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Abstract
Thymol is a natural volatile monoterpenoid phenol that is the main active ingredient of oil 

extracted from species Thymus vulgaris L., commonly known as thyme, and other plants 

such as Ocimum gratissimum L., Origanum L., Carum copticum L., different species of the 

genus Satureja L., Oliveria decumbens Vent, and many others. It is a versatile molecule with 

a wide variety of practical applications such as medical, dentistry, veterinary, food, and 

agrochemicals, among others. Its pharmacological applications have been the most 

investigated and reported, focusing on its prominent antimicrobial, antioxidant, anti-

inflammatory, cicatrizing activities. Furthermore, it is noteworthy that the research on its 

agricultural applications has increased, highlighting its uses as a natural agrochemical and 

preservative to safeguard foods from pathogenic microorganisms both in sowing and 

storage, which could have a beneficial effect on human health and the environment. 

Research has also been reported on its activity as an insecticide, acaricide, and animal 

repellent. This review summarizes important aspects of thymol such as its bioavailability, 

synthesis, and biological activities, with special interest in practical applications. 
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1. Introduction
Thymol, also known by the chemical names 2-isopropyl-5-methylphenol and 5-methyl-2-

isopropylphenol, is a natural monoterpenoid phenol, crystalline and colorless, with a 

characteristic odor. It is also an isomer with carvacrol and is the principal active ingredient 

of oil extracted from the species Thymus vulgaris, commonly known as thyme. It is a 

perennial aromatic plant, woody, very branched and of small height, of the mint family 

Lamiaceae, with a useful life of approximately 10 to 15 years, native to the Mediterranean 

and neighboring countries, Northern Africa, and parts of Asia, and is cultivated all over the 

world (Fig. 1) (Kuete, 2017). T. vulgaris presents bilabiate flowers, white, yellow or purple in 

color, which bloom in spring. When its leaves are touched, it gives off a pleasant and sweet 

smell. Thyme is a relative of the oregano genus Origanum, and people have used it for many 

centuries as a food seasoning and medicinal herb, but its antioxidant and antimicrobial 

properties have also been studied (Mandal and DebMandal, 2016).

Figure 1

The reputation of thyme goes back thousands of years. In Ancient Rome, it was believed to 

be an antidote. Eating thyme before or during meals protected from poisons. This fame 

made it one of the favorite herbs of emperors. Time later, during the Black Death around 

1340, it was used as the main ingredient in medicinal concoctions and ointments applied 

directly to the blistered skin (Dunn, 2013). Although at that time it was unknown what the 

pharmacological principle was, it was not until 1719 that thymol was first isolated by the 



scientist Caspar Neumann. Later, between 1879 and 1880, Italian doctors discovered its  

anti-hookworm activity, when fighting the hookworm epidemic, a disease caused by a type 

of intestinal parasite (Sharma and Anand, 1997). Today it is known that  thymol is a powerful 

antiseptic that is currently widely used in mouthwash, hand sanitizer, and acne medications, 

etc. (Nagoor Meeran et al., 2017).

Thymol has been isolated from other plants such as Ocimum gratissimum L., Origanum L., 

Trachyspermum ammi (L.), different species of the genus Satureja L. and Monarda L. 

(Lamiacaeae), Carum copticum L. and  Oliveria decumbens  Vent (Apiaceae), Anemopsis 

californica (Saururaceae) and species of Verbenaceae, Scrophulariaceae and 

Ranunculaceae (Bassole, 2003; Boskabady et al., 2014; dos Santos et al., 2019; Marchese 

et al., 2016; Medina et al., 2005; Moein et al., 2015; Mohagheghzadeh et al., 2007; Öztürk, 

2012). These extracts have been used as medicinal herbs by different cultures in many 

countries.

Among the medicinal uses that have been reported for T.  vulgaris essentials oils and other 

oils that contain thymol, the following can be listed: treatment of disorders that affect the 

respiratory and digestive systems (antitussive, expectorant, stomachic, digestive, 

carminative,  and antispasmodic) (Gavliakova et al., 2013; Kissels et al., 2017; Negahban 

et al., 2007; Salehi et al., 2018; Wan et al., 2018), activity against oral diseases such as 

caries (Preston et al., 2007; Rezaeian et al., 2019), cicatrizing (Mollarafie et al., 2015), 

antioxidant (Nikolić et al., 2014), anti-inflammatory (Fachini-Queiroz et al., 2012; Oliveira et 

al., 2017), antifungal (Borugă et al., 2014; Jafri and Ahmad, 2019), and antimicrobial 

activities (Costa et al., 2018; Reyes-jurado et al., 2019), among others. This variety of proven 

pharmacological applications, the identification of their mechanisms of action, and their 

pharmacokinetic study postulate thymol as a possible medicinal treatment of natural origin 

(Milovanovic et al., 2019; Nagoor Meeran et al., 2017). There are commercial 

pharmaceuticals whose main component is Shirazi thyme (Zataria multiflora) essential oil, 

commonly used in medicine for the treatment of respiratory diseases (Ebrahimzadeh et al., 

2003). Another world-famous product that contains thymol is Listerine, which gets its name 

thanks to Joseph Lister, who discovered the properties of thymol to treat mouth problems 

such as mouth, throat and gingivitis infections caused by bacteria (Buckle, 2014). This is 

because the oils that contain thymol have shown antibacterial activity against Gram-positive 

(Staphylococcus aureus, Streptococcus faecalis, Bacillus subtilis, and Bacillus cereus) and 

Gram-negative (Proteus mirabilis, Escherichia coli, Salmonella Typhimuium Ty2, and 



Pseudomonas aeruginosa) bacteria (De Feo et al., 2003; Nabavi et al., 2015; Tohidpour et 

al., 2010).

But the applications of thymol are not only at the pharmacological level, since from the 

moment it was included in the list of ‘Generally Recognized As Safe’ (GRAS) for use as a 

food additive with negligible toxicity by the United States Food and Drug Administration 

(FDA) (U.S. Food and Drug Administration (FDA), 2020), research on its activity as a natural 

food preservative has increased significantly, highlighting its antimicrobial and antioxidant 

activity. Due to these studies, it is now known that its antioxidant activity  is because the 

compounds containing phenolic groups both by absorbing or neutralizing free radicals and 

by augmenting endogenous antioxidants (Heydari et al., 2019; Marchese et al., 2016). In 

addition, due to its antimicrobial properties, it prevents or slows the growth of fungi and 

bacteria in food. Finally, among its applications, thymol also stands out in commercial 

formulations for use as insecticide (Benelli et al., 2017), acaricide (Tabari et al., 2017), insect 

and animal repellent (Park et al., 2005), fungicide, and medical disinfectant, presenting itself 

as an alternative to reduce the employment of synthetic fungicides (Dingfei Hu, 2008; 

Robledo et al., 2019).

All the above-mentioned uses have led to study the composition and properties of a wide 

variety of essential oils containing thymol. These studies show that thymol and the oils that 

contain it have potential applications in pharmaceutical, cosmetic, food, agronomic, and 

veterinary industries, among others, and that their biological activity varies depending on the 

chemical composition of the oil, which is determined by genotype of the plant and influenced 

by agronomic and environmental conditions, cultivation, and plant growth stage (Rota et al., 

2008).

Some critical reviews of pharmacological properties of thymol in different areas of 

knowledge have been published in the last years (Alagawany et al., 2020; Islam et al., 2019; 

Marchese et al., 2016; Nagoor Meeran et al., 2017). The multiple therapeutic action of 

thymol against various cardiovascular, neurological, rheumatological, gastrointestinal, 

metabolic and malignant diseases have been reviewed by Nagoor Meeran et al. (2017) 

Furthermore, Islam et al. (2019) have documented a critical review on the anticancer activity 

of thymol, emphasizing its mechanism of pharmacological action. Another article regarding 

the antibacterial and antifungal effects of thymol, focused on human pathogens, was 

summarized by Marchese et al. (2016). On the other hand, the use of thymol in aquaculture 

was also reported (Alagawany et al., 2020). These authors have recently reviewed the 

beneficial effect of thymol on health and production of fish.



The innovativeness and originality of this review is to critically analyze the available literature 

on thymol bioactivities with emphasis on specific practical applications (medical materials, 

dentistry, veterinary, food preservatives, feed additives for animal production, agrochemical 

and antifouling, among others). The present review work aims to complement the 

information so far described in the literature. Important information on the chemistry, 

synthesis, and bioavailability of thymol was also gathered, providing a complete review of 

this versatile molecule.

2. Natural sources of thymol
The natural sources of thymol, their content and properties are summarized in Table 1.

Table 1. Summary of natural sources of thymol and activities.

Plant species Plant 
families

Part of the 
plant

Amount 
thymol 

(%)

Activity References

Thymus vulgaris Lamiaceae EO 39.5 Antioxidant (Tohidi et al., 
2017) 

Thymus 
vulgaris, 
Thymus 
serpyllum,
Thymus 
algeriensis

Lamiaceae EO 38.5

48.8

56.0

Antioxidant
Antimicrobial

Antitumor

(Nikolić et 
al., 2014)

Thymus vulgaris Lamiaceae Commercial 
extract 
(leaves)

- Antimicrobial
Anti-inflammatory

(Oliveira et 
al., 2017)

Thymus vulgaris Lamiaceae EO - Anxiety (Komaki et 
al., 2016)

Thymus vulgaris Lamiaceae EO 38.23-
63.01

Antimicrobial (Nezhadali 
et al., 2014)

Thymus 
vulgaris, 
Thymus tosevii

Lamiaceae EO 48.9

10.4

Antifungal (Soković et 
al., 2009)

Thymus zygis EO 19.5 Anti-inflammatory (Rodrigues 
et al., 2015)

Thymus vulgaris Lamiaceae EO 35.4 Antioxidant
antibacterial

(Dehghani et 
al., 2019)

Thymus vulgaris Lamiaceae EO 39.9 Feed additives for 
animals

(Oceľová et 
al., 2019)

Thymus vulgaris Lamiaceae EO - Mosquito 
repellents

(Park et al., 
2005)

Carum copticum Apiaceae Leaves, 
Flowers, OE

17.4-72.3 Food additive
Traditional 
medicine

(Boskabady 
et al., 2014)

Carum copticum

Thymus vulgaris

Apiaceae

Lamiaceae

EO from dry 
fruits
EO

36.7 Valued sensory 
characteristics

(Morsy, 
2020)

https://es.wikipedia.org/wiki/Lamiaceae


Trachyspermum 
ammi

Apiaceae EO 17.4 Antifungal  
Antibacterial

(Moein et al., 
2015)

Oliveria 
decumbens

Apiaceae EO 38.8 Antibacterial
Insecticidal

Anti-
cholinesterase

and anti-
butyrylcholinestera

se activities
Cytotoxic

(Eftekhari et 
al., 2019)

Satureja  
thymbra 

Lamiaceae EO 33.8 Antimicrobial (Markovic et 
al., 2011)

Anemopsis 
californica 

Saururaceae roots and 
rhizomes EO

13.8 Anticancer (Medina-
Holguín et 
al., 2008)

Zataria 
multiflora Boiss

Lamiaceae Various parts 15.6-64.9 Food additive
Traditional 
medicine

(Sajed et al., 
2013)

Zataria 
multiflora Boiss

Lamiaceae EO 47.5 Antimicrobial (Saei-
Dehkordi et 
al., 2010)

Majorana 
syriaca

Lamiaceae EO 42.9 Antioxidant (Al‐Bandak 
and 
Oreopoulou, 
2007)

Origanum 
glandulosum 
Desf

Lamiaceae EO 41.6-81.1 Antimicrobial
Antifungal

(Bendahou 
et al., 2008)

Lippia gracilis Verbenaceae EO 11 Acaricidal (Born et al., 
2018)

Lippia multiflora Verbenaceae EO 19 Analgesic 
Antipyretic 

Anti-inflammatory

(Abena et 
al., 2003)

Lippia chevalieri 
Lippia multiflora

Verbenaceae EO 27.4
29.9

Antibacterial (Bassole, 
2003)

In addition to the species T.  vulgaris, thymol is also present in other plants, such as Carum 

copticum L. (Apiaceae) better known as “ajwain”. This species is planted in many parts of 

the world, Iran and India being one of its largest producers. Since ancient times it has been 

used to treat different ailments including bloating, fatigue, diarrhea, tumors and abdominal 

pain, and diseases of the respiratory system. Other interesting properties such as antifungal, 

antioxidant, antimicrobial, and hypolipidemic activity are also attributed to it (Boskabady et 

al., 2014). The amount of extractable oil of this species is between 2.5% and 5.0%, and its 

main constituent is thymol with percentages that vary between 35% and 60%. Other 

compounds present are p-cymene (50%-55%), limonene, γ-pinenes and β-pinene (30%-

35%) (Asif et al., 2014). Food-damaging bacteria such as Salmonella Typhimurium, E. coli, 

Pseudomonas aeruginosa, Enteropathogenic and S. aureus have been the most frequently 

https://es.wikipedia.org/wiki/Verbenaceae
https://es.wikipedia.org/wiki/Verbenaceae
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evaluated to determine the antibacterial activity of this oil, exhibiting significant results 

against all of them (Goudarzi et al., 2011). Morsy (2020) obtained Carum copticum L. 

(ajwain) and T.  vulgaris L (thyme) oil, with thymol as the main component,  by supercritical 

fluid CO2-extraction (SFE). The SFE extracts were made at 40 °C and two pressures, 10.4 

and 16.7 MPa, thus substantially improving the relative amount of thymol in the ajwain and 

thyme extracts by 1.7 and 2.49 times, compared to the amount of thymol present in 

hydrodistilled oils, respectively. Chatterjee et al. (2017) reported the cloud point assisted 

extraction of thymol from water extract of ajwain. In it, a nonionic surfactant is added to the 

aqueous extract of Ajwain seeds, and heated beyond the temperature of the cloud point 

where it is separated into two phases, the aqueous phase and the surfactant-rich coagulated 

phase. The authors investigated the effects of different operating conditions, i.e., surfactant 

concentration, heating time, and temperature, on extraction efficiency, finding that maximum 

thymol extraction efficiency was achieved with 30% (v/v) of surfactant SPAN 80 (Sorbitan 

monooleate), 45 min of heating at 65 °C. Thymol recovery from the surfactant complex was 

optimal at a 1:3 volume ratio of coacervate phase to solvent (acetone). 

Another plant that has a high content of thymol in its essential oil is Oliveria decumbens Vent 

(Apiaceae). This is an endemic plant in Iran, used in  traditional medicine to treat indigestion, 

diarrhea, abdominal pain, and feverish conditions, and has been investigated to determine 

its components and antimicrobial and insecticidal activity (Eftekhari et al., 2019). In an 

investigation  conducted by Amin et al. (2005), in which they studied the components of this 

oil, it was determined that the main compounds were thymol (47.06%) and carvacrol 

(23.31%). Additionally, the oil presented a high antibacterial and antifungal activity against 

all tested Gram(+) and Gram(-) bacteria and fungal strains.

Continuing with the plants that contain thymol, we can mention the species Satureja, which 

is an ornamental and pharmaceutical plant very common in the Mediterranean area. The 

most common Satureja specimen is Satureja thymbra L., to which antiseptic, gastrosedative 

and diuretic properties are attributed (Chorianopoulos et al., 2006). Marković et al. (2011) 

studied the chemical composition of the essential oils extracted from Satureja thymbra and 

Thymbra spicata, determining that the main components were thymol (33.8%), γ-terpinene 

(30.8%) and p-cymene (11.8%) for the S. thymbra oil, and carvacrol (74.5%) and γ-terpinene 

(11.2%) for the T. spicata oil.

On the other hand, the Anemopsis califórnica plant, which is cultivated in southwestern 

United States and in northern Mexico, is one of the five genera belonging to the Saururaceae 

family, commonly known as “yerba mansa”. Infusions made with leaves and roots of A. 



californica have been used to treat pain, inflammation, and infection (Medina et al., 2005).  

Medina-Holguín et al. (2008) determined the chemical variability of the main compounds 

present in the roots and rhizomes of A. californica, collected in different regions of New 

Mexico. They identified three different chemotypes, of which only one had high 

concentrations of piperitone and thymol.

From the Apiaceae family, there is the species Trachyspermum ammi (L.) Sprague, a 

common herb in some countries of South Asia, North Africa, and Europe. Due to its various 

chemical components, possible pharmacological applications have been studied, finding 

that it has stimulant, carminative, diuretic, anesthetic, antimicrobial, antiviral, antiulcer, 

antihypertensive, antitussive, bronchodilator, antiplatelet, and hepatoprotective effects 

(Zarshenas et al., 2014) and  can be used as a food preservative (Paul et al., 2011; Raeisi 

et al., 2016). Moein et al. (2015) evaluated the chemical composition of the essential oil of 

the species Trachyspermum ammi (L.), determining that γ-terpinene (48.07%), p-cymene 

(33.73%) and thymol (17.41%) are the main components. In this research they also 

evaluated the antimicrobial activity of the total extract, of the extract fractions and of the 

standard thymol, finding as an outstanding fact that one of the analyzed oil fractions had a 

greater antibacterial effect than that obtained with the total essential oil and the standard 

thymol. This result was attributed to a synergistic effect between thymol and other 

compounds present in the oil fraction. The genus Lippia L., belonging to the family 

Verbenaceae, includes more than 200 species of herbs, shrubs, and small trees native to 

the tropical and subtropical regions of Africa and South America. One of the most abundant 

species in Brazil is Lippia gracilis Schauer, popularly known as "alecrim-da-chapada" (Cruz 

et al., 2018; dos Santos et al., 2019), which is used in traditional medicine to treat different 

respiratory diseases such as  flu, sinusitis, bronchitis, nasal congestion, and others such as 

headache, jaundice, and paralysis (Veras et al., 2012). Its leaves are used to make 

ointments to treat skin wounds such as burns and ulcerations, and it is also used as an oral 

antiseptic (Riella et al., 2012). But its applications are not only medicinal, the bioactivity of 

its oil has also been proven against fungi, insects, mites, and ticks (Born et al., 2018; Cruz 

et al., 2013). On the other hand, Lippia multiflora and Lippia chevalieri are endemic species 

of West Africa. Traditional African medicine uses their leaves as tea and in the treatment of 

malaria, hypertension, boils, diarrhea, and as a mouth disinfectant (Abena et al., 2003; 

Bassole, 2003). The bioactivity of these plants is especially attributed to the fact that thymol 

is one of the major components of the essential oil of these species. Therefore, these oils 

and their major compounds have been studied to develop biopesticides, and anti-



inflammatory and cicatrizing medications, among other applications. There are some oils 

that contain thymol to a lesser extent such as the extracts of the root of Uvaria chamae 

(Annonaceae) that present 8.7% thymol (Thomas and Essien, 2020) and Artemisia judaica 

(Asteraceae) with 3.5% thymol (Al-Wahaibi et al., 2020).

3. Bioavailability, composition and extraction of thymol
Throughout the evolution of plants, essential oils have had a transcendent role in the direct 

and indirect defenses of plants against possible predators and pathogens, in the processes 

of plant reproduction by attracting seed pollinators and disseminators, and in the 

thermotolerance of plants. This has made it feasible to think about isolating their 

components and studying them with a view to evaluating their antimicrobial, acaricidal, 

insecticidal, repellent activity, among others, and to know more about their synthetic routes 

and bioavailability. From these studies, it is now known that the biosynthesis and storage of 

oils are due to the presence of different structures in plant organs such as glandular 

trichomes responsible for secreting substances, and cavities and conduits responsible for 

transporting them. These substances are classified into two chemical groups based on the 

metabolic pathway of their synthesis: (i) terpenoids, mainly monoterpenes and 

sesquiterpenes; and (ii) phenylpropanoids with low molecular weight (Pavela and Benelli, 

2016). Plants have developed a great capacity to synthesize compounds of different 

structures and functions, for example, there are more than 23,000 terpene structures 

identified in higher plants, which include hydrocarbons, alcohols, ethers, aldehydes, 

ketones, carboxylic acids, and esters.  Within this large group, the monoterpenes thymol 

and carvacrol stand out as two of the molecules with the greatest biological activity (Trindade 

et al., 2018). The biosynthesis of monoterpenes begins with the synthesis of geranyl 

pyrophosphate (GPP), which is the precursor of all monoterpenes. Later, GPP generates 

the α-terpinyl cation, a highly unstable intermediate that, thanks to terpenoid synthase (TPS) 

enzymes, can be converted into specific monoterpenes. Thus, γ-terpinene and p-cymene 

are synthesized by the enzyme γ-terpinene synthase (Tps2) and these, in turn, are the 

precursors of the monoterpenes thymol and carvacrol (Fig. 2) (Lima et al., 2013; Tohidi et 

al., 2020b).
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OPP

Geranyl diphosphate (GPP) -Terpinyl cation Terpinyl-4-ylcation

-Terpinene
synthase
(Ttps2)

-Terpinene

aromatisation

p-Cimene

OH

OH

Carvacol Thymol

hydroxylation

In addition to this biosynthetic route, the chemical composition of essential oils and the 

amount of thymol present in them depend on different factors such as species of the plant, 

geobotanical conditions (soil, light, humidity, altitude), cultivation method (fertilizers, 

agrochemicals, planting time, irrigation, pesticides), plant collection time,  plant material 

storage method (fresh, dry, etc.), method of obtaining oil (distillation, maceration, pressing, 

extraction with or without solvents), type of solvent, age of the plant, genetic modifications, 

etc. For example,  Nomani et al. (2019) genetically modified the Trachyspermum ammi 

species (Qom ecotype), to overexpress the Ttps2 gene using Agrobacterium tumefaciens 

and thus increase the thymol amount in the essential oil of the plant. For this, a gene 

construct called pBI121-TP harboring the neomycin phosphotransferase (nptII) gene as a 

plant-selected marker was designed. The factors studied included inoculation time (5, 10, 

15, and 20 min) and co-cultivation time (1–3 days).  The authors reported that the results of 

the polymerase chain reaction (PCR) determined that the TPS2 gene was expressed more 

in transgenic plants than in non-transgenic plants, which was reflected in a greater amount 

of thymol that varied between 6.12% and 18.36% in transgenic plants compared to non-

transgenic plants. This study is the first of its kind to report an adequate and efficient method 

for overexpression of the TPS2 gene to increase the thymol biosynthesis in this plant genus.



