0
HC
+3 d1:

X

x
  

d0 //

d1
//W

idW //

◦s
��

W

Z

d0
d0=⇒ d0

s ∗ d0
α0=⇒ x

α1⇐= s ∗ d1

d1
d1=⇒ d1

We now make various constructions for homotopies that we will use later. In these
definitions we omit parentheses according to the abuse of notation ??. Let H be as in
(??):

3.6.. If g
µ

=⇒ g′ ∈ C, we define a homotopy µ ◦H from f to g′ as follows

f
µ◦H +3 g′:

X

x
  

d0 //

d1
//W

h //

◦s
��

Y ′

Z

f
η

=⇒ h ∗ d0

s ∗ d0
α0=⇒ x

α1⇐= s ∗ d1

h ∗ d1
ε

=⇒ g
µ

=⇒ g′

3.7.. If f ′
ν

=⇒ f ∈ C, we define a homotopy H ◦ ν from f ′ to g as follows

f ′
H◦ν +3 g:

X

x
  

d0 //

d1
//W

h //

◦s
��

Y ′

Z

f ′
ν

=⇒ f
η

=⇒ s ∗ d0

s ∗ d0
α0=⇒ x

α1⇐= s ∗ d1

h ∗ d1
ε

=⇒ g

3.8.. If Y
r−→ Y ′ ∈ C, we define a homotopy r ∗H from r ∗ f to r ∗ g as follows

r ∗ f r∗H +3 r ∗ g:
X

x
  

d0 //

d1
//W

r∗h //

◦s
��

Y ′

Z

r ∗ f r∗η
==⇒ r ∗ h ∗ d0

s ∗ d0
α0=⇒ x

α1⇐= s ∗ d1

r ∗ h ∗ d1
r∗ε
==⇒ r ∗ g

3.9.. If X ′
`−→ X ∈ C, we define a homotopy H ∗ ` from f ∗ ` to g ∗ ` as follows

f ∗ ` H∗` +3 g ∗ `:
X ′

x∗` !!

d0∗` //

d1∗`
//W

h //

◦s
��

Y

Z

f ∗ ` η∗`
==⇒ h ∗ d0 ∗ `

s ∗ d0 ∗ `
α0∗`==⇒ x ∗ ` α1∗`⇐== s ∗ d1 ∗ `

h ∗ d1 ∗ `
ε∗`
=⇒ g ∗ `

3.10. Remark. For any homotopy H as in (??), we have H = ε ◦ (h ∗HC) ◦ η.

3.11. Definition. A 2-cell X

f //
µ⇓
g
// Y ∈ C yields two homotopies Hµ

0 , H
µ
1 : f +3 g,

Hµ
0 = (CX , g, µ, g) and Hµ

1 = (CX , f, f, µ):
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Hµ
0 :

X

idX   

idX //

idX
// X

g //

◦ idX
��

Y

X

Hµ
1 :

X

idX   

idX //

idX
// X

f //

◦ idX
��

Y

X
η = µ, α0 = α1 = idX , ε = g η = f , α0 = α1 = idX , ε = µ

The homotopies can be thought of as something that would be an actual 2-cell if the
arrows of W were equivalences (more generally if they were quasiequivalences, recall ??).
When this is the case, cylinders and homotopies yield actual 2-cells of C as follows:

3.12. Definition. Consider a cylinder C as in Definition ??, with s a quasiequivalence.

1. We denote by d0
Ĉ

=⇒ d1 the unique invertible 2-cell such that s ∗ Ĉ = α.

2. For a homotopy H with cylinder C, we note by Ĥ the 2-cell f
η

=⇒ h∗d0
h∗Ĉ
==⇒ h∗d1

ε
=⇒ g

Note that we have ĤC = Ĉ. Item 2 in this definition can be considered as the extension
of this formula to an arbitrary H using Remark ??.

Consider now another family Γ of arrows of a bicategory D. For pseudofunctors

C F−→ D, we write (C,W)
F−→ (D,Γ) to denote that F maps the arrows of W to Γ. We

can apply the pseudofunctor F to cylinders and homotopies of C as follows:

3.13. Definition. Let (C,W)
F−→ (D,Γ).

1. For a cylinder C as in Definition ??, we define the cylinder FC by

FC = (FW,FZ, Fd, Fc, Fx, Fs, Fα0 ◦ φ, Fα1 ◦ φ).

2. For a homotopy H as in Definition ??, we define the homotopy Ff
FH +3 Fg by

FH = (FC, Fh, φ ◦ Fη, Fε ◦ φ).

The constructions of FC and FH are more clearly understood using the diagram

FX

Fx ##

Fd0 //

Fd1
// FC

Fh //

◦Fs
��

FY

FZ

Ff
Fη
=⇒ F (h ∗ d0)

φ
=⇒ Fh ∗ Fd0

Fs ∗ Fd0
φ

=⇒ F (s ∗ d0)
Fα0==⇒ Fx

Fα1⇐== F (s ∗ d1)
φ⇐= Fs ∗ Fd1

Fh ∗ Fd1
φ

=⇒ F (h ∗ d1)
Fε
=⇒ Fg

3.14. Definition. Recall that Θq denotes the class of quasiequivalences. We identify

two homotopies H, K if for every pseudofunctor (C,W)
F−→ (D,Θq), FH and FK yield

the same 2-cell (as in Definition ??) of D, that is [H] = [K] ⇐⇒ F̂H = F̂K for every

pseudofunctor (C,W)
F−→ (D,Θq).
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We will see below that it suffices to require the condition in Definition ?? only for
2-functors F . The 2-cell F̂H is the composition

F̂H : Ff
Fη

=⇒ F (h ∗ d0)
φ

=⇒ Fh ∗ Fd0
Fh∗F̂C
====⇒ Fh ∗ Fd1

φ
=⇒ F (h ∗ d1)

Fε
=⇒ Fg, (3)

where Fd0
F̂C
==⇒ Fd1 is the unique 2-cell such that Fs∗F̂C = φ◦Fα◦φ. With the notation

of Definition ??, this can be stated as:

3.15. Remark. For a homotopy H as in Definition ??, and a pseudofunctor

(C,W)
F−→ (D,Θq), F̂H is the composition Ff

Fη
=⇒ F (h ∗ d0)

Fh∗F F̂C=====⇒ F (h ∗ d1)
Fε

=⇒ Fg,

where F̂C is the unique 2-cell such that Fs∗F F̂C = Fα. Note that when F is a 2-functor,
∗F = ∗ .

3.16. Remark. It is the composition α = α−1
1 ◦ α0 which is used in order to determine

the class of a homotopy. This suggests that we can also define a notion of cylinder in
which α0 and α1 are replaced by a single (invertible) 2-cell s ∗ d0

α
=⇒ s ∗ d1. Note that

all the constructions of this paper work also for the corresponding notion of homotopy.
In fact, under the hypothesis of Theorem ??, the two resulting homotopy bicategories
are the same. This can be either seen by a direct computation, or showing (with the
same proof) that both constructions satisfy that Theorem. Our reason for considering
the notion in Definition ??, even though it involves more data than the one with a single
2-cell, comes from our interpretation of cylinders as a bicategorical version of a cylinder
in dimension 1, in which identities are replaced by invertible 2-cells. In a cylinder, d0 and
d1 are interchangeable, and we consider this symmetry is better reflected in the definition
with two 2-cells than with a 2-dimensional version of a commuting square, that is, a single
invertible 2-cell for which one is forced to choose a direction.

Consider a pseudofunctor (C,W)
F−→ (D,Θq), and consider the factorization of F

through CF given in ??. Note that, as was explained in ??, we have (C,W)
F2−→ (CF ,Θq).

The following remark follows immediately by considering Remark ?? for F and for F2

(recall that the horizontal composition of 2-cells in CF is given by ∗F ).

3.17. Remark. Consider the situation in Definition ??. We have:

1. F1(F̂2H) = F̂H.

2. Let H, K be any two homotopies, then

F̂H = F̂K for every pseudofunctor F ⇐⇒ F̂H = F̂K for every 2-functor F.

(where F labels an arrow (C,W)
F−→ (D,Θq)).

Proof. Note that F1(β ∗F2 α) = β ∗F α, ?? follows from this equality, ?? follows from
??.
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The previous remark allows us to consider 2-functors (C,W)
F−→ (D,Θq) instead of

arbitrary pseudofunctors in Definition ??.

3.18. Proposition. Consider the homotopies of Definition ??. Then, for any 2-functor

(C,W)
F−→ (D, Θq), F̂Hµ

0 = F̂Hµ
1 = Fµ.

Proof. In the notation of Definition ?? the homotopy Hµ
0 has s = idX , η = µ, α = ididX ,

ε = idg, thus F̂C = ididX , and F̂Hµ
0 is the composition Fidg ◦ FididX ◦ Fµ = Fµ. The

case of Hµ
1 is similar.

3.19. Definition. Given any 2-cell µ ∈ C, the notation Iµ stands for any homotopy such

that for any 2-functor (C,W)
F−→ (D, Θq), F̂ Iµ = Fµ; note that in view of the previous

proposition such a Iµ always exists.

3.20. Proposition. Let (C,W)
F−→ (D,Θq) be a pseudofunctor and let H be as in (??).

Then:

1. For each g
µ

=⇒ g′ ∈ C as in ??, we have ̂F (µ ◦H) = Fµ ◦ F̂H.

2. For each f ′
ν

=⇒ f ∈ C as in ??, we have ̂F (H ◦ ν) = F̂H ◦ Fν.

3. For each Y
r−→ Y ′ ∈ C as in ?? we have ̂F (r ∗H) = Fr ∗F F̂H.

4. For each X ′
`−→ X ∈ C as in ?? we have ̂F (H ∗ `) = F̂H ∗F F`.

Proof. Items 1 and 2 are immediate. We show first items 3 and 4 assuming that F is a

2-functor (recall that in this case ∗F is just ∗). Let Fd
F̂C
=⇒ Fc be the unique 2-cell such

that Fs ∗ F̂C = Fα.

Proof of 3: ̂F (r ∗H) is the 2-cell

Fr ∗ Ff Fr∗η
===⇒ Fr ∗ Fh ∗ Fd0

Fr∗Fh∗F̂C
======⇒ Fr ∗ Fh ∗ Fd1

Fr∗ε
===⇒ Fr ∗ Fg,

which is equal to Fr ∗ F̂H.