Nezhadali et al. (2014) studied the chemical composition of the essential oil of  T.  vulgaris 

(Lamiaceae) species at different stages of plant growth. They determined that there was an 

inverse linear relationship between the lifetime and the total amount of oil extracted with 

values between 0.83% and 1.39% (w/w). In addition, the main essential oil components were 

thymol and o-cymene, with percentages that varied between 38.23% and 63.01%, and 

5.56% and 15.47% respectively, finding that the amount of thymol decreased with the life of 

the plant, while the amount o-cymene increased. The authors also reported the composition 

of thymus essential oil from different countries, where thymol was the main component of 

the thymus species gathered from Morocco, Iran, and Algeria, while its concentration was 

very low in El-Asnam and Chrea National Park. A final important conclusion of this work was 

that in most of the cases studied, there was a linear relationship between the concentration 

of thymol and carvacrol. If thymol was in high concentration in the oil, the amount of carvacrol 

was low and vice versa. This  was corroborated with another study that compared the 

variation of the composition of the oil of  T. vulgaris L species, in different periods during the 

vegetative and life cycles of the plant, determining that the oil of the old plant (5 years) 

presented the minimum oil extract yield level recorded (0.15% v/w) and the minimum amount 

of thymol (19.38%) compared to the young plant (2 years), collected just before the end of 

the vegetative cycle, which provided the best oil yield (1.2%) with also the highest % of 

thymol (51.2%). This indicates that to obtain an essential oil with better quality and quantity, 

the best harvest time is when  thyme plants are young (Hudaib et al., 2002).

As mentioned in the previous paragraph, the region where the crop is planted and the plant 

species also have a major role in the composition and properties of oils, which largely 

defines their best application, whether in the food or pharmaceutical industry. An example 

of this is a study conducted by Asensio et al. (2015) in which they evaluated the sensory, 

physicochemical profiles, and biological activities (antioxidant tests and lethality tests 

against intestinal worms) of four essential oils of Origanum spp. cultivated differently in 

central and southern Argentina, in the provinces of Córdoba, Rio Negro, and Neuquén. They 

found that the concentration of thymol varied between 12.1% and 17.4% and they had a 

lower amount of carvacrol, between 0.1% and 3.5%. The physicochemical and organoleptic 

properties of the oils showed that these parameters could be used to differentiate them. An 

antioxidant profile showed that oregano oils from the southern provinces were more active 

(9.2-10.4, arbitrary scale up to 12) than those from the center of the country, and these, in 

turn, showed aromas of better acceptance, compared to the southern ones. The same 

pattern was observed for lethality studies against yeast and intestinal worms. Thus oils from 



central Argentina that have better aroma have major applications in the food and fragrance 

industries for their taste and aroma, while oils from the southern provinces  may have 

applications in the development of new pharmaceutical and veterinary products or in food 

preservation due to their antioxidant and biocidal activity. Similarly, Kokkini et al. (1997) 

analyzed the essential oils of Origanum vulgare hirtum from six locations in three different 

geographical areas of Greece, collected at the end of autumn, and analyzed them using 

GC/MS. The plants collected in northern Greece presented a high concentration of thymol 

(30.3%-42.8%), unlike those in the south that had carvacrol as the main component (57.4%-

69.6%). In addition, when essential oils from the same regions but obtained in summer were 

compared, significant differences were observed in terms of the amount of oil obtained and 

the composition of its four main components. Bakha et al. (2020) studied the intraspecific 

chemical variability of the essential oils of Origanum elongatum L. (Lamiaceae), an endemic 

species of Morocco, comparing all its natural habitats in a biogeographic context. For this, 

they analyzed the essential oils of 168 individual plants collected in 30 populations that grow 

wild in two Moroccan mountains: Rif and Middle Atlas, collected by hydrodistillation (HD), 

with yields that varied between 0.81% and 3.12%. They found that carvacrol, thymol, and 

cymene constitute the main compounds of the essential oils, thymol being the most 

abundant compound in the samples taken in Rif unlike those taken in the Middle Atlas. 

Another agent that has been considered as one of the external factors that most affect the 

biosynthesis of secondary metabolites in recent times is light, intervening in the composition 

of the oil and in the amount of each metabolite (Silva et al., 2017). This is why Tohidi et al. 

(2020a) conducted an interesting study on the composition and antioxidant activity of four 

thymus species when exposed to five light spectra (namely, red, blue, red-blue, white, and 

greenhouse conditions). The main conclusion that they obtained, according to the analysis 

of variance, is that the effect of light was not the same for all the species studied. Thus, red 

light gave a higher yield in the production of oil in the species T. migricus (4.17%), while the 

lowest yield was found in the T. carmanicus species (1.05%) under greenhouse conditions. 

The highest amount of thymol (66%) was found in T. migricus under the action of blue light, 

and the lowest (1.69%) in T. kotschyanus under blue-red light.

The species also play an important role. Sefidkon et al. (2005) studied the chemical 

composition of essential oils of three Iranian species of Satureja, namely, S. mutica Fisch. 

& C. A. Mey., S. macrantha C. A. Mey., and S. intermedia C. A. Mey. that were extracted by  

HD and analyzed by GC/MS. They found a great variation between the components and the 

amounts of each of them in the oils, with S. intermedia oil being the one with the highest 



concentration of thymol (32.3%), other main components were γ-terpinene (29.3%) and p-

cymene (14.7%). The second oil with the highest amount of thymol was S. mutica (26.5%), 

followed by γ-terpinene (14.9%) and p-cymene (10.3%). Finally, the low amount of thymol 

in S. macrantha oil (8.1%) caught the authors’ attention; the largest component in this oil 

was p-cymene (25.8%), followed by limonene (16.3%). Due to the high amounts of thymol 

and/or p-cymene in the oils of S. mutica and S. intermedia, the authors suggest that these 

oils can be used in medical and food applications. In another study, Mastelic et al. (2003) 

examined the content and composition of essential oils in the Satureja montana L species 

at different stages of plant development. Thirty-six compounds were identified in the 

essential oil, where the main compounds were thymol (30.88%–46.02%), p-cymene 

(7.10%–13.48%), -terpinene (7.57%–9.74%), and carvacrol (3.81%–6.86%). They also 

determined that the thymol content decreased with the maturation of the plant, and the 

contents of eugenol and geraniol increased at the same time. 

Another factor that indirectly affects the composition of the oils is the method of extraction. 

Ebrahimzadeh et al. (2003)  compared the extraction of oil from the Zataria multiflora Boiss, 

grown in Iran, using two techniques, steam distillation and SFE with CO2. The oils and 

extracts were analyzed by GC/MS. Parameters such as temperature, pressure, and 

extraction period were analyzed to determine the optimal conditions of SFE. Chemical 

analysis revealed that there was a great dependence between the extraction conditions and 

the composition of the oils, which varied in the following percentages: thymol (14.2%–

67.6%), ʎ-terpinene (0.1%–19.5%), and p-cymene (3.6%–12.0%), and that SFE was more 

efficient to extract thymol than steam entrainment extraction, in which the amount of thymol 

extracted was 44.6%. Similarly, Khajeh et al. (2004)  compared the SFE with CO2 method, 

this time with the HD method, in the extraction of the essential oil of Carum copticum grown 

in Iran. The characterization of the oils and the optimization of the parameters of the SFE 

method were the same as those reported by Ebrahimzadeh et al. (2003). The results showed 

that the SFE method offers many important advantages over HD such as shorter extraction 

times (30 min vs. 4 h for HD), lower energy expenditure, the possibility of manipulating the 

oil composition by changing the extraction parameters (pressure, temperature, modifier 

volume, and dynamic extraction time). Finally, it should be pointed out that although the 

compositions of the oils obtained by SFE and HD are not qualitatively different, they do differ 

quantitatively. By means of the HD method they identified six main compounds:  thymol 

(49.0%), γ-terpinene (30.8%), p-cymene (15.7), β-pinene (2.1%), myrcene (0.8%), and 

limonene (0.7%). The extraction yield, based on HD, was 2.8% (w/w) and SFE varied in the 



range of 1.0-5.8% (w/ w) under the different conditions studied. Similar conclusions reached 

Morsy (2020). On the other hand, Abu-Lafi et al. (2008) compared the methods static 

headspace (HS) and steam distillation (SD), in the determination of secondary metabolites 

of the leaves of the Majorana syriaca (Zaatar in Arabic), belonging to the mint family, 

Labiates. The authors determined that main volatile and semivolatile metabolites were α-

pinene, β-myrcene, o-cymene, p- cymene, γ-terpinene, thymol, and carvacrol, and that the 

results obtained by the HS method were similar to the percentages of the semivolatile 

phenols extracted using the conventional SD method. The authors also determined that the 

monoterpenes γ-terpinene and p-cymene, which are the biosynthetic precursors of thymol 

and carvacrol (through enzymatic hydroxylation), decrease their concentration in the month 

of May, which is consistent with the increase in thymol and carvacrol. Bendahou et al. (2008) 

studied essential oils obtained by HD, solvent-free microwave extraction (SFME), and the 

extract obtained by microwave-assisted extraction (MAE) of the species Origanum 

glandulosum Desf., and analyzed them by GC/MS. Thymol (41.6%–81.1%) was the majority 

compound extracted by the three methods. However, the research also highlighted that the 

SFME method was most selective for the extraction of thymol. Jain et al. (2018) did a great 

statistical work to evaluate the optimal process conditions for the aqueous extraction of 

phytonutrients and thymol from ajwain species (Trachyspermum ammi L.). They determined 

the following values: seed to water ratio: 0.30 g/mL, extraction time: 16 min, and extraction 

temperature: 52 °C. Under these conditions, 2.1 mg of thymol per kg of ajwain seed was 

extracted.

4. Chemical synthesis and reactions
There are several methods available for thymol synthesis that are classified into two 

categories: those that start from aromatic hydrocarbons such as p-cymene and those that 

begin from phenols such as m-cresol, the latter being the most common method. The first 

method was reported by Oskar Widman in 1882. This classic synthesis illustrates very well 

the complex procedure that should be performed at its beginning. It started from 

cuminaldehyde that, when treated with nitric acid, forms nitro-cuminal, the nitro group 

entering the meta position to the aldehyde group. This compound is then treated with 

phosphorus pentachloride generating nitro- cymyline chloride that, when reduced with zinc 

and hydrochloric acid, gives 3-aminocimene, and after diazotization and subsequent 

hydrolysis produces thymol (Widmann, 1882). Years later, in 1920, Max Phillips and H. D. 

Gibbs reported the synthesis of thymol from p-cymene. The process shown in Figure 3 

https://www.sciencedirect.com/science/article/abs/pii/S0926669019310829#!


begins with the nitration of p-cymene by reacting with nitric acid, with the substitution largely 

in the ortho position to the methyl group (Phillips and Gibbs, 1920).

Then the reduction of this group by means of iron powder and hydrochloric acid generates 

amino acids. Then it is  sulfonated and after different treatments with sodium nitrite/sulfuric 

acid, methanol/copper powder and fusion with sodium hydroxide, thymol is obtained (Phillips 

and Gibbs, 1920). In 1932 Joseph B. Niederl and Samuel Natelson obtained thymol by 

condensing propylene with m-cresol catalyzed by sulfuric acid,  in which thymol sulfonic acid 

is formed, and later, the acid group is removed by means of superheated steam (Niederl 

and Natelson, 1932).

Since those first reported synthesis methods, which were quite complex, with low yields and 

with toxic and dangerous reagents for health and the environment, synthetic processes to 

obtain thymol have been much improved nowadays. In recent years, a large number of 

papers and patents that demonstrate this have been reported. The alkylation of m-cresol to 

produce thymol continues to attract considerable attention because it is a simple, high-yield 

process. It is the industrially used method to produce thymol known as the Bayer process in 

which the propylation of m-cresol is carried out in liquid phase at 280–365 °C and 5 MPa 

over activated alumina (Wedemeyer, 1976). Over the years, different catalysts have been 

studied in order to optimize the process in such a way that it generates minimal 

environmental threats and maximum economic benefits. In this order of ideas, different 

catalysts and reaction conditions have been used in the alkylation of m-cresol, with 

propylene in the presence of alumina or aluminum 3-methylphenoxide (Grabowska et al., 

2004).
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A patent published in 2016 uses m-cresol and propylene as raw materials, and an activated 

aluminum oxide catalyst prepared through a sol-gel method with cobalt doping as the main 

component; the structure of the activated aluminum oxide catalyst is Co&X@Al2O3, where 

X is family-VIII transition metal except for cobalt, and the content of X is smaller than that of 

cobalt. As advantages of the process the inventors/authors highlight the catalyst has high  

stability and long  service life; besides, selectivity is very high, continuous production can be 

achieved, and industrialization is promoted (Zhang et al., 2016). Other proprietary catalysts 

are described as a composition of concentrated sulfuric acid/aluminum trichloride, 

polyphosphoric acid/aluminum chloride, concentrated sulfuric acid/zinc chloride or 



polyphosphoric acid/zinc chloride (Yang et al., 2014). The isopropylation of m-cresol with 

ZnAl-MCM-41 (Selvaraj and Kawi, 2008) and MgAl-MCM-41has also been reported (Vinu 

et al., 2004), as well as the alkylation of m-cresol with propene and zeolites H-ZSM-5 as 

catalysts (O’Connor et al., 2003). In the alkylation of m-cresol with various alkylating agents 

such as 1-propanol, 2-propanol, propane, and isopropyl acetate on H-Beta zeolite (Nie and 

Resasco, 2012; Yusuke;, 2014), the authors highlight that in general, large-pore zeolites, 

such as H-Beta and HY zeolites, are more effective in alkylating cresol and other substituted 

phenolic compounds than small-pore zeolites, such as HZSM-5 (Nie and Resasco, 2012). 

Modern methods such as microwave-assisted reaction and a carbonized sulfonic acidic 

(CSA) resin as catalyst have also been studied in m-cresol alkylation. The authors reported 

a complete conversion of m-cresol was obtained within a contact time of 3 min at 1:5 molar 

ratio of m-cresol to  isopropyl alcohol (Ali and Gaikar, 2011). Other procedures for 

synthesizing thymol include the dehydrogenation of menthone as raw material, under the 

action of an activated carbon loaded Ni/Na2SiO3 catalyst. The authors highlight the easy 

separation of the obtained product, the reduction of the production cost, the short reaction 

time, and that the method is environmentally friendly (Shuai and Zhang, 2014). Other more 

complex procedures with more steps have also been described, such as condensation 

reaction of m-cresol and ethyl acetoacetate to obtain 4,7- diformazan butylcoumariii, 

followed by  decarboxylation under highly basic hot conditions to form  5-methyl-2-prop-1-

en-2-ylphenol, which is finally reduced to obtain thymol, in the presence of palladium carbon 

and ammonium formate as reducing agent (Yu et al., 2018).  Divakar et al. (2000) compared 

two methods to synthesize thymol from m-cresol. The first route includes the formation of 

4,7-dimethylcoumarin, which is then heated in an alkaline medium followed by acidification 

to obtain (E)-3-(2-hydroxy-4-methylphenyl) but-2-enoic acid that, when it is finally  heated, 

the acid easily loses CO, to give 5-methyl-2-(prop-1-en-2-yl) phenol and finally, thymol. The 

second route includes the heat treatment of 4,7-dimethylcoumarin at a higher temperature 

(190 °C) in alkaline medium, directly producing 5-methyl-2-(prop-1-en-2-yl) phenol and 

finally obtaining thymol by hydrogenation (Divakar et al., 2000). All these synthesis methods 

are represented in Figure 4.

Thymol is not only obtained on an industrial scale due to the large number of applications it 

has, but it is also a compound widely used in the synthesis of more complex molecules to 

improve their biological activity. This is why there are many publications on investigations of 

new synthetic routes through the chemical or biochemical transformation of thymol. Yoshiaki 

Noma et al. conducted research that includes biotransformations by using various kinds of 



bacteria and fungi, converting commercially available and cheap synthetic monoterpenoids, 

such as thymol, into other products with interesting properties (Fig 5) (Noma and Asakawa, 

2010).
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Another reaction of considerable commercial importance is the oxidation of thymol to 

thymoquinone, which has antitumor, hepatoprotective, chemotherapeutic, chemopreventive 

effects among many other applications in pharmaceutical chemistry (Badary et al., 2007; 

Kruk et al., 2000; Zhang et al., 2018). Skrobot et al. (2003) studied the oxidation of thymol 

to thymoquinone catalyzed by Y zeolite-entrapped manganese(III) tetra(4-N-

benzylpyridyl)porphyrin and H2O2/ammonium acetate, at room temperature and 

atmospheric pressure, obtaining a conversion of 18% and 100% selectivity to thymoquinone. 

More recently Günay et al. (2016) studied the same reaction, this time in the presence of 

potassium peroxymonosulfate (KHSO5) and catalyzed by iron phthalocyanine tetrasulfonate 

(FePcTS), with a conversion of thymol to thymoquinone of 99% in 1 h at room temperature. 

Other compounds of interest include the synthesis of thymol/carvacrol derivatives with the 

carbamate moiety, whose inhibitory activity on acetylcholinesterase and 

butyrylcholinesterase was evaluated; these are two enzymes related to Alzheimer's disease. 

5-Isopropyl-2-methylphenyl (3-fluorophenyl) carbamate and 5-isopropyl-2-methylphenyl (4-

fluorophenyl) carbamate were found to be the two most potent inhibitors for each enzyme 

respectively (Kurt et al., 2017).  Dhaneshwar et al. (2013) synthesized a co-drug of diacerein, 

an anthraquinone derivative with a marked effect on osteoarthritis (OA), with thymol, based 



on reports of the antioxidant and anti-inflammatory activity of thymol. The results of this study 

were promising for the treatment of OA. Brotzman et al. (2019) synthesized 4-oxobutanoate 

derivatives of carvacrol and thymol, and studied their inhibitory activity on the enzyme 

tyrosinase, finding that there is a strong relationship between the structure of the compound 

and the inhibitory activity, the derivatives that contained alkyl groups of three and four 

carbons being the most active. Havasi et al. (2020) synthesized heterocyclic sulfide 

derivatives containing thymol moiety and studied  their activity to reduce cupric ions, and 

conducted tyrosinase coupling studies. Raghuvanshi et al. (2019) synthesized a group of 

thymol-based pyrazolines and chalcones, which were studied for antimalarial activity in both 

in vitro and in vivo tests. The results were positive, showing that all the analyzed compounds 

had activity against the strain of the human malaria parasite Plasmodium falciparum NF54.

The properties of thymol as disinfectant and/or odorant have also served as an inspiration 

to synthesize esters of alternating copolymers of maleic anhydride/styrene or vinyl acetate 

with thymol, eugenol, phenylethyl alcohol, and citronellol, in order to achieve controlled 

release of bioactive molecules. This  research was carried out by Chitanu et al. (1999), who 

reported that by analyzing the different materials by TG, DSC and IR spectra showed that 

the active molecule is released at temperatures below 250 °C, followed by a renewal of 

anhydride rings by dehydration. On the other hand, one of the disadvantages of using thymol 

as a natural preservative in food and medicine is its low solubility in water and light 

decomposition. One way to counteract this is through glycosylation, which enables the 

conversion of unstable organic compounds with low solubility in polar solvents into soluble 

and stable compounds, thus improving their biological and pharmacological properties and 

expanding the range of applications (Mastelić et al., 2004). This is why Shimoda et al. (2006) 

studied the biotransformation of thymol and other compounds by cultured plant cells,  turning 

them other more useful compounds (Fig 6). Thus, 5-methyl-2-(1-ethylethyl)phenyl 6-O-(b-

D-glucopyranosyl)-b-D-glucopyranoside was isolated from the suspension cells after the 

five-day incubation of thymol with a yield of 87%. On the other hand, Mastelic et al. (2004) 

studied the glycosylation of thymol and other molecules by chemical synthesis, by the 

Koenigs-Knorr-Zemplén method with yields between 19.5% and 52.2%.