Proof of 4: We have Fs ∗ F̂C ∗ F` = α ∗ F`, and thus ̂F (H ∗ `) is the 2-cell

Ff ∗ F` η∗F`
===⇒ Fh ∗ Fd0 ∗ F`

Fh∗F̂C∗F`
======⇒ Fh ∗ Fd1 ∗ F`

ε∗F`
===⇒ Fg ∗ F`,

which is equal to F̂H ∗ F`.
If F is a pseudofunctor, we have

̂F (r ∗H) = F1
̂F2(r ∗H) = F1(F2r ∗ F̂2H) = F1(r ∗ F̂2H) = Fr ∗F F̂H,

where the first equality holds by Remark ?? and the last one is due to Remark ?? plus
the fact that the structural cells of F1 are those of F . The case of item 4 is dual.
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The bicategory Ho(C,W) and the 2-functor C i−→ Ho(C,W). We will construct here
the bicategory Ho(C,W), whose 2-cells are given by the homotopies. In this more general
case, it seems that two arbitrary homotopies can’t be vertically composed à la Quillen
(see [?, Lemma 3]). This is why finite sequences of composable homotopies have to be
considered instead2. We begin by extending Definition ?? to these sequences as follows:

3.21. Definition. Two sequences of homotopies f
H1
+3 f1

H2
+3 f2 · · · fn−1

Hn
+3 g ,

f
K1
+3 f ′1

K2
+3 f ′2 · · · f ′m−1

Km
+3 g are considered equivalent by the following definition:

[Hn, . . . , H2, H1] = [Km, . . . , K2, K1] ⇐⇒
for every 2-functor (C,W)

F−→ (D,Θq), F̂Hn◦· · · F̂H2◦F̂H1 = F̂Km◦· · · F̂K2◦F̂K1.

3.22. Remark. Note that, by Remark ??, it is equivalent to state the condition above for
every pseudofunctor.

We construct now a bicategory which we refer to as the homotopy bicategory of C with
respect to W and denote by Ho(C,W):

3.23.. The objects and the arrows of Ho(C,W) are again the objects and arrows of C.
The 2-cells of Ho(C,W) are, loosely speaking, the homotopies of C. More precisely, a
2-cell f =⇒ g ∈ Ho(C,W) is given by the class [Hn, . . . , H2, H1] of a finite sequence of
homotopies.

3.24. Remark. Note that by Definition ?? all possible homotopies Iµ determine the same
class in Ho(C,W). In particular by Proposition ?? this is the case for the two homotopies
Hµ

0 and Hµ
1 in Definition ??.

Vertical composition. Vertical composition is defined by juxtaposition:

3.25.. For [Hn, . . . , H2, H1] as above and g
K1
+3 g1

K2
+3 g2 · · · gm−1

Km
+3 h , we define

[Km, . . . , K2, K1] ◦ [Hn, . . . , H2, H1] = [Km, . . . , K2, K1, Hn, . . . , H2, H1].

This is clearly well defined and associative. Note that [Hn, . . . , H1] = [Hn] ◦ · · · ◦ [H1].

For 2-cells in C, by Proposition ?? we have [Hµ◦µ′
0 ] = [Hµ′

0 , H
µ
0 ] ( = [Hµ′

0 ] ◦ [Hµ
0 ] ), and

similarly for H1.

From Proposition ?? it follows:

2We deal in Appendix ?? with a set of hypothesis that allow to compose homotopies so that single
homotopies can be used instead of finite sequences.
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3.26. Proposition. Let H, µ, ν be as in (??), ?? and ?? respectively, and consider
Definition ??. Then the following hold:

1. [µ ◦H] = [Iµ] ◦ [H].

2. [H ◦ ν] = [H] ◦ [Iν ]. �

Horizontal composition. We define now the horizontal composition in Ho(C,W).
We proceed as explained in ??, that is, we will define it only between 2-cells and arrows,
and show the axioms W.

3.27.. For X
f //

g
// Y

r // Y ′ ∈ C and [Hn, . . . , H2, H1] : f ⇒ g as in Definition ??, we

define r ∗ [Hn, . . . , H2, H1] = [r ∗Hn, . . . , r ∗H2, r ∗H1], and similarly for X ′
`−→ X ∈ C

(see ?? and ??). The fact that these formulas are well defined follows from Proposition ??.

Axiom W3 follows by definition. To verify axiom W1, it suffices to check the case in

which the 2-cells are sequences of length 1, that is, given X

f1 //
[H]⇓
f2
// Y

g1 //
[K]⇓
g2
// Z ∈ Ho(C,W),

we have to check that [g2 ∗ H,K ∗ f1] = [K ∗ f2, g1 ∗ H]. Again this follows easily from

Proposition ??, using axiom W1 in D for every 2-functor (C,W)
F−→ (D,Θq).

For each f , we define the identity 2-cell of Ho(C,W), idf = [If ], see Definition ?? and
recall the abuse f = idf . By definition, it is immediate that idf is the identity for the
vertical composition, and that axiom W2 is satisfied.

We define the identity arrows as in C. It remains to define the associators and the
unitors and check that they satisfy the axioms. Before doing this it is convenient to

construct the 2-functor C i−→ Ho(C,W).

3.28.. On objects and arrows i is just the identity. For a 2-cell µ of C, we define iµ = [Iµ],
that is the class of the sequence of length one given by any Iµ. From Definitions ?? and
?? it follows that for any homotopy H:

iµ = [H] ⇐⇒ for every 2-functor (C, W)
F−→ (D, Θq), F̂H = Fµ.

The unitors and the associator of Ho(C,W) are obtained by applying i to the ones
of C. Axioms Nλ, Nρ and Nθ1-3 follow immediately from Proposition ??, using the

corresponding axioms in D for every 2-functor (C,W)
F−→ (D,Θq).

We will now show that C i−→ Ho(C,W), mapping X

f //
µ⇓
g
// Y to X

f //
iµ⇓
g
// Y , is a

2-functor. From this fact, since the associators and the unitors of Ho(C,W) are defined
applying i to the ones of C, it will follow that they are invertible and that the pentagon
and triangle identities hold, ending the proof that Ho(C,W) is a bicategory.

With i being trivial at the level of objects and arrows, and mapping the identity 2-cells
to the identities by definition, it suffices to check that i preserves both compositions of
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2-cells. The fact that i preserves the vertical composition follows immediately by ??. To

show that i preserves the horizontal composition, we consider X

f //
µ⇓
g
// Y

r // Y ′ ∈ C,

and we have to show that i(r ∗ µ) = r ∗ iµ, i.e. that [Ir∗µ] = [r ∗ Iµ]. For each 2-functor

(C,W)
F−→ (D,Θq), by Definition ?? and Proposition ?? we have:

F̂ Ir∗µ = F (r ∗ µ) = Fr ∗ Fµ = Fr ∗ F̂ Iµ = ̂F (r ∗ Iµ),

showing the desired equation. The other case is similar. We have shown:

3.29. Proposition. For any pair (C, W), Ho(C,W) defined in ?? is a bicategory, and

C i−→ Ho(C,W) defined in ?? is a 2-functor. �

3.30. Remark. If we start with a 2-category C, then Ho(C,W) is also a 2-category. �

Using in order Remark ??, Proposition ?? and the definitions in ??, ?? it follows:

3.31. Proposition. Let H be any homotopy as in Definition ??. Then [H] can be
decomposed as:

[H] = [ε ◦ (h ∗HC) ◦ η] = [Iε] ◦ [h ∗HC ] ◦ [Iη] = iε ◦ h ∗ [HC ] ◦ iη. �

We show now that the cylinder C−1 and the homotopy H−1 (see Definitions ??, ??
and ??) yield actual inverses in Ho(C,W).

3.32. Proposition. For any cylinder C, [HC ] is invertible in Ho(C,W) and further-
more, [HC ]−1 = [H(C−1)].

Proof. For any 2-functor (C, W)
F−→ (D, Θq), we have F̂HC = ĤFC = F̂C, recall from

Definition ?? that Fs ∗ F̂C = α. Since we also have ̂FH(C−1) = F̂C−1, Fs ∗ F̂C = α−1,
it follows using that Fs is a quasiequivalence that [HC ] ◦ [H(C−1)] = idd1 and
[H(C−1)] ◦ [HC ] = idd0 .

3.33. Corollary. The class [H] of any homotopy with invertible cells is invertible in
Ho(C,W), and furthermore, [H]−1 = [H−1].

Proof. By Proposition ??, [H] ◦ [H−1] = iε ◦ h ∗ [HC ] ◦ iη ◦ i(η−1) ◦ h ∗ [H(C−1)] ◦ i(ε−1),
which by Proposition ?? collapses to the identity. The other composition is similar.

The universal property of i. We will prove that, under some natural conditions on

the class W , the 2-functor C i−→ Ho(C,W) is the localization of C with respect to W .
It should be noted that i has the universal property of making the arrows of W into
equivalences in a strict 2-categorical sense. By this we mean that, for any bicategory D,
precomposition with i yields an isomorphism of the appropriate Hom-bicategories, and
not just a biequivalence (see details in Definition ?? below). We state precisely what we
mean by localization of C with respect to W (See Section ?? for a comparison with [?]):
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3.34. Definition. A pseudofunctor (C,W)
i−→ (E ,Θ) is the localization of C with respect

toW if it is universal in the following sense: For any bicategory D, precomposition with i,

Hom(E ,D)
i∗−→ Hom(W,Θ)(C,D) is a biequivalence of bicategories, where Hom(W,Θ)(C,D)

stands for the full subbicategory of Hom(C,D) consisting of those pseudofunctors that map
the arrows of W to equivalences. When i∗ is an isomorphism, we say that i is a strict
localization or a localization in a strict sense.

We begin by stating and proving various results which lead to Theorem ?? and Corol-
lary ??. This theorem is proven without any hypothesis on W , and shows that i∗ will
be an isomorphism of bicategories as soon as it takes its values in the subbicategory
Hom(W,Θ)(C,D). Then we show that, under two natural conditions on W , i maps the
arrows of W to equivalences, and thus the desired result follows.

For a cylinder C and a 2-functor F : (C,W) −→ (D,Θq), recall that F̂HC = F̂C,

which is the unique 2-cell such that Fs ∗ F̂C = Fα.

3.35. Lemma. For any cylinder C, we have [s ∗HC ] = iα

Proof. Let F : (C,W) −→ (D,Θq) be a 2-functor, we compute using Proposition ??
̂F (s ∗HC) = Fs ∗ F̂HC = Fs ∗ F̂C = Fα and the Lemma follows by ??.

3.36. Proposition. Let Ho(C,W)
G−→ D be a 2-functor such that GiW ⊆ Θq, and let

H be a homotopy. Then G[H] = ĜiH.