Figure 6

OH

1

O
HO

OH
OH

O

OH

HO

O
HO

OH
OH

OHO

O

O
OH

HO
HO

10 11

5. Biological activities and applications
Since the Food and Drug Administration classified thymol as a GRAS, interest in 

investigating the possible biological applications of thymol in a great variety of fields such as 

medical, dentistry, veterinary, food, agrochemicals, among others, has increased. At the 

same time, the elucidation of its mechanism of action has received great interest from the 

scientific community. In this section we will first focus on the general pharmacological 

properties of thymol such as antioxidant and anti-inflammatory activity. Two properties of 

thymol that play an important role in several specific applications. In addition, the mechanism 

of antimicrobial action is briefly described. After this general introduction we will dedicate 

ourselves in depth to address some specific thymol applications.

5.1. General pharmacological remarks
5.1.1. Antioxidant activity
Natural antioxidants inhibit the spread of free radical reactions, thereby protecting the human 

body from disease and slowing oxidative rancidity of lipids in food, replacing potentially 

harmful synthetic additives (Tepe et al., 2007). Therefore, the antioxidant effect of thymol 

has also been studied both in disease and in food preservation. Deng et al. (2016) 

solubilized thymol in Tween 80 micelles to analyze the mechanism and effect of thymol 

solubilization on its antioxidant activity. The maximum solubilized concentration of thymol 

was 0.2% by weight, and no significant differences were observed between the average Z 

diameter of the empty micelles and the micelles solubilized with thymol. Tests of ferric 

reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity 

(CUPRAC) showed that the free thymol reducing antioxidant activity did not change after 

solubilization in Tween 80 micelles, but solubilized thymol did show greater activity to 

eliminate DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals than free thymol. 



These micelles can be used in food drinks. Similarly, Sedaghat Doost et al. (2019)  

developed thymol nanoemulsions, but they used Quillaja saponin (QS)  biosurfactants 

(which are an eco-friendly alternative to the most widely used surfactants such as Tween 

80, which is derived from petroleum) and edible oils such as high oleic sunflower oil (HOSO). 

The antioxidant activity of the free thymol and thymol nanoemulsions (4%) was tested with 

butylated hydroxytoluene and ascorbic acid, in raw chicken breast meat by means of the 

thiobarbituric acid reactive substance test, determining that nanoemulsions presented a 

significant improvement (p <0.05) in AA compared to free thymol. This study suggests that 

thymol nanoemulsions can be used in the food industry, in cosmetic products, and for health 

care. 

Considering that thymol will be present in food and food packaging, there is a need to study 

the extent to which thymol is safe for human health. In this context, Llana-Ruiz-Cabello et 

al. (2015) evaluated the pro-oxidant and antioxidant profiles of carvacrol, thymol, and their 

mixture (10:1), determining that carvacrol and its mixture with thymol (10:1) at low 

concentrations showed protection against induced oxidative stress. However, when high 

concentrations were analyzed, it was observed that they induced rather than prevented 

oxidative stress. These findings are important because they demonstrate the need to 

examine the concentration of thymol and other components such as carvacrol in food 

packaging and in food to prevent human overexposure to them, and thus ensure their safety, 

the authors concluded.

5.1.2. Anti-inflammatory
Inflammation is a defensive response to a foreign antigen or tissue injury that, if not treated 

properly, could cause irreversible damage (Arita et al., 2005). Riella et al. (2012) suggest 

that thymol may be a promising anti-inflammatory agent,  since it significantly reduces 

edema and diminishes the affluence of leukocytes to the hurt area  because  it alters the cell 

membrane, inducing to a rapid  leakage of intracellular components and deregulation of 

cellular function. Zhou et al. (2014) investigated the effects of thymol on allergic inflammation 

in asthma in ovalbumin (OVA) induced mice and explored its mechanism. The results 

revealed that thymol pretreatment reduced the level of OVA-specific immunoglobulin E, 

inhibited the recruitment of inflammatory cells in the respiratory tract, and decreased 

cytokine levels in bronchoalveolar lavage fluid. In addition, they noted a significant 

improvement in lung tissues. The authors suggest that the mechanism of action of thymol is 

possibly by inhibiting the activation of the transcription factor NF-κB, which has a great 



influence on the inflammatory process and other important processes such as survival, and 

cell development. The synergistic effect of thymol with other compounds on its anti-

inflammatory activity has also been studied. A study  by Liang et al. (2014) reports that 

thymol anti-inflammatory activity is associated with the descending inhibition of NF-κB 

signaling pathways and p-38 mitogen-activated protein kinases (MAPKs), in this case in 

mouse mammary epithelial cells. However, Gholijani et al. (2016)  reported that thymol did 

not inhibit NF-κB expression and suggested that its anti-inflammatory effects could be due 

to the inhibition of other pro-inflammatory transcription factors, such as stress-activated 

protein kinases SAPK/JNK, signal transducer, and activator of transcription (STAT3), and 

several nuclear factors of activated T-cells (NFATs). The authors attribute these 

discrepancies between the results of Gholijani et al. (2016) and those of Liang et al. (2014) 

to the differences in the incubation time, the techniques and, in particular, the type of cells 

studied, which suggests the need to delve into these investigations to clarify the differences.

Some studies have also evaluated a possible synergy between thymol and other 

compounds. This is the case of Golbahari and Abtahi Froushani (2019) who, knowing the 

anti-inflammatory activity of nicotine and thymol, evaluated the effects of co-administering 

these two compounds on immunity in rheumatoid arthritis (RA) induced by Freund's 

complete adjuvant (FCA) in the Wistar rat. The authors reported that combined therapy at 

medium doses significantly reduced the effects of the RA and in a greater proportion than 

each drug only at full doses; in addition, the combined therapy did not show the 

immunosuppression side effect compared with using each of agents alone.

5.1.3. Antimicrobial mechanisms of action
In studies conducted by Wang et al. (2017) and Kwon et al. (2019) they wanted to investigate 

what  the antibacterial mechanism of thymol is. For this, they evaluated its activity against 

Gram-positive S. aureus, finding that thymol antimicrobial activity results from its alteration 

of the lipid bilayer of the cytoplasmic membrane and the interaction with bacterial genomic 

DNA. When the bacteria were exposed to thymol-containing solutions, even at low 

concentrations, the composition of the fatty acids that form the lipid membrane was greatly 

affected, for example, the proportion of branched 12-methyltetradecanoic acid and 14-

methylhexadecanoic acid decreased from 22.4% and 17.3% to 7.9% and 10.3%, 

respectively. At higher concentrations, thymol altered the integrity of the S. aureus cell 

membrane, which may reduce cell viability. Moreover, when studying the interaction of 

thymol with genomic DNA, it was  found that a junction was formed between thymol and the 



minor groove of DNA with a constant binding value (Ka)  of (1.22 ± 0.14) × 104M−1, which  

slightly destabilized the secondary structure of DNA, making it difficult for DNA molecules to 

aggregate (Wang et al., 2017).  Chauhan and Kang (2014)  determined the mechanism of 

action of thymol against Salmonella ser. Typhimurium confirming that it mainly  alters the 

bacterial cell membrane, resulting in the uncontrolled release of intracellular materials such 

as potassium ions necessary for the normal metabolism and survival of  bacteria. In addition, 

thymol significantly reduced the production of nitric oxide, as well as the level of glutathione, 

which helped the recovery of oxidative stress. Ferreira et al. (2019) investigated, in 

particular, the interaction of thymol with Langmuir lipid monolayers using 

dipalmitoylphosphotadylserine (DPPS) as a lipid that approximates a microbial and 

tumorigenic cell model. With this study, they determined that thymol expands DPPS 

monolayers and decreases their surface elasticity, thus changing the thermodynamic and 

rheological properties of membrane films. These changes in thymol-sensitive cell 

membranes increase the ability of thymol or other drugs to permeate the membrane by 

altering membrane fluidity, structural order, lipid packing density, and membrane 

morphology. A study by Boye  et al. (2020) concluded that the high spectrum antibacterial 

activity of thymol is attributable to the hydroxyl moiety on C1 of the monoterpene nucleus, 

since when this hydroxyl group is etherified or esterified, they did not obtain significant 

antibacterial effects. However, they clarified that a greater exploitation of the chemical 

modification of the –OH on the C1 of the monoterpene thymol nucleus is necessary, possibly 

moving –OH to other carbons (C3 or C4).

5.2. Antimicrobial applications
5.2.1. Medical materials
For centuries, natural products have served as inspiration and raw material for the 

development of new drugs focused on treating microbial infections, essential oils being one 

of the main sources rich in secondary metabolites capable of inhibiting the growth of various 

pathogens. And added to the concern about the resistance of bacteria to traditional 

antibiotics, and given the relatively low frequency of infectious diseases in wild plants, the 

idea arises that these natural defense mechanisms can be very effective in treating diseases 

that affect humans. Many of those studies have dealt with thyme oil and other oils rich in 

thymol, carvacrol, menthol, and others (Kifer et al., 2016; Palaniappan and Holley, 2010; 

Pérez-Recalde et al., 2018). They focused on measuring their biological activity against a 

wide variety of pathogenic microorganisms and their mechanism of action, although most of 



the research published in recent years is related to the design of new materials for the 

treatment of wounds that prevent or reduce bacterial infection and have healing properties. 

Thus a wide variety of bandages based on biopolymeric materials have been designed with 

thymol as an additive (Kavoosi et al., 2013; Moeini et al., 2020). Walczak et al. (2020) 

investigated the antibacterial properties of films based on collagen and thymol, and 

evaluated them by measuring ATP level and enzymatic activity of S. aureus, E. coli, and 

Pseudomonas aeruginosa after the contact with materials. They found that collagen 

materials with thymol addition inhibit dehydrogenase activity and decrease ATP level of S. 

aureus, E. coli, and P. aeruginosa; furthermore, the materials were permeable for gaseous 

exchange and prevented secondary infection. Thymol addition increased hydrophobicity 

and roughness parameter, concluding that collagen with ≤0.5 mg thymol addition may be 

considered as a good alternative for traditional wound dressing. Michalska-Sionkowska et 

al. (2017)  also studied the antimicrobial activity of collagen materials with the addition of 

thymol, reaching the same conclusion.

Koosehgol et al. (2017) prepared and characterized in situ chitosan/polyethylene glycol 

fumarate/thymol hydrogel as antibacterial wound dressing. These types of materials that 

combine different polymers have demonstrated better biological, mechanical, and 

biodegradable properties compared to the individual use of each component (Singh et al., 

2017; Sionkowska, 2011). Khaldi et al. (2018) developed thymol and carvacrol based 

materials covalently bonded to kraft pulp fibers through triazine bonding and measured their 

antibacterial activity against E. coli and S. aureus. The authors stress that due to the 

covalent bonding, the leaching problem is avoided, and therefore the antibacterial properties 

of the material could be maintained for a longer period of time. In addition, thymol has a 

greater affinity with human skin cells compared to synthetic antibiotics, which makes it a 

better candidate to be an additive in this type of film, with the possibility of presenting fewer 

side effects in the affected area and promoting wound healing through natural treatment 

(Mollarafie et al., 2015). In the investigation carried out by Koosehgol et al. (2017), it was 

determined that the film with the highest amount of thymol  (1.8% v/v) presented optimal 

properties that included acceptable mechanical characteristics, greater absorption of liquid 

water or water vapor, air permeability, more porous and rough structures and most 

importantly, excellent antibacterial activity against Gram-negative and Gram-negative 

bacteria. Nordin et al. (2020) prepared corn starch films with glycerol, thymol, and 

glycerol/thymol combination by solution molding. The results showed that the presence of 

glycerol and thymol led to synergistic effects such as better thermal stability and that the 



interaction between the compounds could be through hydrogen bonds. Jiji et al. (2019) 

developed hydrogels of thymol-enriched bacterial cellulose (BCT) and studied their 

antimicrobial activity against specific pathogens in burn wounds. The in vitro biocompatibility 

studies were carried out in mouse 3T3 fibroblast cells. Through histopathological studies, 

the authors determined that the wound treated with the BCT hydrogel closed faster than the 

bacterial cellulose (BC) and the control groups (Fig. 7).

Figure 7

On the other hand, Pieres et al. (2018) studied how to incorporate the active phase (thymol 

and beta-carotene) in a biopolymer composed of poly(dimethylsiloxane) on chitosan-

alginate, analyzing two different methods: (1) immersion of the dried biopolymer in a solution 

containing the bioactive compound (IS) or (2) by supercritical carbon dioxide (scCO2) 

impregnation/deposition (SSI/D). The authors determined that, although by the two studied 

methods there was a low loading efficiency of thymol and beta-carotene in the films, it was 

a sufficient fraction for them to present biological activity, so they concluded that either 

method can be used to dope the biopolymer with the active phase. Finally, they highlighted 

that they used these two compounds because thymol acts as an anesthetic, antiseptic, and 

anti-inflammatory agent, and beta-carotene provides its antioxidant activity. It was studied 

the encapsulation of thymol in polylactic acid (PLA) (Marcet et al., 2018) and subsequently, 

its incorporation in gelatin films (Sáez-Orviz et al., 2020). The authors found that at the 



thymol concentrations studied, unlike the thymol encapsulated in PLA nanoparticles, all of 

the free thymol was completely evaporated during the film drying process. Additionally, 

gelatin films doped with PLA-thymol-nanoparticles showed ideal characteristics such as high 

transparency, a homogeneous microstructure, and antimicrobial activity.

But not only has the design of hydrogels and films been studied, but also the development 

of other materials such as nanoparticles consisting of metals, biopolymers, and thymol as 

an active phase with possible pharmacokinetic applications,  antiproliferative activity of 

malignant cells, and route of drug administration (Alavi and Karimi, 2019; Venkatesan et al., 

2017). In this direction, Manukumar et al. (2017) developed silver nanoparticles doped with 

thymol and chitosan (TC@AgNP) and evaluated them against a broad spectrum of microbial 

agents and antioxidant properties. The authors reported that TC@AgNP showed activity 

against Gram-positive S. aureus, S. epidermidis, S. haemolyticus, B. cereus, B. subtilis, and 

Gram-negative E. aerogenes, E. coli, S. typhimurium, S. flexneri, V. cholera, P. aeruginosa, 

and V. parahaemolyticus, all food-borne pathogens. They also had good antioxidant activity 

compared to the standard antibiotic Streptomycin.

5.2.2. Antimicrobial activity in the vapor phase

Although many reports have been described on the antimicrobial activity of thymol and its 

applications in different environments, industrial applications based on its volatility have 

been little developed, as well as few studies on its antimicrobial activity in vapor phase and 

there is no standard methodology for determining such activity. Even so, the few studies 

reported suggest possible applications, for example, in the production of new sprayable 

drugs used in respiratory and oral health therapies; disinfection products for the storage of 

agricultural products by controlled atmosphere; and in conservation and extension of the 

useful life of food products through active packaging (Houdkova and Kokoska, 2020; Reyes-

Jurado et al., 2020). This is supported by some studies such as the one carried out by 

Mandras et al. (2016) who evaluated the antifungal activity (in the clinical strains of Candida 

albicans, Candida glabrata and Candida tropicalis) of some EO and its main components, 

including thymol, by means of two different methods: broth microdilution (BM) and vapour 

contact (VC) determining in most cases, more effective results with the VC method. Ács et 

al (2018) did a similar study, where they compared the antimicrobial activity of EO against 

pathogens that cause respiratory diseases such as Streptococcus pneumoniae, 

Streptococcus mutans, Streptococcus pyogenes, Haemophilus influenzae, Haemophilus 



parainfluenzae and Moraxella catarrhalis, by in vitro methods BM and VC, determining that 

EO of thyme was the most effective against S. mutans by the BM method and EO of 

cinnamon was the most effective against all pathogens by the VC method. The authors also 

highlight that although all the oils studied may be effective against diseases of the respiratory 

tract by the two methods studied, their activity is lower than that of commonly used 

antibiotics, which is why they suggest more studies on their possible use together. 

Netopilova et al. (2018) reached similar conclusions, who evaluated the synergistic 

antimicrobial activity between thymol and carvacrol in the liquid and vapor phase against 

twelve strains of S. aureus, finding an additive effect by the two methods studied against all 

strains evaluated when mixing the two compounds. For their part, López et al. (2007) studied 

the antimicrobial activity in the vapor phase of the main components of different EO against 

Gram-positive bacteria (Listeria monocytogenes) and Gram-negative bacteria (Salmonella 

choleraesuis), a mold (Aspergillus flavus) and a yeast (C. albicans), where cinnamaldehyde, 

thymol and carvacrol were the most effective compounds. To end this section, a very 

comprehensive study by Wang et al. (2016) evaluated the antibacterial activity in liquid and 

vapor phase of thymol and other phenolic compounds such as hinokithiol, carvacrol and 

menthol against the oral pathogens Aggregatibacter actinomycetemcomitans, S. mutans, S. 

aureus and E. coli under different conditions of temperature and pH, as well as synergistic 

effects between mixtures of compounds. The authors determined that the antibacterial 

activity of thymol is stable at room temperature both in liquid and vapor phases, but 

decreases at temperatures <80 °C. There was no synergistic effect between carvacrol and 

thymol in the liquid phase and their activity in the vapor phase is inhibited in the presence of 

water and only Gram negative bacteria were sensitive to these two compounds in the vapor 

phase. As we can see, there is still vastly to investigate in this field.

5.2.3. Dentistry
Another health problem that attracts the attention of researchers is oral infections, where 

tooth decay and periodontitis represent the main oral infectious diseases worldwide, which 

are generated by bacteria such as S. aureus that adhere to biotic surfaces biotics (dental 

pieces), such as abiotic (dental implants) (Merghni et al., 2016). In addition, given the 

antibacterial properties of thymol, several studies have been carried out to analyze its 

efficiency against this type of bacteria and in the eradication of preformed bacterial biofilm 

both in implants and on the surface of teeth. Miladi et al. (2017) tested the antibacterial and 



antibiofilm activities of five components of essential oils: eugenol, carvacrol, thymol, p-

cymene, and γ-terpinene (alone or in combination with tetracycline) against oral bacteria. 

The authors reported that the compounds analyzed induced selective antimicrobial activity 

and that there was a synergistic effect between the components studied and tetracycline 

(TET) with a reduction rate that varied from 2 to 8 times. On the other hand, an important 

antibiofilm activity (alone or in combination with antibiotics) was observed. Rezaeian et al. 

(2019) designed a novel system of dental resin doped with thymol to combat oral bacteria 

and evaluated  its physico-mechanical characteristics, bonding strength, and antibacterial 

activity. The results showed a relevant antibacterial activity, as well as adequate 

cytocompatibility. In addition, this resin exhibited properties comparable to the control resin 

such as toughness and fracture resistance. The authors attributed this antibacterial activity 

and the prevention of biofilm formation to the great lipophilic nature of thymol, causing it to 

accumulate in the bacterial membrane, interfering with its proliferation. Botelho et al. (2007) 

evaluated the composition and antibacterial activity of the essential oil extracted from the 

species Lippia sidoides Cham. (Verbenaceae). Thymol (56.7%) and carvacrol (16.7%) were 

determined as major compounds. Antimicrobial activity was tested against cariogenic 

bacterial species of the genus Streptococcus and C. albicans, discovering that both the 

essential oil and the main compounds showed great antimicrobial activity against the 

organisms studied, C. albicans and S. mutans being the most sensitive microorganisms to 

the treatment.

To conclude this chapter concerning the applications of thymol in dentistry, it is important to 

review some literature on studies of commercially distributed thymol-containing products 

such as Listerine® antiseptic mouthwash and Cervitec® Plus protective varnish. Two 

products of common use for oral health and to prevent/treat diseases such as bacterial 

plaque, cavities, gingivitis and periodontitis, among others (Kokoska et al., 2019). In the 

case of Listerine®, it is mainly composed of a mixture of the major constituents of the 

essential oils of Eucalyptus spp., Gaultheria spp., Mentha piperita and Thymus vulgaris. 
Eucalyptol (0.0092%) and thymol (0.064%) are responsible for its antimicrobial activity, while 

menthol (0.042%) and methyl salicylate (0.06%) act as local anesthetic and cleaning agent, 

respectively (Kokoska et al., 2019). On the other hand, Cervitec® Plus varnish is composed 

of ethanol (90%), vinyl acetate copolymer, acrylate copolymer (8%), chlorhexidine (CHX, 

1%) and thymol (1%) (Kokoska et al., 2019). A clinical study by Anand et al. (2012) on the 

efficacy of Cervitec® Plus in improving periodontal parameters, determined that although it 

is an adequate treatment for the control of subgingival infections, it works best when 



complemented with meticulous scaling and root planing in the treatment of chronic 

periodontitis. A study by Sachdeva et al. (2018) agrees with this conclusion and adds that 

periodic applications of the varnish generate a prolonged effect of its benefits. Similar 

conclusions were reached by George et al. (2010) who determined that Cervitec® Plus 

varnish significantly reduced the S. mutans count at the end of 1 month and Porphyromonas 

gingivalis at the end of 1 and 3 months compared to the placebo group, but this effect is lost 

after 3 months. For this reason they recommend its application at least once a month. They 

also highlight that no side effects were observed. For their part, Sehgal et al. (2018) 

evaluated the activity of Cervitec® Plus as a prophylactic and antibacterial product in 

patients with orthodontic treatment, observing a significant reduction of bacterial plaque in 

the CHX group at 3 and 6 months after the first visit compared to the initial value and with 

respect to the control group. However, there are studies that have not found evidence of 

anticaries prevention of Cervitec® Plus (Haukali and Poulsen, 2003; Tang et al., 2016), even 

so, it is known that chlorhexidine helps reduce the risk of tooth demineralization by 

influencing bacterial metabolism and reducing the amount of S. mutans, and that thymol is 

a strong antibacterial compound and these properties have a synergistic effect when applied 

with other anticariogenic agents such as fluoride-releasing chemically cured sealant and 

fluoride-releasing lightcured sealant (Park et al., 2019).