Proof. Consider F = Gi : (C,W) −→ (D,Θq). Note that F equals G on objects and
arrows. Let C be the cylinder of H. From Lemma ?? and the definition in ?? it follows

s ∗ [HC ] = iα. Applying G we have Fs ∗G[HC ] = Fα, and thus G[HC ] = F̂ (HC). Then
we compute, using Proposition ??, functoriality of G, and Remark ??:

G[H] = Giε ◦Gh ∗G[HC ] ◦Giη = Fε ◦ Fh ∗ F̂ (HC) ◦ Fη = F̂H.

3.37. Corollary. Let Ho(C,W)
G−→ D be any 2-functor such that GiW ⊆ Θq. Then,

the composite Gi completely determines G.

Proof. Since i is trivial at the level of objects and arrows clearly GX = GiX and

Gf = Gif . The computation G[Hn, ..., H1] = G[Hn] ◦ ... ◦ G[H1] = ĜiHn ◦ ... ◦ ĜiH1

(which follows from Proposition ??) finishes the proof.

3.38. Theorem. Let C i−→ Ho(C,W) be the 2-functor in ??. Then, for any bicategory

D and any 2-functor (C,W)
F−→ (D,Θq), there is a unique extension of F to Ho(C,W).

That is, there is a 2-functor G : Ho(C,W) −→ D, unique such that Gi = F . Note that

by Proposition ?? the value of G on the class of a homotopy H is necessarily F̂H.
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Proof. By Corollary ?? we have that the unique possible definition of G is GX =

FX, Gf = Ff and G[Hn, ..., H1] = F̂Hn ◦ ... ◦ F̂H1. By the definition iµ = [Iµ] and
Definition ?? it follows that Giµ = Fµ for any 2-cell µ of C. It only remains to show that
G is a 2-functor.

Clearly the functoriality of G on objects and arrows holds since Gi = F and i is
trivial. The functoriality for the vertical composition of 2-cells holds by ??. For the
horizontal composition we proceed as explained in ??, that is, we consider only horizontal
compositions between 2-cells and arrows. It suffices to check this on 2-cells given by a
single homotopy. Let r and H as in ??, recall ?? and Proposition ??. Then:

G(r ∗ [H]) = G[r ∗H] = ̂F (r ∗H) = F (r) ∗ F̂H = G(r) ∗G[H].

The case [H] ∗ ` is similar.

3.39. Remark. In the situation of the theorem above, for ξ, ξ1, . . . , ξn 2-cells of
Ho(C,W), we have:

ξ = [Hn] ◦ · · · [H2] ◦ [H1] ⇐⇒ G(ξ) = F̂Hn ◦ · · · F̂H2 ◦ F̂H1

[H] = ξn ◦ · · · ξ2 ◦ ξ1 ⇐⇒ F̂H = G(ξn) ◦ · · ·G(ξ2) ◦G(ξ1).
�

We pass now to prove the general case of Theorem ?? for pseudofunctors. Let

(C,W)
F−→ (D,Θq) be a pseudofunctor, and consider its factorization through CF as

in ??. Let Ho(C,W)
G−→ D be any pseudofunctor such that Gi = F , applying Proposi-

tion ?? we have that there is a unique 2-functor E such that F2 = Ei and G = F1E, as
in the following diagram:

C F //

i

$$

F2

##

D::
G

JJ

F1

Ho(C,W)

E
��
CF

The reader should note that this construction is independent of Theorem ??, which
given F2 also yields a unique 2-functor E such that F2 = Ei. The fact that this is thus
the same 2-functor E is the “trick” that allows to prove item 1 of Theorem ?? below.

3.40. Theorem. Let C i−→ Ho(C,W) be the 2-functor in ??. Then precomposing with i
establishes a biequivalence of bicategories, which in fact is an isomorphism:

Hom(iW,Θ)(Ho(C,W), D)
i∗−→ Hom(W,Θ)(C, D)
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Proof. The statement can be divided in the following three items:

1. For any bicategory D and any pseudofunctor (C,W)
F−→ (D,Θ), there exists a

unique extension of F to Ho(C,W). That is, there is a pseudofunctor Ho(C,W)
F ′−→ D,

unique such that F ′i = F (which clearly then maps iW to Θ). Furthermore, the value of

F ′ on the class of a homotopy H is F̂H, that is, F ′[H] = F̂H.

2. For every pseudonatural transformation F
θ

=⇒ G : (C,W) −→ (D,Θ) there is a

pseudonatural transformation F ′
θ′

=⇒ G′ unique such that θ′i = θ.
3. For every modification θ

ρ−→ η : F =⇒ G : (C,W) −→ (D,Θ) there is a modifica-

tion θ′
ρ−→ η′ unique such that ρ′i = ρ.

1. Let F = F1F2 be the factorization through (CF ,Θq) as explained in ??, ??. Let F ′2 be
the extension of F2 given by Theorem ??. Set F ′ = F1F

′
2. Then, F ′i = F1F

′
2i = F1F2 = F .

The uniqueness of F ′ is given by Proposition ?? plus the uniqueness of F ′2. For the second

statement we compute F ′[H] = F1F
′
2[H] = F1(F̂2H) = F̂H, this last equality given by

Proposition ??.