Now, referring to the studies reported on Listerine®, de Oliveira et al. (2018) evaluated the 

antibiofilm efficacy of different commercial mouthwashes, among them Listerine®, against 

S. aureus, E. faecalis, S. mutans, E. coli and P. aeruginosa bacteria, and C. albicans yeast; 

they also evaluated the cytotoxic effect of mouthwashes on gingival fibroblasts. They found 

that all the oral treatments analyzed presented a significant inhibition of biofilms and viable 

gingival fibroblasts and that there is no significant difference between them, being more 

effective against bacteria than with yeasts. Similarly, Erriu et al. (2013) reported the 

efficiency of Listerine® against A. actinomycetemcomitans after an exposure of at least 30 

seconds. Excellent antibacterial activity of Listerine has also been reported against the 

pathogens P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Eikenella 

corrodens (Richa et al., 2017; Vlachojannis et al., 2015). Regarding antifungal activity, a 

study by Shrestha et al. (2011) compared the antifungal effect of two commercial 

mouthwashes containing chlorhexidine and thymol (Hexidine® and Listerine®, 

respectively), determining that, although the two mouthwashes were effective in eliminating 

the strains of C. albicans and C. tropicalis, the Hexidine® mouthwash did so in time shorter 

and showed superior antifungal and fungicidal activities compared to Listerine®. Still, the 



authors recommend the use of both rinses as topical antifungal agents. De Andrade et al. 

(2009) evaluated the use of mouthwashes in patients in intensive care units, where 

Listerine® eliminated 90% of the evaluated strains. Finally, Milić et al. (2019) evaluated the 

possibility that Listerine® Cool Mint could cause cellular damage in the oral epithelial cells 

that are in direct contact with the rinse, determining that a statistically significant effect of 

differentiation and genomic stability of the oral cells was not observed, after two weeks of 

exposure to the product. All these studies show that commercial products such as Listerine® 

and Cervitec® Plus that contain thymol have great benefits for oral health and do not 

generate side effects in the amounts and times recommended by the manufacturers. Even 

so, more studies of the individual components and mixtures of them at different 

concentrations are needed, which could determine synergistic effects and further optimize 

the efficiency of these products, in concentrations that do not induce harm.

5.2.4. Veterinary
In the veterinary sector, research has also been carried out on possible applications of 

thymol to cure animal diseases. Arafa et al. (2020) studied the efficacy of thymol through in 

vitro and in vivo studies against coccidiosis in pigeons (Columba livia domestica), a disease 

caused by an apicomplexan protozoan parasite of the genus Eimeria. Different essential oils 

have shown oocystic activity, and specifically thymol (5 mg/mL) caused the destruction of 

chicken Eimeria oocysts in vitro (Remmal et al., 2013). The authors reported that in vitro 

studies showed that thymol solutions with concentrations ≥1.25% induced an important 

abnormality and nonsporulated Eimeria labbeana oocysts. In addition, biochemical 

parameters, including liver and kidney function tests, demonstrated the safety of thymol in 

pigeons, indicating that thymol can be safely used to control coccidiosis in pigeons. Similarly, 

Miró et al. (2020) studied the effect of thymol on the in vitro inhibition of hepatic S-

oxygenation of the anthelmintic albendazole in sheep, since previous studies had shown 

thymol as a pharmacological alternative to treat gastrointestinal parasitic diseases of 

ruminants (André et al., 2017; Ferreira et al., 2016). The authors reported that in general, 

the results showed that thymol, in addition to having its own anthelmintic effect, can enhance 

ABZ anthelmintic activity by preventing its metabolic conversion into a less active metabolite 

(Miró et al., 2020). Soltani et al. (2014) studied the effect and mechanism of action of the 

essential oil of Shirazi thyme (Zataria multiflora) on the bacterium Lactococcus garvieae, a 

pathogen that affects various aquatic animals, including rainbow trout. The authors found 

that the oil inhibits the formation of the bacterium because it suppresses the expression of 



the epsD capsule gene in Lactococcus garvieae. This suggests that Z. multiflora oil may be 

used in the aquaculture industry to treat lactococcosis.

5.3. Food applications
5.3.1. Food preservative
One of the most common applications of thymol due to its antimicrobial activity is in the food 

industry as a natural preservative, since it can inhibit a variety of microorganisms that spoil 

food, prolonging its shelf life without compromising consumer health (Lee et al., 2020; Molva 

and Baysal, 2015; Tajkarimi et al., 2010; Tao et al., 2014). Cai et al. (2019) evaluated the 

effect of thymol on the survival and growth of Alicyclobacillus acidoterrestris, a non-

pathogenic bacterium belonging to the Gram-positive species, which generates spores and 

spoils food. A. acidoterrestris has been found in many types of fruit juices, affecting the juice 

quality. The authors reported that thymol had good activity against this bacterium, both for 

vegetative cells (MIC= 0.25 mg/mL) and for spores (MIC= 0.5 mg/mL). 

A drawback of essential oils as natural food preservatives is that their effective 

concentrations are usually high, altering the original flavor of the food. Therefore the need 

arises to find alternatives for their use, such as the combination of these molecules with 

other compounds that generate a synergistic effect, resulting in the same or better results, 

with a smaller amount of each compound (Wang et al., 2011). Thus Kim et al. (2020) 

determined the survival rate of different pathogens such as E. coli O157: H7, L. 

monocytogenes, and S. aureus in solutions containing highly concentrated thymol or 

carvacrol and NaCl (up to 15%, w/w), and compared it with the components separately, to 

investigate the synergistic interaction between NaCl and the main components of the 

essential oil of oregano against these target microorganisms. The authors determined that 

the combination of carvacrol or thymol (2.0 mM) plus NaCl (≥3%) completely inhibited all the 

bacteria analyzed. In contrast, individual treatments at equal concentrations had/showed 

minimal reduction in bacteria. These results were mainly attributed to the alteration of the 

membrane induced by carvacrol or thymol (19.6% of the cells were affected by treatment 

with 2.0 mM carvacrol for 10 min), since the presence of NaCl alters the osmotic cell 

balance.

Rivas et al. (2010) evaluated the antimicrobial activity of thymol and carvacrol against a 

selection of strains of  verocytotoxigenic E. coli and other decomposition bacterial species 

using a model broth system. Several factors were found to affect the susceptibility of E. coli 

O157: H7 to carvacrol or thymol such as storage temperature, presence of water, pH, and 



inoculum size of E. coli O157: H7. Conversely, the antimicrobial activity of thymol or 

carvacrol was not affected by the presence of sodium chloride (0.5%–2.5%) or a cocktail of 

microflora. Another of the limitations of the use of thymol in food production is its low water 

solubility that inhibits uniform dispersion in aqueous media. For this reason, Li et al. (2017) 

studied the possibility of forming thymol nanoemulsions with high hydrophilic-lipophilic 

surfactants by spontaneous emulsification and assessed their activity as disinfectant 

washes on lettuce and blueberries inoculated with food-borne bacterial biofilms to simulate 

an application of food disinfection involving fresh products. They determined that while there 

was an antagonistic effect between thymol and surfactants, the best emulsion compositions 

showed/gave results comparable to chlorine efficiency at ∼50–200 ppm. Khan et al. (2020) 

investigated a control strategy combining solutions of natural substances such as 5% thymol 

and 2% chitosan and sealing under modified atmosphere packaging (MAP) using high 

permeability film and compared them with fruit treated only with distilled water and sealed 

under MAP conditions (MAPC) and others stored under air conditions (AIRC) used as 

controls. They concluded that the combined effects of the chemical and MAP treatments 

maintained fruit quality for 56 and 49 days with chitosan and thymol, respectively, compared 

to the MAPC and AIRC tests that lasted 28 days and 21 days respectively. Therefore, the 

preparation of food disinfectants that contain thymol is a suitable application for this 

compound. Myszka et al. (2016) evaluated the potential of the essential oil of T. vulgaris and 

its carvacrol and thymol components to prevent the formation of bacterial biofilms in the 

strain Pseudomonas fluorescens KM121. The authors reported that the analyzed 

compounds significantly inhibited biofilm formation on stainless steel surfaces (type 316L) 

and that only single bacterial cells were present on the surfaces.

The production of biodegradable packaging containing essential oils or the combination of 

their main components as antimicrobial agents has also been studied (Almasi et al., 2020; 

Guarda et al., 2011; Kazemi-Pasarvi et al., 2020; Liu et al., 2019). Li et al. (2020) developed 

gelatin films containing thymol  nanoemulsions co-emulsified by gelatin and soy lecithin, 

which may have possible applications as new biodegradable GRAS packaging materials 

with the added benefit of prolonging the shelf life of food. These films showed effective 

inhibition against Gram-positive and Gram-negative bacteria. Tatlisu et al. (2019) 

manufactured and characterized thymol-loaded nanofiber (TLN) mats based on polyvinyl 

alcohol/whey protein, and evaluated  their antifungal activity against Aspergillus parasiticus 

on the surface of kashar cheese, with in vivo and in situ tests, finding that the TLN mats had 

a greater activity against the mycelial growth of A. parasiticus than free thymol. Valero et al. 



(2006) evaluated the effect of combining a package doped with eugenol or thymol with MAP 

to prevent the deterioration of table grapes for 56 days. The authors determined that the 

grapes with the doped packaging and MAP presented insignificant damage in terms of 

sensorial, nutritional and functional properties, as well as a low presence of harmful 

microorganisms, compared to the control sample in which the deterioration was notable. 

Therefore, this technology is presented as an interesting and healthy alternative to the 

classic fungicide sulfur dioxide (SO2), to preserve the general quality of table grapes.

5.3.2. Feed additives in animal production
Due to the restriction of the prophylactic use of growth-promoting antibiotics in animal 

production, phytoadditives have become an important field of research studies, since it is 

proven that these substances can provide benefits on animal health and welfare, thanks its 

antioxidant and antibacterial properties, among others, but little is known about its 

mechanisms of action and metabolism in animals, as well as about the dose and time of 

administration in which the compound exhibits positive activity. Finally, there is also little 

information on its bioaccumulation in different organs, especially in animals for human 

consumption (Oceľová et al., 2019). One of these nutritional supplements is thyme EO, due 

to its high content of thymol. A study by Placha et al. (2014) evaluated the effects of thyme 

EO intake on the antioxidant status and the integrity of the intestinal barrier in broiler 

chickens, determining that the supply of a base diet supplemented with 0.5 g / kg of thyme 

oil, decreased the concentration of malondialdehyde (MDA) and increased the concentration 

of immunoglobulin A (IgA) in the duodenal mucosa, in the same way, it improved phagocytic 

activity in blood and the integrity of the intestinal barrier, which translates into a better 

antioxidant status and an improved immune response in the chicken. This same group 

evaluated the presence of thymol in the plasma, the duodenal wall and the breast muscle, 

as well as its influence on the antioxidant defense system, in broilers chickens, after 

ingesting different concentrations of EO thyme ( 0%, 0.05% and 0.1%, p / p) for 4 weeks. 

The authors determined that there is effective absorption of thymol through the digestive 

tract into the systemic circulation with 0.1% TEO supplements, as well as an increase in 

superoxide dismutase (SOD) activity and a significant decrease in malondialdehyde 

concentration. (MDA) in blood. Even so, only traces of thymol were found in the breast 

muscle. This means a marked antioxidant activity in blood but low lipid oxidation in muscles 

at this concentration (Placha et al., 2019). The research group of Haselmeyer et al. (2015) 

reached similar conclusions. In this case, broiler chickens were given thyme herb (leaves 



and flowers, without stem) instead of EO, as a dietary supplement at different concentrations 

(0, 0.1, 0.2, 0.3 and 1% w / w) for 35 days. They detected thymol in the 1% thyme group, in 

the intestine and blood plasma, and at concentrations close to the limit of quantification in 

the liver and muscle tissues. For their part, Ocel’ová et al. (2016) suggest that there is an 

intense metabolism of thymol in the liver of chickens and its accumulation in the kidney 

tissue, where this compound was found in greater quantity, even at concentrations of 0.5 p 

/ p of thyme EO as an additive and are consistent with a low accumulation in muscle tissue. 

The efficiency of thyme oil (35,40% thymol) at different concentrations (200, 300 and 400 

ppm) with respect to the growth-promoting antibiotic flavophospholipol (100 ppm) in the diet 

of quail chicks, for 35 days, has also been compared. Significant benefits were found in quail 

fed 400 ppm EO, such as improved feed conversion index, decreased triglycerides, 

increased duodenal villi and muscle tone, and reduced oxidation rate during refrigerated 

storage compared to with control. Another benefit reported in this research was the inhibition 

of the growth of Gram positive bacteria and E. coli, even greater than with antibiotics 

(Dehghani et al., 2019, 2018). For its part, studies carried out by Fernández et al. (2019, 

2017) evaluated the effect of feeding quail with thymol on the nutritional properties of their 

eggs and embryonic development, determining that a feeding with 4 g of thymol / kg of feed 

reduced the concentration of saturated fatty acids and increased the polyunsaturated fatty 

acids in the egg yolk after 14 days of administration and it was maintained after stopping 

consuming the supplement, which improves the nutritional quality of the eggs and is also 

beneficial for the embryos. In addition, no negative effects were determined in the hepatic 

histopathology of quail. When the effect of feeding supplemented with thymol was studied 

in rabbits, similar results were obtained (Bacova et al., 2020). These studies suggest that a 

diet supplemented with thymol directly or with substances containing thymol such as thyme 

(leaves, flowers and EO), provides nutraceutical benefits in animals such as poultry and 

rabbits without having an adverse effect on the animals or affecting their nutritional 

properties, at the concentrations studied.

Studies have also been conducted in pigs, which suggest that essential oil components such 

as thymol can promote the oxidative metabolism in the muscle and improve nutrient 

digestibility and gut health by regulating the gut microbiota and the immune system. 

However, the lack of standardized procedures for conducting research leads to variable 

results that are difficult to compare for consolidation of data (Luo et al., 2020; Peron, 2013). 

Even so, we will see some reports of studies on the effects of a diet supplemented with 

thymol on the health of pigs. One of the infections to which pigs are more prone to contract 



is Salmonella Typhimurium, a disease widely distributed in pig farms, and which represents 

a zoonotic risk. Janczyk et al. (2008) studied the effect of a high dose of thymol (1% w / w), 

added to the diet of weaned piglets (24 days old), on the microbial diversity of the small 

intestine in control animals and others exposed to the S. Typhimurium, determining that 

there was a slight effect of feeding supplemented with thymol on the pig jejunal microbial 

population, although it did not affect Salmonella infection. This shows that the effects 

determined in vitro may differ from in vivo studies. Similar conclusions were reached by 

Trevisi et al (2007) who, under the same study parameters (feeding supplemented with 1% 

w / w thymol, 24 days old), determined that the diet did not modify the fecal excretion of S. 

Typhimurium in pigs exposed to the bacteria, For their part, Anderson et al. (2012) observed 

the same effect of the ingestion of foods supplemented with thymol in the amount of 

Campylobacter spp. intestinal, suggesting this is due to the fact that at some point in the 

digestive process, thymol is absorbed, degraded or is no longer available and that this will 

probably be solved with encapsulation technologies that guarantee effective concentrations 

in the lower intestine and thus obtain in vivo, the results obtained in vitro. And precisely, 

Omonijo et al. (2018) conducted a study in which they developed thymol microparticles 

encapsulated in starch and alginate through a process of fusion granulation and evaluated 

them in in vitro tests in solutions that simulate salivary, stomach and intestinal fluids, 

determining a slow release of thymol. Now continue to perform in vivo tests. On the other 

hand, a study conducted by Panea and Ripoll (2020) determined that feeding pigs 

supplemented with thymol and other EO extracts affects the physicochemical characteristics 

of dry fermented sausages (DFS) and their acceptability by the consumer, especially when 

are combined with a diet low in salt, and suggest not supplying these supplements to pigs 

when the end goal is the production of DFS. As can be seen, much remains to be 

investigated in this field, especially in reference to standardized in vivo test procedures, 

which make it possible to unify results and reach solid conclusions on concentrations and 

ways of administering thymol that are effective in achieving the nutraceutical benefits 

desired in pig farms.

5.4. Other biological activities and applications
5.4.1. Natural agrochemical
One more application that has been given to thymol is in the field of natural agrochemicals, 

where the demand has increased considerably in recent years. Kumari et al. (2018) 

prepared a thymol nanoemulsion with saponin as a surfactant,  due to the low solubility of 



thymol in water since laboratory experiments showed that nanoscale thymol has significantly 

higher antimicrobial activity compared to thymol in bulk, with the additional advantage that 

it does not have toxic effects on the soybean plant (Fig. 8).

Figure 8

Subsequently, the working group hypothesized that thymol nanoemulsion, in addition to 

functioning as a bactericide, could be a promising carrier of micronutrients in plants such as 

zinc, which is why they developed a zinc-functionalized thymol nanoemulsion (Zn- TNE), 

which showed a slow release of zinc and thymol, maintained antibacterial activity, and 

promoted plant growth. It is also presented as an option to provide other micronutrients and 

bioactive substances to plants (Kumari et al., 2019). Thymol can also help modulate plant 

physiology. A study by Cheng et al. (2020) concluded that thymol confers tolerance to salt 

stress by activating antioxidative defense and modulating Na+ homeostasis in rice root 

(Oryza sativa). Thymol treatment significantly decreased Na+ content in root cells upon salt 

stress, which might be ascribed to the upregulation of OsSOS1 (salt overly sensitive 1) 

facilitating Na+ exclusion. In addition, thymol stimulated the expression of genes encoding 

tonoplast OsNHX (Na+/H+ antiporter), which may help root cells to compartmentalize Na+ in 

vacuole. Thus, this study raises the possibility of carrying out thymol treatments in cultivated 

areas where salinity is high.

5.4.2. Insecticidal, acaricidal, and repellent properties
As already mentioned, essential oils are part of the defensive system of plants, but not only 

against minor organisms such as microorganisms but also against some more complex ones 

such as arthropod pests. Therefore, in recent years there has been growing interest in the 



study of the insecticidal, acaricidal, and repellent activity of different essential oils and their 

main components with promising results. Many of these studies showed high effectiveness, 

multiple mechanisms of action that make it more difficult to generate resistance to treatment, 

and low toxicity to nontarget vertebrates, which is the reason why  they are considered  as 

possible effective, cheap, and ecological mosquito and acarus larvicides (Pavela and 

Benelli, 2016; Regnault-Roger et al., 2012; Sertkaya et al., 2010). Tabari et al. (2017) 

studied the toxic and repellent activity of monoterpenes such as thymol, carvacrol and 

linalool against castor tick, Ixodes ricinus (Acari: Ixodidae), a species of veterinary and 

medical importance, which acts as vector for many pathogens that seriously affect human 

health such as Lyme disease. In all the parameters evaluated, unlike linalool, carvacrol and 

thymol showed promising results. In all larvae treated with carvacrol and thymol (1%, 2%, 

and 5%), mortality rates of 100% were reached after 24 h, representing greater larvicidal 

efficacy than permethrin. Similarly, at all concentrations tested carvacrol and thymol showed 

> 90% repellency in I. ricinus. Benelli et al. (2017) investigated the larvicidal toxicity of five 

essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora, and 

Pelargonium graveolens) and the possible synergistic and antagonistic effects that could 

exist between them, against  Culex quinquefasciatus Say (Diptera: Culicidae), a vector of 
lymphatic filariasis and of dangerous arboviral diseases, such as West Nile and St. Louis 

encephalitis. The authors analyzed the synergistic and antagonistic effects that might exist 

between the oils. The acute toxicity assays testing on C. quinquefasciatus larvae showed 

that. S. montana essential oil turned out to be the most toxic, with a LC50 value of 25.6 μLL-1. 