2. Since i is the identity at the level of objects and arrows, the only possible definitions
are θ′X = θX , θ′f = θf for every X, f . Since the structural morphisms of F ′ (resp. G′)
are those of F (resp. G), axioms PN0 and PN1 for θ′ are equivalent to those for θ. For

axiom PN2, we have to show the following equation for every homotopy f
H +3 g as in

Definition ??:

Gf

ĜH

θX

Gg θX

θg

θY Fg

=

Gf θX

θf

θY Ff

F̂H

θY Fg
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That is, by the definition in formula (??),

Gf

Gη

θX

G(h ∗ d0)

φ

θX

Gh Gd0

ĜC

θX

Gh Gd1 θX

G(h ∗ d1)

φ

Gε

θX

Gg

θg

θX

θY Fg

=

Gf

θf

θX

θY Ff

Fη

θY F (h ∗ d0)

φ

θY Fh Fd0

F̂C

θY Fh Fd1

θY F (h ∗ d1)

φ

Fε

θY Fg

(4)

where Fs ∗F F̂C = Fα and Gs ∗G ĜC = Gα. Using axiom PN2 for θ on the 2-cell α we
have:

G(s ∗ d0)

φ

θX

Gs Gd0

ĜC

θX

Gs Gd1 θX

G(s ∗ d1)

φ

θs∗d1

θX

θZ F (s ∗ d1)

=

G(s ∗ d0)

θs∗d0

θX

θZ F (s ∗ d0)

φ

θZ Fs Fd0

F̂C

θZ Fs Fd1

θZ F (s ∗ d1)

φ

(5)

Using axiom PN1 twice (for the arrows s, d0 and the arrows s, d1) the first equality
below follows from (??):

Gs Gd0

ĜC

θX

Gs Gd1

θd1

θX

Gs

θs

θC Fd1

θZ Fs Fd1

=

Gs Gd0

θd0

θX

Gs

θs

θC Fd0

θZ Fs Fd0

F̂C

θZ Fs Fd1

(??)
=

Gs Gd0

θd0

θX

Gs θC Fd0

F̂C

Gs

θs

θC Fd1

θZ Fs Fd1
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Since θs is invertible, and Gs is a quasiequivalence, it follows

Gd0

ĜC

θX

Gd1

θd1

θX

θC Fd1

=

Gd0

θd0

θX

θC Fd0

F̂C

θC Fd1

(6)

Now, we reverse the path that took us from (??) to (??), but with h instead of s.
First we compose (??) with Gh and θh and use (??), it follows

Gh Gd0

ĜC

θX

Gh Gd1

θd1

θX

Gh

θh

θC Fd1

θY Fh Fd1

=

Gh Gd0

θd0

θX

Gh

θh

θC Fd0

θY Fh Fd0

F̂C

θY Fh Fd1

Using axiom PN1 as above, it follows

G(h ∗ d0)

φ

θX

Gh Gd0

ĜC

θX

Gh Gd1 θX

G(h ∗ d1)

φ

θh∗d1

θX

θY F (h ∗ d1)

=

G(h ∗ d0)

θh∗d0

θX

θY F (h ∗ d0)

φ

θY Fh Fd0

F̂C

θY Fh Fd1

θY F (h ∗ d1)

φ

(7)

Finally we compute, starting from the left side in (??):
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Gf

Gη

θX

G(h ∗ d0)

φ

θX

Gh Gd0

ĜC

θX

Gh Gd1 θX

G(h ∗ d1)

φ

Gε

θX

Gg

θg

θX

θY Fg

PN2
=

Gf

Gη

θX

G(h ∗ d0)

φ

θX

Gh Gd0

ĜC

θX

Gh Gd1 θX

G(h ∗ d1)

φ

θh∗d1

θX

θY F (h ∗ d1)

Fε

θY Fg

(??)
=

Gf

Gη

θX

G(h ∗ d0)

θh∗d0

θX

θY F (h ∗ d0)

φ

θY Fh Fd0

F̂C

θY Fh Fd1

θY F (h ∗ d1)

φ

Fε

θY Fg

,

which equals the right side in (??) by PN2.

3. Since i is the identity at the level of objects, the only possible definition is ρ′X = ρX .
Since for any arrow f of C, by the proof of item 2 we have θ′f = θf and µ′f = µf , the
equality in axiom PM is the same either for ρ or for ρ′.

3.41. Remark. Even though this is not needed for the localization result in this article,
it is a natural idea to restrict the cylinders to have the map W −→ Z in an arbitrary
subclass W0 ⊂ W containing the identities, much like fibrant cylinders are considered
classically. It is easy to check that everything goes exactly in the same way with this
added generality, and that we can construct a bicategory HoW0(C,W) that has the same
property, that is precomposition with i establishes an isomorphism of bicategories:

Hom(iW,Θ)(HoW0(C,W), D)
i∗−→ Hom(W,Θ)(C, D) �

3.42. Corollary. [of Theorem ??] Assume C i−→ Ho(C,W) maps the arrows of W to
equivalences. Then, it is the strict localization with respect to W in the sense stated in
Definition ??, that is precomposition with i establishes an isomorphism of bicategories:

Hom(Ho(C,W), D)
i∗−→ Hom(W,Θ)(C, D).

Proof. By the assumption it follows that i∗ takes values in the subcategory
Hom(W,Θ)(C,D). Theorem ?? states that it is an isomorphism of bicategories.

We proceed now to consider two natural conditions on the classW which are sufficient
to ensure that the assumption in Corollary ?? holds.
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3.43. Definition. We say that the class W satisfies the “3 for 2”3 property if for every
three arrows f, g, h such that there is an invertible 2-cell gf ∼= h, whenever two of the
three arrows are in W, so is the third one.