The authors attributed this result to the presence of phenolic compounds such as thymol 

(18.8%) and carvacrol (22.4%) and their precursors p-cymene (18.9%) and γ-terpinene 

(8.9%). The other oils analyzed did not present these compounds in their composition. The 

same compounds, analyzed independently, have also presented high toxicity against larvae 

of C. quinquefasciatus, with LD50 of 18 and 21 mgL-1, respectively (Pavela, 2015). Oliveira 

et al. (2018) studied the lethal and sublethal effects of the essential oil of Lippia sidoides 

and its main thymol compound against populations of Sitophilus zeamais (Coleoptera: 

Curculionidae), a weevil that affects corn plantations. To determine toxicity, they applied the 

treatments on/to five corn populations from different Brazilian regions and evaluated the 

lethal time and walking behavior for the most tolerant and susceptible populations. The 

authors found different levels of S. zeamais resistance, depending on the region, with LC50 

ranging from 35.48 to 118.29 μLL-1 air for essential oil of L. sidoides, and from 65.00 to 91.23 

μLL-1 air for thymol. Furthermore, the walking behavior of maize weevil showed that the 



essential oil of L. sidoides and thymol had a repellent effect. Tak et al. (2017)  evaluated the 

acaricidal and repellent activity of 20 terpenes derived from plant essential oils and the effect 

of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). The four 

compounds with the highest toxicity were carvacrol, trans-cinnamaldehyde, α-terpineol, and 

thymol, and among these compounds, carvacrol showed the highest repellent activity (RC50 

= 0.57 mg/mL), followed by thymol (1.86 mg/mL), α-terpineol (2.46 mg/mL) and trans-

cinnamaldehyde (3.48 mg/mL). When evaluating the repellent activity of the combinations 

(1:1, w:w), several synergistic or antagonistic interactions were found for each compound  

in which thymol had the most synergistic interactions, in 6 of the 18 binary mixtures 

analyzed. Arena et al. (2020) studied the insecticidal and antibacterial effects of five 

essential oils, among which is Origanum vulgare, against Alphitobius diaperinus and its 

associated microorganisms. A. diaperinus is a global poultry pest that causes several 

problems, including the spread of pathogenic microorganisms. The authors reported that O. 

vulgare essential oil, whose main component is thymol (38.5%), presented high contact 

toxicity, with LC 50= 0.128 µL/cm2; in addition, it strongly inhibited the growth of E. coli and 

S. aureus and significantly reduced the microbial load of the insect, indicating that it affected 

both insects and bacteria. This makes it a promising candidate to replace synthetic 

insecticides or to join current strategies for the management of A. diaperinus and its 

associated bacteria. Matos et al. (2019) evaluated the action of thymol in the cells and 

tissues of salivary glands of Rhipicephalus sanguineus sensu lato female (Acari: Ixodidae), 

a class of hard tick that attacks the brown dog. The authors concluded that exposure to 

thymol at concentrations between 1.25 and 5.0 mg/mL generated changes in the 

morphology and calcium levels in the cells and tissues of the singanglia and salivary glands, 

which makes thymol a possible acaricide in females partially infected with R. sanguineus. 

For years, thymol and thymol mixtures with essential oils or essential oil components have 

been used to treat the parasitic mite Varroa destructor, which is a threat to beekeeping 

colonies, with mite mortality exceeding 90% (Imdorf et al., 1999). Although most studies 

suggest that thymol is not toxic to higher or  nontarget species, a study by Glavan et al. 

(2020) reported that long-term consumption and high concentrations of thymol and carvacrol 

increase mortality on Carniolan honeybee workers (Apis carnellus mellifera). The authors 

determined that thymol and carvacrol caused mortality only in the highest concentrations 

tested (1% and 5%) and that both substances are effective against V. destructor in 

concentrations ten times lower than those causing significant honeybee mortality. However, 

prolonged exposure to carvacrol and thymol at concentrations of 0.05% causes 



accumulation in honeybees. The sublethal consequences were evidenced by increased 

activity of acetylcholinesterase (AChE), an enzyme involved in the control of 

neurotransmission, and the activity of the detoxifying enzyme glutathione S-transferase 

(GST) in heads and thoraxes.  For these reasons, the authors suggest suspending treatment 

for detoxification times for bees, although this could have a lower effect on treatment (Glavan 

et al., 2020). It is also important to note that traces of thymol have been reported in products 

related to bees such as honey and pollen but below the threshold that would cause changes 

in taste and odor (Ares et al., 2020; Tananaki et al., 2014). Similarly, Zolfaghari and 

Vatanparast (2020)  studied the possible toxic effects of thymol on the snail Caucasotachea 

atrolabiata, evaluating its action on the neuronal activity of the mollusk, and its mechanism 

of action. The authors found that thymol altered the property of action potentials and caused 

the epileptiform burst of their neurons; this effect was partially reversible after washing. They 

also determined that the mechanism of action of thymol involved the inhibition of calcium 

and potassium currents when interacting with cellular ion channels, emphasizing the 

vulnerability of the nervous system to this compound, which can be one of the possible 

causes of the biological activities of thymol in other organism and even in microorganisms.

5.4.3. Antifouling activity
All material immersed in sea water, whether natural or artificial such as maritime vessels, 

port structures, marine farms and others, are quickly covered with a macromolecular film, 

which favors colonization by prokaryotes (mostly bacteria), unicellular (microalgae, 

protozoans) and multicellular eukaryotes (barnacles, mussels, tubeworms, etc.), in a 

phenomenon called biofouling. Although biofouling is a natural process, when it occurs on 

artificial structures submerged by man it becomes a major environmental and economic 

problem, especially for maritime transport.  Biofouling in ship hulls is the  main source of 

cross-contamination of marine species on the world's coasts (Molnar et al., 2008). Moreover, 

it increases the weight of the boat, which makes it difficult to maneuver and increases fuel 

consumption, generating higher maintenance costs (M. P. Schultz , J. A. Bendick, 2010). To 

date, the most successful technique to prevent fouling settlement has been to coat ship hulls 

with paints containing an antifouling agent and in this context; only one work was found in 

which thymol has been studied as a possible additive of paints with antifouling activity. Thus, 

Pérez et al. (2015) investigated the  antifouling activity of thymol, eugenol, and guaiacol 

against barnacle Balanus amphitrite in lab assays. Thymol affected naupliar activity (lost 

phototactic response and swimming movements) from low concentrations. Particularly, LC50 



was determined at 4.41 µM for thymol. Cyprid settlement was also affected by thymol (EC50 

2.26 µM). After 24 h exposure, nauplii and cyprids were transferred to fresh artificial 

seawater, and the percentage recovery was estimated. Larvae exposed (100%) to all thymol 

concentrations were able to recover their normal functions (metamorphosis and ability to 

settle), demonstrating that thymol has a temporary effect. In other words, it inhibits the larvae 

but does not kill them. It does not act as a classic biocide. In the same work, the authors 

studied an antifouling paint with a copper content (1.6%) 10 times lower than that of a 

traditional paint (16%) with the addition of 2% thymol. It could be concluded that both paints 

had a similar performance. In other words, thymol in combination with small quantities of 

copper could be considered as a promising environmentally friendly alternative for 

antifouling technology. Undoubtedly, further research on this combination will encouraged.

6. Conclusions
Throughout history, thyme and other thymol-containing plants have been used as medicinal 

herbs and food seasonings by different cultures. Today, due to extensive research, their 

pharmacological properties have been proven, and the wide spectrum of applications in 

other areas has been demonstrated. In structure, the thymol molecule is very simple, but 

there are studies that report that its activity is due to the hydroxyl moiety on C1 of the 

monoterpene nucleus. Reported studies on thymol include evaluation of extraction methods, 

its bioavailability, measurement of its biological activity, possible synergistic effects with 

other compounds, and mechanism of action, its toxicity, and possible side effects. Similarly, 

the increasing number of publications on the development of new materials containing 

thymol, such as biopolymers, metal nanospheres, nanoemulsions, and dental resins, with 

possible applications in the treatment of wounds, caries, disinfectants, and food packaging, 

or natural agrochemicals in the last five years is worth noting. Finally, it is a fact that all the 

studies carried out are difficult to pare and do not reach a single conclusion, since the data 

reported in the literature have been obtained with different methods and different amounts 

of evidence, and some are even contradictory. Even so, most of the reported studies agree 

that thymol has great potential as a bioactive component. Therefore, the research avenues 

have not been exhausted in any way and there are still new applications to study such as 

its possible antifouling activity. Studies that are more exhaustive are needed on 

concentrations of acute and chronic toxicity and teratogenicity, considering their 



pharmacological and food preservative applications.  Although the FDA has classified it as 

GRAS in food products, it is necessary to be clear about the concentration at which it is safe. 

However, the toxicity of thymol to plants, animals, and other organisms, whether terrestrial 

or aquatic, should be thoroughly explored prior to the introduction of this compound into the 

environment.

7. Acknowledgements
This research work was supported by CONICET, ANPCyT, Universidad Nacional de La 

Plata and CICPBA. 

8. References

Abena, A.A., Diatewa, M., Gakosso, G., Gbeassor, M., Hondi-Assah, T., Ouamba, J.M., 
2003. Analgesic, antipyretic and anti-inflammatory effects of essential oil of Lippia 
multiflora. Fitoterapia 74, 231–236. https://doi.org/10.1016/S0367-326X(03)00029-7

Abu-Lafi, S., Odeh, I., Dewik, H., Qabajah, M., Hanuš, L.O., Dembitsky, V.M., 2008. 
Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. 
Bioresour. Technol. 99, 3914–3918. https://doi.org/10.1016/j.biortech.2007.07.042

Ács, K., Balázs, V.L., Kocsis, B., Bencsik, T., Böszörményi, A., Horváth, G., 2018. 
Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on 
respiratory tract pathogens. BMC Complement. Altern. Med. 18, 1–9. 
https://doi.org/10.1186/s12906-018-2291-9

Al-Wahaibi, L.H.N., Mahmood, A., Khan, M., Alkhathlan, H.Z., 2020. Comparative study on 
the essential oils of Artemisia judaica and A. herba-alba from Saudi Arabia. Arab. J. 
Chem. 13, 2053–2065. https://doi.org/10.1016/j.arabjc.2018.03.004

Al‐Bandak, G., Oreopoulou, V., 2007. Antioxidant properties and composition of Majorana 
syriaca extracts. Eur. J. Lipid Sci. Technol. 109, 247–255. 
https://doi.org/10.1002/ejlt.200600234

Alagawany, M., Farag, M.R., Abdelnour, S.A., Elnesr, S.S., 2020. A review on the 
beneficial effect of thymol on health and production of fish. Rev. Aquac. 1–10. 
https://doi.org/10.1111/raq.12490

Alavi, M., Karimi, N., 2019. Biosynthesis of Ag and Cu NPs by secondary metabolites of 
usnic acid and thymol with biological macromolecules aggregation and antibacterial 
activities against multi drug resistant (MDR) bacteria. Int. J. Biol. Macromol. 128, 
893–901. https://doi.org/10.1016/j.ijbiomac.2019.01.177

Ali, A.A., Gaikar, V.G., 2011. Microwave-Assisted Process Intensification of Synthesis of 
Thymol Using Carbonized Sulfonic Acidic Resin (CSA) Catalyst. Ind. Eng. Chem. 
Res. 50, 6543–6555. https://doi.org/10.1021/ie102053f

Almasi, H., Azizi, S., Amjadi, S., 2020. Development and characterization of pectin films 
activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum 
majorana L.) essential oil. Food Hydrocoll. 99, 105338. 



https://doi.org/10.1016/j.foodhyd.2019.105338

Amin, G., Sourmaghi, M.H.S., Zahedi, M., Khanavi, M., Samadi, N., 2005. Essential oil 
composition and antimicrobial activity of Oliveria decumbens. Fitoterapia 76, 704–
707. https://doi.org/10.1016/j.fitote.2005.06.009

Anand, V., Govila, V., Gulati, M., Anand, B., Jhingaran, R., Rastogi, P., 2012. 
Chlorhexidine-thymol varnish as an adjunct to scaling and root planing: A clinical 
observation. J. Oral Biol. Craniofacial Res. 2, 83–89. 
https://doi.org/10.1016/j.jobcr.2012.05.006

Anderson, R.C., Krueger, N.A., Genovese, K.J., Stanton, T.B., Kinnon, K.M.M.A.C., 
Harvey, R.B., Edrington, T.S., Callaway, T.R., Nisbet, D.J., 2012. Effect of Thymol or 
Diphenyliodonium Chloride on Performance , Gut Fermentation Characteristics , and 
Campylobacter Colonization in Growing Swine 34 75, 758–761. 
https://doi.org/10.4315/0362-028X.JFP-11-390

André, W.P.P., Cavalcante, G.S., Ribeiro, W.L.C., Santos, J.M.L. dos, Macedo, I.T.F., 
Paula, H.C.B. de, Morais, S.M. de, Melo, J.V. de, Bevilaqua, C.M.L., 2017. 
Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes 
and their toxicity in mice. Rev. Bras. Parasitol. Veterinária 26, 323–330. 
https://doi.org/10.1590/s1984-29612017056

Arafa, W.M., Abolhadid, S.M., Moawad, A., Abdelaty, A.S., Moawad, U.K., Shokier, 
K.A.M., Shehata, O., Gadelhaq, S.M., 2020. Thymol efficacy against coccidiosis in 
pigeon (Columba livia domestica). Prev. Vet. Med. 176, 104914. 
https://doi.org/10.1016/j.prevetmed.2020.104914

Arena, J.S., Merlo, C., Defagó, M.T., Zygadlo, J.A., 2020. Insecticidal and antibacterial 
effects of some essential oils against the poultry pest Alphitobius diaperinus and its 
associated microorganisms. J. Pest Sci. (2004). 93, 403–414. 
https://doi.org/10.1007/s10340-019-01141-5

Ares, A.M., Nozal, M.J., Bernal, J.L., Bernal, J., 2020. Simultaneous determination of 
carvacrol and thymol in bee pollen by using a simple and efficient solvent extraction 
method and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 181, 
113124. https://doi.org/10.1016/j.jpba.2020.113124

Arita, M., Yoshida, M., Hong, S., Tjonahen, E., Glickman, J.N., Petasis, N.A., Blumberg, 
R.S., Serhan, C.N., 2005. Resolvin E1, an endogenous lipid mediator derived from 
omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-
induced colitis. Proc. Natl. Acad. Sci. 102, 7671–7676. 
https://doi.org/10.1073/pnas.0409271102

Asensio, C.M., Grosso, N.R., Juliani, H.R., 2015. Quality characters , chemical 
composition and biological activities of oregano ( Origanum spp .) Essential oils from 
Central and Southern Argentina. Ind. Crop. Prod. 63, 203–213. 
https://doi.org/10.1016/j.indcrop.2014.09.056

Asif, H.M., Sultana, S., Akhtar, N., 2014. A panoramic view on phytochemical, nutritional, 
ethanobotanical uses and pharmacological values of Trachyspermum ammi Linn. 
Asian Pac. J. Trop. Biomed. 4, S545–S553. 
https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0242

Bacova, K., Zitterl-Eglseer, K., Chrastinova, L., Laukova, A., Madarova, M., Gancarcikova, 



S., Sopkova, D., Andrejcakova, Z., Placha, I., 2020. Effect of Thymol Addition and 
Withdrawal on Some Blood Parameters, Antioxidative Defence System and Fatty 
Acid Profile in Rabbit Muscle. Animals 10, 1248. https://doi.org/10.3390/ani10081248

Badary, O.A., Abd-Ellah, M.F., El-Mahdy, M.A., Salama, S.A., Hamada, F.M., 2007. 
Anticlastogenic activity of thymoquinone against benzo(a)pyrene in mice. Food 
Chem. Toxicol. 45, 88–92. https://doi.org/10.1016/j.fct.2006.08.004

Bakha, M., El Mtili, N., Machon, N., Aboukhalid, K., Amchra, F.Z., Khiraoui, A., Gibernau, 
M., Tomi, F., Al Faiz, C., 2020. Intraspecific chemical variability of the essential oils of 
Moroccan endemic Origanum elongatum L. (Lamiaceae) from its whole natural 
habitats. Arab. J. Chem. 13, 3070–3081. https://doi.org/10.1016/j.arabjc.2018.08.015

Bassole, I., 2003. Chemical composition and antibacterial activities of the essential oils of 
Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 62, 209–
212. https://doi.org/10.1016/S0031-9422(02)00477-6

Bendahou, M., Benyoucef, M., Muselli, A., Desjobert, J.M., Paolini, J., Bernardini, A.F., 
Costa, J., 2008. Antimicrobial activity and chemical composition of saccocalyx 
satureioides coss. et Dur. Essential oil and extract obtained by microwave extraction. 
Comparison with hydrodistillation. J. Essent. Oil Res. 20, 174–178. 
https://doi.org/10.1080/10412905.2008.9699984

Benelli, G., Pavela, R., Canale, A., Cianfaglione, K., Ciaschetti, G., Conti, F., Nicoletti, M., 
Senthil-Nathan, S., Mehlhorn, H., Maggi, F., 2017. Acute larvicidal toxicity of five 
essential oils ( Pinus nigra , Hyssopus officinalis , Satureja montana , Aloysia 
citrodora and Pelargonium graveolens ) against the filariasis vector Culex 
quinquefasciatus : Synergistic and antagonistic effects. Parasitol. Int. 66, 166–171. 
https://doi.org/10.1016/j.parint.2017.01.012

Born, F. de S., da Camara, C.A.G., de Melo, J.P.R., de Moraes, M.M., 2018. Acaricidal 
property of the essential oil from Lippia gracilis against Tetranychus urticae and a 
natural enemy, Neoseiulus californicus, under greenhouse conditions. Exp. Appl. 
Acarol. 75, 491–502. https://doi.org/10.1007/s10493-018-0286-3

Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T., Horhat, F.G., 2014. Thymus 
vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life 7 . 
3, 56–60.

Boskabady, M.H., Alitaneh, S., Alavinezhad, A., 2014. Carum copticum L.: A Herbal 
Medicine with Various Pharmacological Effects. Biomed Res. Int. 2014, 1–11. 
https://doi.org/10.1155/2014/569087

Botelho, M.A., Nogueira, N.A.P., Bastos, G.M., Fonseca, S.G.C., Lemos, T.L.G., Matos, 
F.J.A., Montenegro, D., Heukelbach, J., Rao, V.S., Brito, G.A.C., 2007. Antimicrobial 
activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral 
pathogens. Brazilian J. Med. Biol. Res. 40, 349–356. https://doi.org/10.1590/S0100-
879X2007000300010

Boye, A., Addo, J.K., Acheampong, D.O., Thomford, A.K., Asante, E., Amoaning, R.E., 
Kuma, D.N., 2020. The hydroxyl moiety on carbon one (C1) in the monoterpene 
nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 6, 
e03492. https://doi.org/10.1016/j.heliyon.2020.e03492

Brotzman, N., Xu, Y., Graybill, A., Cocolas, A., Ressler, A., Seeram, N.P., Ma, H., Henry, 



G.E., 2019. Synthesis and tyrosinase inhibitory activities of 4-oxobutanoate 
derivatives of carvacrol and thymol. Bioorg. Med. Chem. Lett. 29, 56–58. 
https://doi.org/10.1016/j.bmcl.2018.11.013

Buckle, J., 2014. How Essential Oils Work, in: Livingstone, C. (Ed.), Clinical 
Aromatherapy. Elsevier, Londres, pp. 15–36. https://doi.org/10.1016/B978-0-7020-
5440-2.00002-4

Cai, R., Zhang, M., Cui, L., Yuan, Y., Yang, Y., Wang, Z., Yue, T., 2019. Antibacterial 
activity and mechanism of thymol against Alicyclobacillus acidoterrestris vegetative 
cells and spores. LWT 105, 377–384. https://doi.org/10.1016/j.lwt.2019.01.066

Chatterjee, S., Jain, A., De, S., 2017. Effect of different operating conditions in cloud point 
assisted extraction of thymol from Ajwain (Trachyspermum Ammi L.) seeds and 
recovery using solvent. J. Food Sci. Technol. 54, 4353–4361. 
https://doi.org/10.1007/s13197-017-2906-z

Chauhan, A.K., Kang, S.C., 2014. Thymol disrupts the membrane integrity of Salmonella 
ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in 
an ex vivo model. Res. Microbiol. 165, 559–565. 
https://doi.org/10.1016/j.resmic.2014.07.001

Cheng, Y.-W., Kong, X.-W., Wang, N., Wang, T.-T., Chen, J., Shi, Z.Q., 2020. Thymol 
confers tolerance to salt stress by activating anti-oxidative defense and modulating 
Na+ homeostasis in rice root. Ecotoxicol. Environ. Saf. 188, 109894. 
https://doi.org/10.1016/j.ecoenv.2019.109894

Chiţanu, G.C., Bumbu, G.G., Stoleriu, A., Carpov, A., Vasile, C., Anghelescu-Dogaru, A., 
Rinaudo, M., 1999. Maleic copolymers with pendant disinfectant and/or odorant 
molecules II. Thermal and thermo-oxidative behaviour. Polym. Degrad. Stab. 65, 75–
85. https://doi.org/10.1016/S0141-3910(98)00220-1

Chorianopoulos, N., Evergetis, E., Mallouchos, A., Kalpoutzakis, E., Nychas, G.-J., 
Haroutounian, S.A., 2006. Characterization of the Essential Oil Volatiles of Satureja 
thymbra and Satureja parnassica : Influence of Harvesting Time and Antimicrobial 
Activity. J. Agric. Food Chem. 54, 3139–3145. https://doi.org/10.1021/jf053183n

Costa, M.F., Durço, A.O., Rabelo, T.K., Barreto, R. de S.S., Guimarães, A.G., 2018. 
Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on 
wound healing: a systematic review. J. Pharm. Pharmacol. jphp.13054. 
https://doi.org/10.1111/jphp.13054

Cruz, E.M. de O., Costa-Junior, L.M., Pinto, J.A.O., Santos, D. de A., Araujo, S.A. de, 
Arrigoni-Blank, M. de F., Bacci, L., Alves, P.B., Cavalcanti, S.C. de H., Blank, A.F., 
2013. Acaricidal activity of Lippia gracilis essential oil and its major constituents on 
the tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 195, 198–202. 
https://doi.org/10.1016/j.vetpar.2012.12.046

Cruz, E.M.O., Mendonça, M.C., Blank, A.F., Sampaio, T.S., Pinto, J.A.O., Gagliardi, P.R., 
Oliveira, L.F.G., de Lima, R.S.N., Nunes, R.S., Warwick, D.R.N., 2018. Lippia gracilis 
Schauer essential oil nanoformulation prototype for the control of Thielaviopis 
paradoxa. Ind. Crops Prod. 117, 245–251. 
https://doi.org/10.1016/j.indcrop.2018.02.068

De Andrade, D., De Souza, P.R., Beraldo, C.C., Watanabe, E., Lima, M.E., Haas, V.J., 



2009. Action of mouthwashes on Staphylococcus spp. isolated in the saliva of 
community and hospitalized individuals. Brazilian J. Pharm. Sci. 45, 551–557. 
https://doi.org/10.1590/S1984-82502009000300021

De Feo, V., Bruno, M., Tahiri, B., Napolitano, F., Senatore, F., 2003. Chemical 
composition and antibacterial activity of essential oils from Thymus spinulosus Ten. 
(Lamiaceae). J. Agric. Food Chem. 51, 3849–53. https://doi.org/10.1021/jf021232f

de Oliveira, J.R., Belato, K.K., de Oliveira, F.E., Jorge, A.O.C., Camargo, S.E.A., de 
Oliveira, L.D., 2018. Mouthwashes: an in vitro study of their action on microbial 
biofilms and cytotoxicity to gingival fibroblasts. Gen. Dent. 66, 28–34.

Dehghani, N., Afsharmanesh, M., Salarmoini, M., Ebrahimnejad, H., 2019. In vitro and in 
vivo evaluation of thyme (Thymus vulgaris) essential oil as an alternative for antibiotic 
in quail diet1. J. Anim. Sci. 97, 2901–2913. https://doi.org/10.1093/jas/skz179

Dehghani, N., Afsharmanesh, M., Salarmoini, M., Ebrahimnejad, H., Bitaraf, A., 2018. 
Effect of pennyroyal, savory and thyme essential oils on Japanese quail physiology. 
Heliyon 4, e00881. https://doi.org/10.1016/j.heliyon.2018.e00881

Deng, L.-L., Taxipalati, M., Que, F., Zhang, H., 2016. Physical characterization and 
antioxidant activity of thymol solubilized Tween 80 micelles. Sci. Rep. 6, 38160. 
https://doi.org/10.1038/srep38160

Dhaneshwar, S., Patel, V., Patil, D., Meena, G., 2013. Studies on synthesis, stability, 
release and pharmacodynamic profile of a novel diacerein-thymol prodrug. Bioorg. 
Med. Chem. Lett. 23, 55–61. https://doi.org/10.1016/j.bmcl.2012.11.016

Dingfei Hu, J.C., 2008. Evaluation of the environmental fate of thymol and phenethyl 
propionate in the laboratory. Pest Manag. Sci. 64, 775–779. 
https://doi.org/10.1002/ps.1555

Divakar, K.J., Dhekne, V. V., Kulkami, B.D., Joshi, P.L., Rao, A.S., 2000. A novel route to 
thymol from m-cresol. Org. Prep. Proced. Int. 32, 92–94. 
https://doi.org/10.1080/00304940009356753

dos Santos, M.C., Teodoro, A.V., Menezes, M.S., Pinto-Zevallos, D.M., de Fátima 
Arrigoni-Blank, M., Cruz Oliveira, E.M., Sampaio, T.S., Farias, A.P., Coelho, C.R., 
Blank, A.F., 2019. Bioactivity of essential oil from Lippia gracilis Schauer against two 
major coconut pest mites and toxicity to a non-target predator. Crop Prot. 125, 
104913. https://doi.org/10.1016/j.cropro.2019.104913

Dunn, B., 2013. A Brief History of Thyme [WWW Document]. A+E Networks. URL 
http://www.history.com/news/hungry-history/a-brief-history-of-thyme (accessed 
6.13.16).

Ebrahimzadeh, H., Yamini, Y., Sefidkon, F., Chaloosi, M., Pourmortazavi, S.M., 2003. 
Chemical composition of the essential oil and supercritical CO2 extracts of Zataria 
multiflora Boiss. Food Chem. 83, 357–361. https://doi.org/10.1016/S0308-
8146(03)00096-7

Eftekhari, M., Ardekani, M.R.S., Amin, M., Attar, F., Akbarzadeh, T., Safavi, M., 
Karimpour-Razkenari, E., Amini, M., Isman, M., Khanavi, M., 2019. Oliveria 
decumbens, a bioactive essential oil: Chemical composition and biological activities. 
Iran. J. Pharm. Res. 18, 412–421.



Erriu, M., Pili, F.M.G., Tuveri, E., Pigliacampo, D., Scano, A., Montaldo, C., Piras, V., 
Denotti, G., Pilloni, A., Garau, V., Orrù, G., 2013. Oil essential mouthwashes 
antibacterial activity against aggregatibacter actinomycetemcomitans: A comparison 
between antibiofilm and antiplanktonic effects. Int. J. Dent. 2013. 
https://doi.org/10.1155/2013/164267

Fachini-Queiroz, F.C., Kummer, R., Estevão-Silva, C.F., Carvalho, M.D. de B., Cunha, 
J.M., Grespan, R., Bersani-Amado, C.A., Cuman, R.K.N., 2012. Effects of Thymol 
and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory 
Response. Evidence-Based Complement. Altern. Med. 2012, 1–10. 
https://doi.org/10.1155/2012/657026

Fernandez, M.E., Kembro, J.M., Ballesteros, M.L., Caliva, J.M., Marin, R.H., Labaque, 
M.C., 2019. Dynamics of thymol dietary supplementation in quail (Coturnix japonica): 
Linking bioavailability, effects on egg yolk total fatty acids and performance traits. 
PLoS One 14, 1–23. https://doi.org/10.1371/journal.pone.0216623

Fernandez, M.E., Marin, R.H., Luna, A., Zunino, M.P., Labaque, M.C., 2017. Thymol feed 
supplementation in quail alters the percentages of nutritionally relevant egg yolk fatty 
acids: effects throughout incubation. J. Sci. Food Agric. 97, 5233–5240. 
https://doi.org/10.1002/jsfa.8407

Ferreira, J.V.N., Lago, J.H.G., Caseli, L., 2019. Thymol in cellular membrane models 
formed by negative charged lipids causes aggregation at the air-water interface. 
Chem. Phys. Lett. 717, 87–90. https://doi.org/10.1016/j.cplett.2019.01.006

Ferreira, L.E., Benincasa, B.I., Fachin, A.L., França, S.C., Contini, S.S.H.T., Chagas, 
A.C.S., Beleboni, R.O., 2016. Thymus vulgaris L. essential oil and its main 
component thymol: Anthelmintic effects against Haemonchus contortus from sheep. 
Vet. Parasitol. 228, 70–76. https://doi.org/10.1016/j.vetpar.2016.08.011

Gavliakova, S., Biringerova, Z., Buday, T., Brozmanova, M., Calkovsky, V., Poliacek, I., 
Plevkova, J., 2013. Antitussive effects of nasal thymol challenges in healthy 
volunteers. Respir. Physiol. Neurobiol. 187, 104–107. 
https://doi.org/10.1016/j.resp.2013.02.011

George, A., Kalangi, S., Vasudevan, M., Krishnaswamy, N., 2010. Chlorhexidine varnishes 
effectively inhibit Porphyromonas gingivalis and Streptococcus mutans - An in vivo 
study. J. Indian Soc. Periodontol. 14, 178. https://doi.org/10.4103/0972-124X.75913

Gholijani, N., Gharagozloo, M., Farjadian, S., Amirghofran, Z., 2016. Modulatory effects of 
thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-
treated macrophages. J. Immunotoxicol. 13, 157–164. 
https://doi.org/10.3109/1547691X.2015.1029145

Glavan, G., Novak, S., Božič, J., Jemec Kokalj, A., 2020. Comparison of sublethal effects 
of natural acaricides carvacrol and thymol on honeybees. Pestic. Biochem. Physiol. 
104567. https://doi.org/10.1016/j.pestbp.2020.104567

Golbahari, S., Abtahi Froushani, S.M., 2019. Synergistic benefits of Nicotine and Thymol in 
alleviating experimental rheumatoid arthritis. Life Sci. 239, 117037. 
https://doi.org/10.1016/j.lfs.2019.117037

Goudarzi, G.R., Saharkhiz, M.J., Sattari, M., Zomorodian, K., 2011. Antibacterial Activity 
and Chemical Composition of Ajowan (Carum copticum Benth. & Hook) Essential Oil. 



J. Agric. Sci. Technol. 13, 203–208.

Grabowska, H., Syper, L., Zawadzki, M., 2004. Vapour phase alkylation of ortho-, meta- 
and para-cresols with isopropyl alcohol in the presence of sol–gel prepared alumina 
catalyst. Appl. Catal. A Gen. 277, 91–97. https://doi.org/10.1016/j.apcata.2004.08.034

Guarda, A., Rubilar, J.F., Miltz, J., Galotto, M.J., 2011. The antimicrobial activity of 
microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146, 144–150. 
https://doi.org/10.1016/j.ijfoodmicro.2011.02.011

Günay, T., Çimen, Y., Karabacak, R.B., Türk, H., 2016. Oxidation of Thymol and Carvacrol 
to Thymoquinone with KHSO5 Catalyzed by Iron Phthalocyanine Tetrasulfonate in a 
Methanol–Water Mixture. Catal. Letters 146, 2306–2312. 
https://doi.org/10.1007/s10562-016-1850-2

Haselmeyer, A., Zentek, J., Chizzola, R., 2015. Effects of thyme as a feed additive in 
broiler chickens on thymol in gut contents, blood plasma, liver and muscle. J. Sci. 
Food Agric. 95, 504–508. https://doi.org/10.1002/jsfa.6758

Haukali, G., Poulsen, S., 2003. Effect of a Varnish Containing Chlorhexidine and Thymol 
(Cervitec®) on Approximal Caries in 13- to 16-Year-Old Schoolchildren in a Low 
Caries Area. Caries Res. 37, 185–189. https://doi.org/10.1159/000070442

Havasi, M.H., Ressler, A.J., Parks, E.L., Cocolas, A.H., Weaver, A., Seeram, N.P., Henry, 
G.E., 2020. Antioxidant and tyrosinase docking studies of heterocyclic sulfide 
derivatives containing a thymol moiety. Inorganica Chim. Acta 505, 1–9. 
https://doi.org/10.1016/j.ica.2020.119495

Heydari, A., Hadian, J., Esmaeili, H., Kanani, M.R., Mirjalili, M.H., Sarkhosh, A., 2019. 
Introduction of Thymus daenensis into cultivation: Analysis of agro-morphological, 
phytochemical and genetic diversity of cultivated clones. Ind. Crops Prod. 131, 14–24. 
https://doi.org/10.1016/j.indcrop.2019.01.033

Houdkova, M., Kokoska, L., 2020. Volatile Antimicrobial Agents and in Vitro Methods for 
Evaluating Their Activity in the Vapour Phase: A Review. Planta Med. 86, 822–857. 
https://doi.org/10.1055/a-1158-4529

Hudaib, M., Speroni, E., Di Pietra, A.M., Cavrini, V., 2002. GC/MS evaluation of thyme 
(Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. 
Pharm. Biomed. Anal. 29, 691–700. https://doi.org/10.1016/S0731-7085(02)00119-X

Imdorf, A., Bogdanov, S., Ochoa, R.I., Calderone, N.W., 1999. Use of essential oils for the 
control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 30, 209–228. 
https://doi.org/10.1051/apido:19990210

Islam, M.T., Khalipha, A.B.R., Bagchi, R., Mondal, M., Smrity, S.Z., Uddin, S.J., Shilpi, 
J.A., Rouf, R., 2019. Anticancer activity of thymol: A literature-based review and 
docking study with Emphasis on its anticancer mechanisms. IUBMB Life 71, 9–19. 
https://doi.org/10.1002/iub.1935

Jafri, H., Ahmad, I., 2019. Thymus vulgaris essential oil and thymol inhibit biofilms and 
interact synergistically with antifungal drugs against drug resistant strains of Candida 
albicans and Candida tropicalis. J. Mycol. Med. 100911. 
https://doi.org/10.1016/j.mycmed.2019.100911

Jain, A., Sengupta, S., De, S., 2018. Effect of process parameters on aqueous extraction 



of thymol and other phytonutrients from herbal seed Ajwain (Trachyspermum ammi 
L.). J. Appl. Res. Med. Aromat. Plants 11, 27–36. 
https://doi.org/10.1016/j.jarmap.2018.09.001

Janczyk, P., Trevisi, P., Souffrant, W.B., Bosi, P., 2008. Effect of thymol on microbial 
diversity in the porcine jejunum. Int. J. Food Microbiol. 126, 258–261. 
https://doi.org/10.1016/j.ijfoodmicro.2008.05.035

Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K., 2019. Thymol 
enriched bacterial cellulose hydrogel as effective material for third degree burn wound 
repair. Int. J. Biol. Macromol. 122, 452–460. 
https://doi.org/10.1016/j.ijbiomac.2018.10.192

Kavoosi, G., Dadfar, S.M.M., Purfard, A.M., 2013. Mechanical, Physical, Antioxidant, and 
Antimicrobial Properties of Gelatin Films Incorporated with Thymol for Potential Use 
as Nano Wound Dressing. J. Food Sci. 78, E244–E250. https://doi.org/10.1111/1750-
3841.12015

Kazemi-Pasarvi, S., Golshan Ebrahimi, N., Raef, M., 2020. Preparation, characterization, 
and permeability of novel poly (lactic acid)-based blends filled with thymol and ZnO. 
Polym. Test. 89, 106550. https://doi.org/10.1016/j.polymertesting.2020.106550

Keskin, N., Özgör, E., 2018. Effect of thymol and oxalic acid according to application 
method against Varroa destructor in Honeybees. J. Biotechnol. 280, S48. 
https://doi.org/10.1016/j.jbiotec.2018.06.153

Khajeh, M., Yamini, Y., Sefidkon, F., Bahramifar, N., 2004. Comparison of essential oil 
composition of Carum copticum obtained by supercritical carbon dioxide extraction 
and hydrodistillation methods. Food Chem. 86, 587–591. 
https://doi.org/10.1016/j.foodchem.2003.09.041

Khaldi, Z., Ouk, T.-S., Zerrouki, R., 2018. Synthesis and antibacterial properties of thymol 
and carvacrol grafted onto lignocellulosic kraft fibers. J. Bioact. Compat. Polym. 33, 
558–570. https://doi.org/10.1177/0883911518783227

Khan, M.R., Chinsirikul, W., Sane, A., Chonhenchob, V., 2020. Combined effects of 
natural substances and modified atmosphere packaging on reducing enzymatic 
browning and postharvest decay of longan fruit. Int. J. Food Sci. Technol. 55, 500–
508. https://doi.org/10.1111/ijfs.14293

Kifer, D., Mužinić, V., Klarić, M.Š., 2016. Antimicrobial potency of single and combined 
mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against 
Staphylococcus aureus planktonic and biofilm growth. J. Antibiot. (Tokyo). 69, 689–
696. https://doi.org/10.1038/ja.2016.10

Kim, N.H., Kim, H.W., Moon, H., Rhee, M.S., 2020. Sodium chloride significantly enhances 
the bactericidal actions of carvacrol and thymol against the halotolerant species 
Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. LWT 
122, 109015. https://doi.org/10.1016/j.lwt.2020.109015

Kissels, W., Wu, X., Santos, R.R., 2017. Short communication: Interaction of the isomers 
carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects 
against pathogenic bacteria commonly found in the respiratory tract of calves. J. Dairy 
Sci. 100, 970–974. https://doi.org/10.3168/jds.2016-11536



Kokkini, S., Karousou, R., Dardioti, A., Krigas, N., Lanaras, T., 1997. Autumn essential oils 
of Greek oregano. Phytochemistry 44, 883–886. https://doi.org/10.1016/S0031-
9422(96)00576-6

Kokoska, L., Kloucek, P., Leuner, O., Novy, P., 2019. Plant-Derived Products as 
Antibacterial and Antifungal Agents in Human Health Care. Curr. Med. Chem. 26, 
5501–5541. https://doi.org/10.2174/0929867325666180831144344

Komaki, A., Hoseini, F., Shahidi, S., Baharlouei, N., 2016. Study of the effect of extract of 
Thymus vulgaris on anxiety in male rats. J. Tradit. Complement. Med. 6, 257–261. 
https://doi.org/10.1016/j.jtcme.2015.01.001

Koosehgol, S., Ebrahimian-Hosseinabadi, M., Alizadeh, M., Zamanian, A., 2017. 
Preparation and characterization of in situ chitosan/polyethylene glycol 
fumarate/thymol hydrogel as an effective wound dressing. Mater. Sci. Eng. C 79, 66–
75. https://doi.org/10.1016/j.msec.2017.05.001

Kruk, I., Michalska, T., Lichszteld, K., Kladna, A., Aboul-Enein, H.Y., 2000. The effect of 
thymol and its derivatives on reactions generating reactive oxygen species. 
Chemosphere 41, 1059–1064. https://doi.org/10.1016/S0045-6535(99)00454-3

Kuete, V., 2017. Thymus vulgaris, in: Press, A. (Ed.), Medicinal Spices and Vegetables 
from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and 
Systemic Diseases. Elsevier Inc., Cambridge, MA, pp. 599–609. 
https://doi.org/10.1016/B978-0-12-809286-6.00028-5

Kumari, S., Choudhary, R.C., Kumaraswamy, R.V., Bhagat, D., Pal, A., Raliya, R., Biswas, 
P., Saharan͙, V., 2019. Zinc-functionalized thymol nanoemulsion for promoting 
soybean yield. Plant Physiol. Biochem. 145, 64–74. 
https://doi.org/10.1016/j.plaphy.2019.10.022

Kumari, S., Kumaraswamy, R. V., Choudhary, R.C., Sharma, S.S., Pal, A., Raliya, R., 
Biswas, P., Saharan, V., 2018. Thymol nanoemulsion exhibits potential antibacterial 
activity against bacterial pustule disease and growth promotory effect on soybean. 
Sci. Rep. 8, 6650. https://doi.org/10.1038/s41598-018-24871-5

Kurt, B.Z., Gazioglu, I., Dag, A., Salmas, R.E., Kayık, G., Durdagi, S., Sonmez, F., 2017. 
Synthesis, anticholinesterase activity and molecular modeling study of novel 
carbamate-substituted thymol/carvacrol derivatives. Bioorg. Med. Chem. 25, 1352–
1363. https://doi.org/10.1016/j.bmc.2016.12.037

Kwon, H. Il, Jeong, N.H., Kim, S.Y., Kim, M.H., Son, J.H., Jun, S.H., Kim, S., Jeon, H., 
Kang, S.C., Kim, S.H., Lee, J.C., 2019. Inhibitory effects of thymol on the cytotoxicity 
and inflammatory responses induced by Staphylococcus aureus extracellular vesicles 
in cultured keratinocytes. Microb. Pathog. 134, 103603. 
https://doi.org/10.1016/j.micpath.2019.103603

Lee, S., Kim, H., Beuchat, L.R., Kim, Y., Ryu, J.-H., 2020. Synergistic antimicrobial activity 
of oregano and thyme thymol essential oils against Leuconostoc citreum in a 
laboratory medium and tomato juice. Food Microbiol. 90, 103489. 
https://doi.org/10.1016/j.fm.2020.103489

Li, J., Chang, J.W., Saenger, M., Deering, A., 2017. Thymol nanoemulsions formed via 
spontaneous emulsification: Physical and antimicrobial properties. Food Chem. 232, 
191–197. https://doi.org/10.1016/j.foodchem.2017.03.147



Li, X., Yang, X., Deng, H., Guo, Y., Xue, J., 2020. Gelatin films incorporated with thymol 
nanoemulsions: Physical properties and antimicrobial activities. Int. J. Biol. Macromol. 
150, 161–168. https://doi.org/10.1016/j.ijbiomac.2020.02.066