3.44. Definition. Let X
s−→ Y , Y

r−→ X ∈ C. If there is an invertible 2-cell r∗s ∼= idX ,
s is called a section for r, and r is called a retraction for s. An arrow X

s−→ Y is called
a section if there exists r such that s is a section for r and dually an arrow is called a
retraction if it admits a section. An arrow that is either a section or a retraction is called
a split arrow.

3.45. Proposition. Assume W satisfies the 3 for 2 property. Then any split arrow in

W is mapped to an equivalence by C i−→ Ho(C,W).

Proof. Let X
s−→ Y , Y

r−→ X ∈ C and an invertible 2-cell r ∗ s α
=⇒ idX ∈ C.

Note that by the 3 for 2 property r is in W if and only if s is. Since we already

have r ∗ s iα
=⇒ idX in Ho(C,W), it remains to show that we have an invertible 2-cell

s ∗ r =⇒ idY . Consider the diagram

Y
s∗r //

idY

��

MMrMM

  

⇓ α∗r
Y

◦r

��⇑ idr

Y ◦
r

// X

(as in Definition ??) which defines

the cylinder C = (Y,X, s ∗ r, idY , r, r, α ∗ r, idr). Thus by Proposition ?? we have the de-
sired invertible 2-cell [HC ].

3.46. Corollary. Assume that W satisfies the 3 for 2 property, and that any arrow of
W can be written (up to isomorphism) as a composition of split arrows of W. Then the

2-functor C i−→ Ho(C,W) maps the arrows of W to equivalences. �

Clearly putting together Corollaries ?? and ?? we have the main result of this article,
a construction of the strict bicategorical localization with respect to a family of arrows
satisfying the aforementioned properties. As mentioned in the introduction, these prop-
erties are satisfied by the weak equivalences between fibrant-cofibrant objects of a model
bicategory [?].

3.47. Theorem. If W satisfies the 3 for 2 property, and any arrow of W can be written

(up to isomorphism) as a composition of split arrows of W, then the 2-functor C i−→
Ho(C,W) is the strict localization with respect to W in the sense stated in Definition ??.

�
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A. On the equivalence relation of homotopies.

It is a natural question if it would be possible to give a syntactical definition rather
than the semantical one for the equivalence relation given in Definition ??. This is a
delicate point, that can be traced back to Quillen’s original work on model categories
(see (*) below). As test work for our construction on bicategories we have considered the
2-localization of a model category using homotopies, and the possibility of giving such a
definition in this case, that we call the germ relation. Following a question by the referee,
we resume here our findings, that probably can be generalized with some work to the
general case of a bicategory.

Consider σ-homotopies and cylinders as in Definition ??, but with equalities in place
of 2-cells. It is clear and straightforward how to define a morphism of cylinders and to

check that they compose. Such a morphism consists of a pair of arrows W
φ−→ W ′,

Z
ϕ−→ Z ′ satisfying the evident equations with respect to the cylinder structures. Given
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two homotopies H and H ′, we say that they are related if there exists a morphism of

cylinders C
(φ, ϕ)−−−→ C ′ such that h′ ◦ φ = h. We call the equivalence relation generated by

this relation the germ relation, because we are actually computing a colimit of sets: recall
diagram (??), f = h ∗ d0, g = h ∗ d1. Consider the data X, Z, Y, x, f, g fixed, and all
possible W, d0, d1:

X qX

(x
x) &&

(d0
d1

)
//

(f
g)

$$
W

h //

◦s
��

Y

Z

We imagine
(
x
x

)
to be a point of Z, W to be a neighborhood of

(
x
x

)
, and h a function

sending
(
x
x

)
to the point

(
f
g

)
of Y . This defines a functor into the category of sets, and

the equivalence classes are the elements of the colimit in Set.
It is easy to see that if two homotopies are related by cylinder morphisms, then they

are equivalent as in Definition ?? (so the germ relation identifies less). In our work, finding
these morphisms is the way in which we have usually shown that different homotopies are
equivalent.

Initially we hoped that the germ relation would allow to define a 2-category of classes
of homotopies, but all our attempts were blocked near that purpose. To put it shortly, we
could define the data of a 2-category, and prove all the axioms, except for the interchange
law H2 relating both compositions. This shows that a coarse relation identifying both
sides of the law is necessary. Our definition of the equivalence relation of homotopies in
this paper can be seen as a solution to this problem.

(*) Quillen also defines an equivalence relation between homotopies (see [?, Ch.I ] 2])
and shows that the equivalence classes can be composed vertical and horizontally, but
he does not mention the compatibility between both compositions, a condition that he
certainly was aware of. We have checked that the relation considered by Quillen is actually
our germ relation disguised in a different form. This suggests that the interchange law
does not hold for the equivalence classes of the germ relation.

B. On vertical composition of homotopies.

It this appendix we consider the question of vertical composition of homotopies, in other

words, if, for any two composable homotopies f
H +3 g

K +3 h, we can find a single
homotopy representing the class [K,H]. The following lemma gives certain conditions
under which this is the case, which are satisfied for the weak equivalences between fibrant-
cofibrant objects of a model bicategory [?]. The reader will probably recognize here an
abstract setting corresponding to Quillen’s proof of the transitivity of the left homotopy
relation in [?, Lemma 3].
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B.1. Lemma. Assume that we have X
f1,f2,f3 // Y , and homotopies f1

H1
+3 f2

H2
+3 f3

as in Definition ??, with Z1 = Z2 = Z, x1 = x2 = x fitting in the following diagram,
where ν1, ν2, γ1, γ2 are invertible 2-cells.