Liang, D., Li, F., Fu, Y., Cao, Y., Song, X., Wang, T., Wang, W., Guo, M., Zhou, E., Li, D., 
Yang, Z., Zhang, N., 2014. Thymol Inhibits LPS-Stimulated Inflammatory Response 
via Down-Regulation of NF-κB and MAPK Signaling Pathways in Mouse Mammary 
Epithelial Cells. Inflammation 37, 214–222. https://doi.org/10.1007/s10753-013-9732-
x

Lima, A.S., Schimmel, J., Lukas, B., Novak, J., Barroso, J.G., Figueiredo, A.C., Pedro, 
L.G., Degenhardt, J., Trindade, H., 2013. Genomic characterization, molecular 
cloning and expression analysis of two terpene synthases from Thymus caespititius 
(Lamiaceae). Planta 238, 191–204. https://doi.org/10.1007/s00425-013-1884-2

Liu, Q.-R., Wang, W., Qi, J., Huang, Q., Xiao, J., 2019. Oregano essential oil loaded 
soybean polysaccharide films: Effect of Pickering type immobilization on physical and 
antimicrobial properties. Food Hydrocoll. 87, 165–172. 
https://doi.org/10.1016/j.foodhyd.2018.08.011

Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Puerto, M., Pichardo, S., Jos, Á., Cameán, 
A.M., 2015. In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture 
in the intestinal Caco-2 cell line. Toxicol. Vitr. 29, 647–656. 
https://doi.org/10.1016/j.tiv.2015.02.006

López, P., Sánchez, C., Batlle, R., Nerín, C., 2007. Vapor-phase activities of cinnamon, 
thyme, and oregano essential oils and key constituents against foodborne 
microorganisms. J. Agric. Food Chem. 55, 4348–4356. 
https://doi.org/10.1021/jf063295u

Luo, P., Luo, L., Zhao, W., Wang, Leshan, Sun, L., Wu, H., Li, Y., Zhang, R., Shu, G., 
Wang, S., Gao, P., Zhu, X., Xi, Q., Zhang, Y., Wang, Lina, Jiang, Q., 2020. Dietary 
thymol supplementation promotes skeletal muscle fibre type switch in longissimus 
dorsi of finishing pigs 1–9. https://doi.org/10.1111/jpn.13269

M. P. Schultz , J. A. Bendick, E.R., 2010. Economic impact of biofouling on a naval surface 
ship. J. Biofouling 87–98. https://doi.org/10.1080/08927014.2010.542809

Mandal, S., DebMandal, M., 2016. Thyme (Thymus vulgaris L.) oils, in: Press, A. (Ed.), 
Essential Oils in Food Preservation, Flavor and Safety. Elsevier Inc., London, pp. 
825–834. https://doi.org/10.1016/B978-0-12-416641-7.00094-8

Mandras, N., Nostro, A., Roana, J., Scalas, D., Banche, G., Ghisetti, V., Del Re, S., 
Fucale, G., Cuffini, A.M., Tullio, V., 2016. Liquid and vapour-phase antifungal 
activities of essential oils against Candida albicans and non-albicans Candida. BMC 
Complement. Altern. Med. 16, 1–7. https://doi.org/10.1186/s12906-016-1316-5

Manukumar, H.M., Umesha, S., Kumar, H.N.N., 2017. Promising biocidal activity of thymol 
loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against 
perilous pathogens. Int. J. Biol. Macromol. 102, 1257–1265. 
https://doi.org/10.1016/j.ijbiomac.2017.05.030

Marcet, I., Weng, S., Sáez-Orviz, S., Rendueles, M., Díaz, M., 2018. Production and 
characterisation of biodegradable PLA nanoparticles loaded with thymol to improve its 
antimicrobial effect. J. Food Eng. 239, 26–32. 



https://doi.org/10.1016/j.jfoodeng.2018.06.030

Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., 
Izadi, M., Nabavi, S.M., 2016. Antibacterial and antifungal activities of thymol: A brief 
review of the literature. Food Chem. 210, 402–414. 
https://doi.org/10.1016/j.foodchem.2016.04.111

Markovic, T., Chatzopoulou, P., Siljegovic, J., Nikolic, M., Glamoclija, J., Ciric, A., Sokovic, 
M., 2011. Chemical analysis and antimicrobial activities of the essential oils of 
Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. 
Sci. 63, 457–464. https://doi.org/10.2298/ABS1102457M

Masteli, J., Jerkovi, I., 2003. Gas chromatography-mass spectrometry analysis of free and 
glycoconjugated aroma compounds of seasonally collected Satureja montana L. Food 
Chem. 80, 135–140. https://doi.org/10.1016/S0308-8146(02)00346-1

Mastelić, J., Jerković, I., Vinković, M., Dzolić, Z., Vikić-Topić, D., 2004. Synthesis of 
selected naturally occurring glucosides of volatile compounds. Their chromatographic 
and spectroscopic properties. Croat. Chem. Acta 77, 491–500.

Matos, R.S., Daemon, E., de Oliveira Monteiro, C.M., Sampieri, B.R., Marchesini, P.B.C., 
Delmonte, C., Camargo-Mathias, M.I., 2019. Thymol action on cells and tissues of the 
synganglia and salivary glands of Rhipicephalus sanguineus sensu lato females 
(Acari: Ixodidae). Ticks Tick. Borne. Dis. 10, 314–320. 
https://doi.org/10.1016/j.ttbdis.2018.11.003

Medina-Holguín, A.L., Omar Holguín, F., Micheletto, S., Goehle, S., Simon, J.A., 
O’Connell, M.A., 2008. Chemotypic variation of essential oils in the medicinal plant, 
Anemopsis californica. Phytochemistry 69, 919–927. 
https://doi.org/10.1016/j.phytochem.2007.11.006

Medina, A.L., Lucero, M.E., Holguin, F.O., Estell, R.E., Posakony, J.J., Simon, J., 
O’Connell, M.A., 2005. Composition and Antimicrobial Activity of Anemopsis 
californica Leaf Oil. J. Agric. Food Chem. 53, 8694–8698. 
https://doi.org/10.1021/jf0511244

Merghni, A., Ben Nejma, M., Dallel, I., Tobji, S., Ben Amor, A., Janel, S., Lafont, F., Aouni, 
M., Mastouri, M., 2016. High potential of adhesion to biotic and abiotic surfaces by 
opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. 
Microb. Pathog. 91, 61–67. https://doi.org/10.1016/j.micpath.2015.11.009

Michalska-Sionkowska, M., Walczak, M., Sionkowska, A., 2017. Antimicrobial activity of 
collagen material with thymol addition for potential application as wound dressing. 
Polym. Test. 63, 360–366. https://doi.org/10.1016/j.polymertesting.2017.08.036

Miladi, H., Zmantar, T., Kouidhi, B., Al Qurashi, Y.M.A., Bakhrouf, A., Chaabouni, Y., 
Mahdouani, K., Chaieb, K., 2017. Synergistic effect of eugenol, carvacrol, thymol, p-
cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral 
bacteria. Microb. Pathog. 112, 156–163. 
https://doi.org/10.1016/j.micpath.2017.09.057

Milić, M., Bolanča, I., Gjirlić, D., Benković, V., 2019. Assessment of Listerine Cool Mint 
mouthwash influence on possible DNA damage measured by buccal micronucleus 
cytome assay-preliminary results. Genet. Appl. 3, 24. 
https://doi.org/10.31383/ga.vol3iss1pp24-35



Milovanovic, S., Markovic, D., Mrakovic, A., Kuska, R., Zizovic, I., Frerich, S., Ivanovic, J., 
2019. Supercritical CO2-assisted production of PLA and PLGA foams for controlled 
thymol release. Mater. Sci. Eng. C 99, 394–404. 
https://doi.org/10.1016/j.msec.2019.01.106

Miró, V., Lifschitz, A., Viviani, P., Rocha, C., Lanusse, C., Costa, L., Virkel, G., 2020. In 
vitro inhibition of the hepatic S-oxygenation of the anthelmintic albendazole by the 
natural monoterpene thymol in sheep. Xenobiotica 50, 408–414. 
https://doi.org/10.1080/00498254.2019.1644390

Moein, M.R., Zomorodian, K., Pakshir, K., Yavari, F., Motamedi, M., Zarshenas, M.M., 
2015. Trachyspermum ammi (L.) Sprague: Chemical composition of essential oil and 
antimicrobial activities of respective fractions. J. Evidence-Based Complement. 
Altern. Med. 20, 50–56. https://doi.org/10.1177/2156587214553302

Moeini, A., Pedram, P., Makvandi, P., Malinconico, M., Gomez d’Ayala, G., 2020. Wound 
healing and Antimicrobial effect of active Secondary Metabolites in Chitosan-based 
Wound dressings: A review. Carbohydr. Polym. 115839. 
https://doi.org/10.1016/j.carbpol.2020.115839

Mohagheghzadeh, A., Faridi, P., Ghasemi, Y., 2007. Carum copticum Benth. & Hook., 
essential oil chemotypes. Food Chem. 100, 1217–1219. 
https://doi.org/10.1016/j.foodchem.2005.12.002

Mollarafie, P., Khadiv Parsi, P., Zarghami, R., Amini Fazl, M., Ghafarzadegan, R., 2015. 
Antibacterial and wound healing properties of thymol (Thymus vulgaris Oil) and its 
application in a novel wound dressing. J. Med. Plants 14, 69–81.

Molnar, J.L., Gamboa, R.L., Revenga, C., Spalding, M.D., 2008. Assessing the global 
threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492. 
https://doi.org/10.1890/070064

Molva, C., Baysal, A.H., 2015. Antimicrobial activity of grape seed extract on 
Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. 
LWT - Food Sci. Technol. 60, 238–245. https://doi.org/10.1016/j.lwt.2014.07.029

Morsy, N.F.S., 2020. Production of thymol rich extracts from ajwain (Carum copticum L.) 
and thyme (Thymus vulgaris L.) using supercritical CO2. Ind. Crops Prod. 145, 
112072. https://doi.org/10.1016/j.indcrop.2019.112072

Myszka, K., Schmidt, M.T., Majcher, M., Juzwa, W., Olkowicz, M., Czaczyk, K., 2016. 
Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by 
Thymus vulgare essential oil and its major bioactive compounds. Int. Biodeterior. 
Biodegradation 114, 252–259. https://doi.org/10.1016/j.ibiod.2016.07.006

Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., Nabavi, S.F., 2015. Plants 
belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. 
Food Chem. 173, 339–347. https://doi.org/10.1016/j.foodchem.2014.10.042

Nagoor Meeran, M.F., Javed, H., Taee, H. Al, Azimullah, S., Ojha, S.K., 2017. 
Pharmacological properties and molecular mechanisms of thymol: Prospects for its 
therapeutic potential and pharmaceutical development. Front. Pharmacol. 8, 1–34. 
https://doi.org/10.3389/fphar.2017.00380

Negahban, M., Moharramipour, S., Sefidkon, F., 2007. Fumigant toxicity of essential oil 



from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. 
Res. 43, 123–128. https://doi.org/10.1016/j.jspr.2006.02.002

Netopilova, M., Houdkova, M., Rondevaldova, J., Kmet, V., Kokoska, L., 2018. Evaluation 
of in vitro growth-inhibitory effect of carvacrol and thymol combination against 
Staphylococcus aureus in liquid and vapour phase using new broth volatilization 
chequerboard method. Fitoterapia 129, 185–190. 
https://doi.org/10.1016/j.fitote.2018.07.002

Nezhadali, A., Nabavi, M., Rajabian, M., Akbarpour, M., Pourali, P., Amini, F., 2014. 
Chemical variation of leaf essential oil at different stages of plant growth and in vitro 
antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef Univ. J. 
Basic Appl. Sci. 3, 87–92. https://doi.org/10.1016/j.bjbas.2014.05.001

Nie, L., Resasco, D.E., 2012. Improving carbon retention in biomass conversion by 
alkylation of phenolics with small oxygenates. Appl. Catal. A Gen. 447–448, 14–21. 
https://doi.org/10.1016/j.apcata.2012.08.041

Niederl, J.B., Natelson, S., 1932. The synthesis of thymol, chlorothymol and homologs of 
thymol by the intramolecular rearrangement of meta-cresyl ethers. J. Am. Chem. Soc. 
54, 1063–1070. https://doi.org/10.1021/ja01342a029

Nikolić, M., Glamočlija, J., Ferreira, I.C.F.R., Calhelha, R.C., Fernandes, Â., Marković, T., 
Marković, D., Giweli, A., Soković, M., 2014. Chemical composition, antimicrobial, 
antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. 
and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 52, 183–190. 
https://doi.org/10.1016/j.indcrop.2013.10.006

Noma, Y., Asakawa, Y., 2010. 3.19 - Biotransformation of Monoterpenoids 669–801. 
https://doi.org/http://dx.doi.org/10.1016/B978-008045382-8.00742-5

Nomani, M., Sadat Noori, S.A., Tohidfar, M., Ramshini, H., 2019. Overexpression of TPS2 
gene to increase thymol content using Agrobacterium tumefaciens-mediated 
transformation in Trachyspermum ammi (Qom ecotype). Ind. Crops Prod. 130, 63–70. 
https://doi.org/10.1016/j.indcrop.2018.12.076

Nordin, N., Othman, S.H., Rashid, S.A., Basha, R.K., 2020. Effects of glycerol and thymol 
on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll. 
106, 105884. https://doi.org/10.1016/j.foodhyd.2020.105884

O’Connor, C.T., Moon, G., Böhringer, W., Fletcher, J.C.Q., 2003. Alkylation of Phenol and 
m-Cresol Over Zeolites. Collect. Czechoslov. Chem. Commun. 68, 1949–1968. 
https://doi.org/10.1135/cccc20031949

Ocel’ová, V., Chizzola, R., Pisarčíková, J., Novak, J., Ivanišinoviá, O., Faix, Š., 2016. 
Effect of Thyme Essential Oil Supplementation on Thymol Content in Blood Plasma, 
Liver, Kidney and Muscle in Broiler Chickens. Nat. Prod. Commun. 11, 1545–1550.

Oceľová, V., Chizzola, R., Battelli, G., Pisarcikova, J., Faix, S., Gai, F., Placha, I., 2019. 
Thymol in the intestinal tract of broiler chickens after sustained administration of 
thyme essential oil in feed. J. Anim. Physiol. Anim. Nutr. (Berl). 103, 204–209. 
https://doi.org/10.1111/jpn.12995

Oliveira, A.P., Santos, A.A., Santana, A.S., Lima, A.P.S., Melo, C.R., Santana, E.D.R., 
Sampaio, T.S., Blank, A.F., Araújo, A.P.A., Cristaldo, P.F., Bacci, L., 2018. Essential 



oil of Lippia sidoides and its major compound thymol: Toxicity and walking response 
of populations of Sitophilus zeamais (Coleoptera: Curculionidae). Crop Prot. 112, 33–
38. https://doi.org/10.1016/j.cropro.2018.05.011

Oliveira, J.R. de, de Jesus Viegas, D., Martins, A.P.R., Carvalho, C.A.T., Soares, C.P., 
Camargo, S.E.A., Jorge, A.O.C., de Oliveira, L.D., 2017. Thymus vulgaris L. extract 
has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and 
genotoxicity. Arch. Oral Biol. 82, 271–279. 
https://doi.org/10.1016/j.archoralbio.2017.06.031

Omonijo, F.A., Kim, S., Guo, T., Wang, Q., Gong, J., Lahaye, L., Bodin, J., Nyachoti, M., 
Liu, S., Yang, C., 2018. Development of Novel Microparticles for E ff ective Delivery 
of Thymol and Lauric Acid to Pig Intestinal Tract. 
https://doi.org/10.1021/acs.jafc.8b02808

Öztürk, M., 2012. Anticholinesterase and antioxidant activities of Savoury (Satureja 
thymbra L.) with identified major terpenes of the essential oil. Food Chem. 134, 48–
54. https://doi.org/10.1016/j.foodchem.2012.02.054

Palaniappan, K., Holley, R.A., 2010. Use of natural antimicrobials to increase antibiotic 
susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 140, 164–168. 
https://doi.org/10.1016/j.ijfoodmicro.2010.04.001

Panea, B., Ripoll, G., 2020. Pig feedstuff effect on the physicochemical and sensory 
properties of low-salt, dry-fermented sausages. Anim. Sci. J. 91, e13458. 
https://doi.org/10.1111/asj.13458

Park, A.B., Choi, W., Kim, J., Kim, K., Lee, S., 2005. Monoterpenes from Thyme (Thymus 
vulgaris) as potential mosquito repellents 21, 80–83. https://doi.org/10.2987/8756-
971X(2005)21[80:MFTTVA]2.0.CO;2

Park, K.-J., Kroker, T., Groß, U., Zimmermann, O., Krause, F., Haak, R., Ziebolz, D., 2019. 
Effectiveness of caries-preventing agents on initial carious lesions within the scope of 
orthodontic therapy. Korean J. Orthod. 49, 246. 
https://doi.org/10.4041/kjod.2019.49.4.246

Paul, S., Dubey, R.C., Maheswari, D.K., Kang, S.C., 2011. Trachyspermum ammi (L.) fruit 
essential oil influencing on membrane permeability and surface characteristics in 
inhibiting food-borne pathogens. Food Control 22, 725–731. 
https://doi.org/10.1016/j.foodcont.2010.11.003

Pavela, R., 2015. Acute toxicity and synergistic and antagonistic effects of the aromatic 
compounds of some essential oils against Culex quinquefasciatus Say larvae. 
Parasitol. Res. 114, 3835–3853. https://doi.org/10.1007/s00436-015-4614-9

Pavela, R., Benelli, G., 2016. Essential Oils as Ecofriendly Biopesticides? Challenges and 
Constraints. Trends Plant Sci. 21, 1000–1007. 
https://doi.org/10.1016/j.tplants.2016.10.005

Pérez-Recalde, M., Ruiz Arias, I.E., Hermida, É.B., 2018. Could essential oils enhance 
biopolymers performance for wound healing? A systematic review. Phytomedicine 38, 
57–65. https://doi.org/10.1016/j.phymed.2017.09.024

Pérez, M., García, M., Blustein, G., 2015. Evaluation of low copper content antifouling 
paints containing natural phenolic compounds as bioactive additives. Mar. Environ. 



Res. 109, 177–184. https://doi.org/10.1016/j.marenvres.2015.07.006

Peron, A., 2013. The effect of essential oil compounds on performance and gut health. 
Asian poork Mag. 3–6.