W 1

b1 %%

◦s
1

∼= ν1

$$

h1

∼= γ1

$$
X

d11

99

d20 %%

⇓δ W ◦s //
h

66Z Y

W 2

b2
99

◦
s2

∼= ν2

::

h2

∼= γ2

::

Assume also that

1. The 2-cell h1∗d1
1
ε1
=⇒ f2

η2

=⇒ h2∗d2
0 equals h1∗d1

1

γ1∗d11===⇒ h∗b1∗d1
1
h∗δ
==⇒ h∗b2∗d2

0

γ2∗d20===⇒ h2∗d2
0,

2. The 2-cell s1∗d1
1

(α1
1)

==⇒ x
(α2

0)−1

==⇒ s2∗d2
0 equals s1∗d1

1

ν1∗d11===⇒ s∗b1∗d1
1
s∗δ
==⇒ s∗b2∗d2

0

ν2∗d20===⇒ s2∗d2
0.

Then there exists a homotopy H from f1 to f3 such that [H] = [H2, H1].

Furthermore, H can be constructed as follows: consider first the cylinder C given as
C = (W,Z, b1 ∗ d1

0, b
2 ∗ d2

1, x, s, α0, α1), with α0 and α1 defined as the compositions

α0 : s ∗ b1 ∗ d1
0

ν1∗d10===⇒ s1 ∗ d1
0

α1
0=⇒ x, α1 : s ∗ b2 ∗ d2

1

ν2∗d21===⇒ s2 ∗ d2
1

α2
1=⇒ x

Then H is given by H = (C, h, η, ε), with η and ε defined as the compositions

η : f1
η1

=⇒ h1 ∗ d1
0

γ1∗d10===⇒ h ∗ b1 ∗ d1
0, ε : h ∗ b2 ∗ d2

1

γ2∗d21===⇒ h2 ∗ d2
1

ε2
=⇒ f3.

Proof. We have to show that, for every 2-functor (C,W)
F−→ (D,Θq), F̂H = F̂H2 F̂H1.

Let F̂C, F̂C1, F̂C2 be the 2-cells considered in Remark ?? for H, H1, H2. We begin by

showing (4) F̂C = (Fb2 ∗ F̂C2) ◦F (δ) ◦ (Fb1 ∗ F̂C1). By the definition of F̂C, it suffices

to show that Fs ∗ ((Fb2 ∗ F̂C2) ◦ F (δ) ◦ (Fb1 ∗ F̂C1) = Fα. We compute:



A LOCALIZATION OF BICATEGORIES VIA HOMOTOPIES 29

Fs Fb1 Fd1
0

F̂C1

Fs Fb1

Fδ

Fd1
1

Fs Fb2 Fd2
0

F̂C2

Fs Fb2 Fd2
1

2.
=

Fs Fb1 Fd1
0

F̂C1

Fs Fb1 Fd1
1

Fs1

Fν1

Fd1
1

Fx

F (α1
1)

F (α2
0)−1

Fs2

Fν2

Fd2
0

Fs Fb2 Fd2
0

F̂C2

Fs Fb2 Fd2
1

(??)
=

Fs Fb1 Fd1
0

Fs1

Fν1

Fd1

F̂C1

Fs1 Fd1
1

Fx

F (α1
1)

F (α2
0)−1

Fs2 Fd2
0

F̂C2

Fs2

Fν2

Fd2
1

Fs Fb2 Fd2
1

??
=

Fs Fb1 Fd1
0

Fs1

Fν1

Fd1
0

Fx

F (α1
0)

F (α2
1)−1

Fs2

Fν2

Fd2
1

Fs Fb2 Fd2
1

which equals Fα by definition. It remains to show that

Fε ◦ (Fh ∗ F̂C) ◦ Fη = Fε2 ◦ (Fh2 ∗ F̂C2) ◦ Fη2 ◦ Fε1 ◦ (Fh1 ∗ F̂C1) ◦ Fη1.

Clearly by the definitions of ε and η it suffices to show that

F (γ2 ∗ d2
1) ◦ (Fh ∗ F̂C) ◦ F (γ1 ∗ d1

0) = (Fh2 ∗ F̂C2) ◦ Fη2 ◦ Fε1 ◦ (Fh1 ∗ F̂C1)

We compute as follows:

Fh1

Fγ1

Fd1
0

Fh Fb1

F̂C

Fd1
0

Fh Fb2Fd2
1

Fh2

Fγ2

Fd2
1

(4)
=

Fh1

Fγ1

Fd1
0

Fh Fb1 Fd1
0

F̂C1

Fh Fb1

Fδ

Fd1
1

Fh Fb2 Fd2

F̂C2

Fh Fb2 Fd2
1

Fh2

Fγ2

Fd2
1

1.
=

Fh1

Fγ1

Fd1
0

Fh Fb1 Fd1
0

F̂C1

Fh Fb1 Fd1
1

Fh1

Fγ1

Fd1
1

Ff2

Fε1

Fη2

Fh2

Fγ2

Fd2
0

Fh Fb2 Fd2
0

F̂C2

Fh Fb2 Fd2
1

Fh2

Fγ2

Fd2
1

(??)
=

Fh1 Fd1
0

F̂C1

Fh1 Fd1
1

Ff2

Fε1

Fη2

Fh2 Fd2
0

F̂C2

Fh2 Fd2
1
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