Phillips, M., Gibbs, H.D., 1920. A Synthesis of Thymol from p-Cymene. J. Ind. Eng. Chem. 
12, 733–734. https://doi.org/10.1021/ie50128a007

Pires, A.L.R., de Azevedo Motta, L., Dias, A.M.A., de Sousa, H.C., Moraes, Â.M., Braga, 
M.E.M., 2018. Towards wound dressings with improved properties: Effects of 
poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-
carotene. Mater. Sci. Eng. C 93, 595–605. https://doi.org/10.1016/j.msec.2018.08.005

Placha, I., Ocelova, V., Chizzola, R., Battelli, G., Gai, F., Bacova, K., Faix, S., 2019. Effect 
of thymol on the broiler chicken antioxidative defence system after sustained dietary 
thyme oil application. Br. Poult. Sci. 60, 589–596. 
https://doi.org/10.1080/00071668.2019.1631445

Placha, I., Takacova, J., Ryzner, M., Cobanova, K., Laukova, A., Strompfova, V., 
Venglovska, K., Faix, S., 2014. Effect of thyme essential oil and selenium on intestine 
integrity and antioxidant status of broilers. Br. Poult. Sci. 55, 105–114. 
https://doi.org/10.1080/00071668.2013.873772

Preston, K.P., Higham, S.M., Smith, P.W., 2007. The efficacy of techniques for the 
disinfection of artificial sub-surface dentinal caries lesions and their effect on 
demineralization and remineralization in vitro. J. Dent. 35, 490–495. 
https://doi.org/10.1016/j.jdent.2007.01.006

Raeisi, S., Sharifi-Rad, M., Quek, S.Y., Shabanpour, B., Sharifi-Rad, J., 2016. Evaluation 
of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and 
ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated 
rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT - Food Sci. 
Technol. 65, 112–121. https://doi.org/10.1016/j.lwt.2015.07.064

Raghuvanshi, D.S., Verma, N., Singh, S.V., Khare, S., Pal, A., Negi, A.S., 2019. Synthesis 
of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg. 
Chem. 88, 102933. https://doi.org/10.1016/j.bioorg.2019.102933

Regnault-Roger, C., Vincent, C., Arnason, J.T., 2012. Essential Oils in Insect Control: 
Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 57, 405–424. 
https://doi.org/10.1146/annurev-ento-120710-100554

Remmal, A., Achahbar, S., Bouddine, L., Chami, F., Chami, N., 2013. Oocysticidal Effect 
of Essential Oil Components against Chicken Eimeria Oocysts. Int. J. Vet. Med. Res. 
Reports 1–8. https://doi.org/10.5171/2013.599816

Reyes-jurado, F., Cervantes-rincón, T., Bach, H., López-malo, A., Palou, E., 2019. 
Industrial Crops & Products Antimicrobial activity of Mexican oregano ( Lippia 
berlandieri ), thyme ( Thymus vulgaris ), and mustard ( Brassica nigra ) essential oils 
in gaseous phase. Ind. Crop. Prod. 131, 90–95. 
https://doi.org/10.1016/j.indcrop.2019.01.036

Reyes-Jurado, F., Navarro-Cruz, A.R., Ochoa-Velasco, C.E., Palou, E., López-Malo, A., 
Ávila-Sosa, R., 2020. Essential oils in vapor phase as alternative antimicrobials: A 
review. Crit. Rev. Food Sci. Nutr. 60, 1641–1650. 



https://doi.org/10.1080/10408398.2019.1586641

Rezaeian, Z., Beigi-Boroujeni, S., Atai, M., Ebrahimibagha, M., Özcan, M., 2019. A novel 
thymol-doped enamel bonding system: Physico-mechanical properties, bonding 
strength, and biological activity. J. Mech. Behav. Biomed. Mater. 100, 103378. 
https://doi.org/10.1016/j.jmbbm.2019.103378

Richa, G., Pudakalkatti, P., Joshi, V., 2017. Evaluation and comparison of the antimicrobial 
effect of two different mouthwashes on selected periodontal pathogens: An in vitro 
study. J. Curr. Res. Sci. Med. 3, 40. https://doi.org/10.4103/jcrsm.jcrsm_40_16

Riella, K.R., Marinho, R.R., Santos, J.S., Pereira-Filho, R.N., Cardoso, J.C., Albuquerque-
Junior, R.L.C., Thomazzi, S.M., 2012. Anti-inflammatory and cicatrizing activities of 
thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. 
Ethnopharmacol. 143, 656–663. https://doi.org/10.1016/j.jep.2012.07.028

Rivas, L., McDonnell, M.J., Burgess, C.M., O’Brien, M., Navarro-Villa, A., Fanning, S., 
Duffy, G., 2010. Inhibition of verocytotoxigenic Escherichia coli in model broth and 
rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 139, 70–78. 
https://doi.org/10.1016/j.ijfoodmicro.2010.01.029

Robledo, S.N., Pierini, G.D., Nieto, C.H.D., Fernández, H., Zon, M.A., 2019. Development 
of an electrochemical method to determine phenolic monoterpenes in essential oils. 
Talanta 196, 362–369. https://doi.org/10.1016/j.talanta.2018.12.069

Rodrigues, V., Cabral, C., Évora, L., Ferreira, I., Cavaleiro, C., Cruz, M.T., Salgueiro, L., 
2015. Chemical composition, anti-inflammatory activity and cytotoxicity of Thymus 
zygis L. subsp. sylvestris (Hoffmanns. & Link) Cout. essential oil and its main 
compounds. Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2015.08.026

Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A., Jordán, M.J., 2008. Antimicrobial 
activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus 
hyemalis essential oils. Food Control 19, 681–687. 
https://doi.org/10.1016/j.foodcont.2007.07.007

Sachdeva, S., Grover, V., Malhotra, R., Kapoor, A., Mohanty, K., 2018. Comparison of 
clinical effectiveness of single and multiple applications of 1% chlorhexidine varnish 
(Cervitec Plus) along with scaling and root planing in patients with chronic 
periodontitis. J. Indian Soc. Periodontol. 22, 523. 
https://doi.org/10.4103/jisp.jisp_252_18

Saei-Dehkordi, S.S., Tajik, H., Moradi, M., Khalighi-Sigaroodi, F., 2010. Chemical 
composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and 
their radical scavenging and antimicrobial activity. Food Chem. Toxicol. 48, 1562–
1567. https://doi.org/10.1016/j.fct.2010.03.025

Sáez-Orviz, S., Marcet, I., Weng, S., Rendueles, M., Díaz, M., 2020. PLA nanoparticles 
loaded with thymol to improve its incorporation into gelatine films. J. Food Eng. 269, 
109751. https://doi.org/10.1016/j.jfoodeng.2019.109751

Sajed, H., Sahebkar, A., Iranshahi, M., 2013. Zataria multiflora Boiss. (Shirazi thyme)—An 
ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol. 145, 686–
698. https://doi.org/10.1016/j.jep.2012.12.018

Salehi, B., Mishra, A.P., Shukla, I., Sharifi-Rad, M., Contreras, M. del M., Segura-



Carretero, A., Fathi, H., Nasrabadi, N.N., Kobarfard, F., Sharifi-Rad, J., 2018. Thymol, 
thyme, and other plant sources: Health and potential uses. Phyther. Res. 32, 1688–
1706. https://doi.org/10.1002/ptr.6109

Sedaghat Doost, A., Van Camp, J., Dewettinck, K., Van der Meeren, P., 2019. Production 
of thymol nanoemulsions stabilized using Quillaja Saponin as a biosurfactant: 
Antioxidant activity enhancement. Food Chem. 293, 134–143. 
https://doi.org/10.1016/j.foodchem.2019.04.090

Sefidkon, F., Jamzad, Z., 2005. Chemical composition of the essential oil of three Iranian 
Satureja species (S. mutica, S. macrantha and S. intermedia). Food Chem. 91, 1–4. 
https://doi.org/10.1016/j.foodchem.2004.01.027

Sehgal, A., Shetty, S., Ashith, M. V., Jose, N.P., Mangal, U., 2018. Efficacy of 
chlorhexidine varnish in patients undergoing multibracket fixed orthodontic treatment: 
A controlled clinical study. Biomed. Pharmacol. J. 11, 945–950. 
https://doi.org/10.13005/bpj/1452

Selvaraj, M., Kawi, S., 2008. Comparison of mesoporous and microporous solid acid 
catalysts for highly selective synthesis of thymol by vapor phase isopropylation of m-
cresol. Microporous Mesoporous Mater. 109, 458–469. 
https://doi.org/10.1016/j.micromeso.2007.05.053

Sertkaya, E., Kaya, K., Soylu, S., 2010. Acaricidal activities of the essential oils from 
several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus 
Boisd.) (Acarina: Tetranychidae). Ind. Crops Prod. 31, 107–112. 
https://doi.org/10.1016/j.indcrop.2009.09.009

Sharma, S., Anand, N., 1997. Natural Products, in: Science, E. (Ed.), Approaches to 
Design and Synthesis of Antiparasitic Drugs. El Sevier, New York, pp. 347–383. 
https://doi.org/10.1016/S0165-7208(97)80036-0

Shimoda, K., Kondo, Y., Nishida, T., Hamada, Hatsuyuki, Nakajima, N., Hamada, Hiroki, 
2006. Biotransformation of thymol, carvacrol, and eugenol by cultured cells of 
Eucalyptus perriniana. Phytochemistry 67, 2256–2261. 
https://doi.org/10.1016/j.phytochem.2006.07.006

Shrestha, A., Rimal, J., Rao, A., Sequeira, P.S., Doshi, D., Bhat, G.K., 2011. In vitro 
antifungal effect of mouth rinses containing chlorhexidine and thymol. J. Dent. Sci. 6, 
1–5. https://doi.org/10.1016/j.jds.2011.02.001

Shuai Fangwen, Zhang Jiawei, W.X., 2014. Thymol synthesis method. CN104177233A.

Silva, S.T., Bertolucci, S.K.V., da Cunha, S.H.B., Lazzarini, L.E.S., Tavares, M.C., Pinto, 
J.E.B.P., 2017. Effect of light and natural ventilation systems on the growth 
parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus 
(Lour.) Spreng. Plant Cell, Tissue Organ Cult. 129, 501–510. 
https://doi.org/10.1007/s11240-017-1195-6

Singh, B., Sharma, S., Dhiman, A., 2017. Acacia gum polysaccharide based hydrogel 
wound dressings: Synthesis, characterization, drug delivery and biomedical 
properties. Carbohydr. Polym. 165, 294–303. 
https://doi.org/10.1016/j.carbpol.2017.02.039

Sionkowska, A., 2011. Current research on the blends of natural and synthetic polymers 



as new biomaterials: Review. Prog. Polym. Sci. 36, 1254–1276. 
https://doi.org/10.1016/j.progpolymsci.2011.05.003

Skrobot, F.C., Valente, A.A., Neves, G., Rosa, I., Rocha, J., Cavaleiro, J.A.S., 2003. 
Monoterpenes oxidation in the presence of Y zeolite-entrapped manganese(III) 
tetra(4-N-benzylpyridyl)porphyrin. J. Mol. Catal. A Chem. 201, 211–222. 
https://doi.org/10.1016/S1381-1169(03)00181-X

Soković, M.D., Vukojević, J., Marin, P.D., Brkić, D.D., Vajs, V., Van Griensven, L.J.L.D., 
2009. Chemical composition of essential oils of Thymus and mentha species and 
their antifungal activities. Molecules 14, 238–249. 
https://doi.org/10.3390/molecules14010238

Soltani, M., Mohamadian, S., Ebrahimzahe-Mousavi, H.A., Mirzargar, S., Taheri-Mirghaed, 
A., Rouholahi, S., Ghodratnama, M., 2014. Shirazi thyme (Zataria multiflora) essential 
oil suppresses the expression of the epsD capsule gene in Lactococcus garvieae, the 
cause of lactococcosis in farmed fish. Aquaculture 433, 143–147. 
https://doi.org/10.1016/j.aquaculture.2014.05.024

Tabari, M.A., Youssefi, M.R., Maggi, F., Benelli, G., 2017. Toxic and repellent activity of 
selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, 
Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 245, 86–91. 
https://doi.org/10.1016/j.vetpar.2017.08.012

Tajkarimi, M.M., Ibrahim, S.A., Cliver, D.O., 2010. Antimicrobial herb and spice 
compounds in food. Food Control 21, 1199–1218. 
https://doi.org/10.1016/j.foodcont.2010.02.003

Tak, J.-H., Isman, M.B., 2017. Acaricidal and repellent activity of plant essential oil-derived 
terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: 
Tetranychidae). Ind. Crops Prod. 108, 786–792. 
https://doi.org/10.1016/j.indcrop.2017.08.003

Tananaki, C., Goras, G., Huggett, N., Karazafiris, E., Dimou, M., Thrasyvoulou, A., 2014. 
Evaluation of the impact of Exomite ProTM on Varroa mite (Varroa destructor) 
populations and honeybee (Apis mellifera) colonies: efficacy, side effects and 
residues. Parasitol. Res. 113, 1251–1259. https://doi.org/10.1007/s00436-013-3739-y

Tang, X., Sensat, M., Stoltenberg, J., 2016. The antimicrobial effect of chlorhexidine 
varnish on mutans streptococci in patients with fixed orthodontic appliances: a 
systematic review of clinical efficacy. Int. J. Dent. Hyg. 14, 53–61. 
https://doi.org/10.1111/idh.12163

Tao, F., Hill, L.E., Peng, Y., Gomes, C.L., 2014. Synthesis and characterization of β-
cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery 
applications. LWT - Food Sci. Technol. 59, 247–255. 
https://doi.org/10.1016/j.lwt.2014.05.037

Tatlisu, N.B., Yilmaz, M.T., Arici, M., 2019. Fabrication and characterization of thymol-
loaded nanofiber mats as a novel antimould surface material for coating cheese 
surface. Food Packag. Shelf Life 21, 100347. 
https://doi.org/10.1016/j.fpsl.2019.100347

Tepe, B., Sokmen, M., Akpulat, H.A., Daferera, D., Polissiou, M., Sokmen, A., 2007. 
Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. 



sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J. Food Eng. 66, 447–
454. https://doi.org/10.1016/j.jfoodeng.2004.04.015

Thomas, P.S., Essien, E.E., 2020. Antiglycation, antioxidant, and cytotoxic activities of 
Uvaria chamae root and essential oil composition. Nat. Prod. Res. 34, 880–883. 
https://doi.org/10.1080/14786419.2018.1504048

Tohidi, B., Rahimmalek, M., Arzani, A., 2017. Essential oil composition, total phenolic, 
flavonoid contents, and antioxidant activity of Thymus species collected from different 
regions of Iran. Food Chem. 220, 153–161. 
https://doi.org/10.1016/j.foodchem.2016.09.203

Tohidi, B., Rahimmalek, M., Arzani, A., Sabzalian, M.R., 2020a. Thymol, carvacrol, and 
antioxidant accumulation in Thymus species in response to different light spectra 
emitted by light-emitting diodes. Food Chem. 307, 125521. 
https://doi.org/10.1016/j.foodchem.2019.125521

Tohidi, B., Rahimmalek, M., Arzani, A., Trindade, H., 2020b. Sequencing and variation of 
terpene synthase gene (TPS2) as the major gene in biosynthesis of thymol in 
different Thymus species. Phytochemistry 169, 112126. 
https://doi.org/10.1016/j.phytochem.2019.112126

Tohidpour, A., Sattari, M., Omidbaigi, R., Yadegar, A., Nazemi, J., 2010. Antibacterial 
effect of essential oils from two medicinal plants against Methicillin-resistant 
Staphylococcus aureus (MRSA). Phytomedicine 17, 142–145. 
https://doi.org/10.1016/j.phymed.2009.05.007

Trevisi, P., Merialdi, G., Mazzoni, M., Casini, L., Tittarelli, C., De Filippi, S., Minieri, L., 
Lalatta-Costerbosa, G., Bosi, P., 2007. Effect of dietary addition of thymol on growth, 
salivary and gastric function, immune response, and excretion of Salmonella enterica 
serovar Typhimurium, in weaning pigs challenged with this microbe strain. Ital. J. 
Anim. Sci. 6, 374–376. https://doi.org/10.4081/ijas.2007.1s.374

Trindade, H., Pedro, L.G., Figueiredo, A.C., Barroso, J.G., 2018. Chemotypes and terpene 
synthase genes in Thymus genus: State of the art. Ind. Crops Prod. 124, 530–547. 
https://doi.org/10.1016/j.indcrop.2018.08.021

U.S. Food and Drug Administration (FDA), 2020. Substances Added to Food (formerly 
EAFUS) [WWW Document]. URL 
https://www.accessdata.fda.gov/scripts/fdcc/?set=FoodSubstances&sort=Sortterm&or
der=ASC&startrow=1&type=basic&search=thymol

Valero, D., Valverde, J.M., Martínez-Romero, D., Guillén, F., Castillo, S., Serrano, M., 
2006. The combination of modified atmosphere packaging with eugenol or thymol to 
maintain quality, safety and functional properties of table grapes. Postharvest Biol. 
Technol. 41, 317–327. https://doi.org/10.1016/j.postharvbio.2006.04.011

Venkatesan, J., Lee, J.-Y., Kang, D.S., Anil, S., Kim, S.-K., Shim, M.S., Kim, D.G., 2017. 
Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized 
silver nanoparticles. Int. J. Biol. Macromol. 98, 515–525. 
https://doi.org/10.1016/j.ijbiomac.2017.01.120

Veras, H.N.H., Rodrigues, F.F.G., Colares, A. V., Menezes, I.R.A., Coutinho, H.D.M., 
Botelho, M.A., Costa, J.G.M., 2012. Synergistic antibiotic activity of volatile 
compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia 83, 508–



512. https://doi.org/10.1016/j.fitote.2011.12.024

Vinu, A., Ariga, K., Saravanamurugan, S., Hartmann, M., Murugesan, V., 2004. Synthesis 
of highly acidic and well ordered MgAl-MCM-41 and its catalytic performance on the 
isopropylation of m-cresol. Microporous Mesoporous Mater. 76, 91–98. 
https://doi.org/10.1016/j.micromeso.2004.07.036

Vlachojannis, C., Chrubasik-Hausmann, S., Hellwig, E., Al-Ahmad, A., 2015. A preliminary 
investigation on the antimicrobial activity of Listerine®, its components, and of 
mixtures thereof. Phyther. Res. 29, 1590–1594. https://doi.org/10.1002/ptr.5399

Walczak, M., Michalska-Sionkowska, M., Kaczmarek, B., Sionkowska, A., 2020. Surface 
and antibacterial properties of thin films based on collagen and thymol. Mater. Today 
Commun. 100949. https://doi.org/10.1016/j.mtcomm.2020.100949

Wan, L., Meng, D., Wang, H., Wan, S., Jiang, S., Huang, S., Wei, L., Yu, P., 2018. 
Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute 
Lung Injury Mice Model. Inflammation 41, 183–192. https://doi.org/10.1007/s10753-
017-0676-4

Wang, L.-H., Zhang, Z.-H., Zeng, X.-A., Gong, D.-M., Wang, M.-S., 2017. Combination of 
microbiological, spectroscopic and molecular docking techniques to study the 
antibacterial mechanism of thymol against Staphylococcus aureus: membrane 
damage and genomic DNA binding. Anal. Bioanal. Chem. 409, 1615–1625. 
https://doi.org/10.1007/s00216-016-0102-z

Wang, S., Meckling, K.A., Marcone, M.F., Kakuda, Y., Tsao, R., 2011. Synergistic, 
Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. J. 
Agric. Food Chem. 59, 960–968. https://doi.org/10.1021/jf1040977

Wang, T.H., Hsia, S.M., Wu, C.H., Ko, S.Y., Chen, M.Y., Shih, Y.H., Shieh, T.M., Chuang, 
L.C., Wu, C.Y., 2016. Evaluation of the antibacterial potential of liquid and vapor 
phase phenolic essential oil compounds against oral microorganisms. PLoS One 11, 
1–17. https://doi.org/10.1371/journal.pone.0163147

Wedemeyer, W.B.K., 1976. Process for preparing thymol. US4086283A.

Widmann, O., 1882. Ueber eine Synthese von Thymol aus Cuminol. Berichte der Dtsch. 
Chem. Gesellschaft 15, 166–172. https://doi.org/10.1002/cber.18820150139

Yang Zhenghao, Ren Jing, Tang Liangping, Yang Dongsheng, G.G., 2014. Novel synthetic 
process of thymol. CN103951546A.

Yu Kai, Jiang Yugang, Wang Yongguang, Ge Zhimin, Li Zhixiang, L.C., 2018. A kind of 
thymol and preparation method thereof and pharmaceutical composition. 
CN108911951A.

Yusuke;, G.H.S.K.K.Y.I.S.T.H.K., 2014. Production method of dialkylphenol. 
JP2015227289 (A).

Zarshenas, M.M., Moein, M., Samani, S.M., Petramfar, P., 2014. An overview on Ajwain 
(Trachyspermum ammi) pharmacological effects; modern and traditional. J. Nat. 
Remedies 14, 98–105. https://doi.org/10.18311/jnr/2014/96

Zhang, M., Du, H., Huang, Z., Zhang, P., Yue, Y., Wang, W., Liu, W., Zeng, J., Ma, J., 
Chen, G., Wang, X., Fan, J., 2018. Thymoquinone induces apoptosis in bladder 



cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. 
Chem. Biol. Interact. 292, 65–75. https://doi.org/10.1016/j.cbi.2018.06.013

Zhang Yuhong, Xiao Tangxin, Hu Baiyan, Yu Ming, Zhang Long, Qi Yong, L.Q., 2016. 
Synthetic method for thymol. CN106008169A.

Zhou, E., Fu, Y., Wei, Z., Yu, Y., Zhang, X., Yang, Z., 2014. Thymol attenuates allergic 
airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia 96, 131–
137. https://doi.org/10.1016/j.fitote.2014.04.016

Zolfaghari, Z., Vatanparast, J., 2020. Thymol provokes burst of action potentials in 
neurons of snail Caucasotachea atrolabiata. Comp. Biochem. Physiol. Part C Toxicol. 
Pharmacol. 228, 108654. https://doi.org/10.1016/j.cbpc.2019.108654



Figure captions

Fig. 1. Thyme vulgaris plant and flowers.

Fig. 2. Biosynthetic pathway of thymol and carvacrol from geranyl pyrophosphate (GPP) as 

precursor (Tohidi et al., 2020b).

Fig. 3. Synthesis of thymol from p-cymene using the method reported by Max Phillips and 

H. D. Gibbs (Phillips and Gibbs, 1920).

Fig. 4. (i) -Al2O3, 250 °C/2 h, 90% selectivity. (ii) Co&X@Al2O3, 210 °C/1 h, >90% selectivity. 

(iii) Vitriol oil and aluminum chloride, 150 °C/2~20 h, 98% selectivity. (iv) Zn–Al–MCM-41, 

290 °C/2 h, 100% selectivity. (v) MgAl-MCM-41, 300 °C/5 h, >80% selectivity. (vi) H-ZSM-

5, 250 °C/1 h, 80% selectivity. (vii) H-ß zeolite, 200 °C/1 h. (viii) ß-type zeolite, 180°C/3 h. 

(ix) Carbonized sulfonic acidic resin/microwave, 150 °C/3 min, 87% selectivity. (x) 

Ni/Na2SiO3, 360 °C, 83% selectivity. (xi) A) Titanium tetrachloride, 120 °C/4~6 h. B) 

NaOH/KOH, 90~186 °C/0.5~6 h. C) Palladium carbon, 0~60 °C/2~4 h. D) Reducing agent 

is Ammonium formate as reducing agent, 80~130 °C/0.5~1.5h. (xii). A) Ethylacetoacetate, 

acidify, heat; B) NaOH, heat/acidify; C) heat; D) H2. Raney Ni; F) NaOH, ethanediol, 

heat/acidify.

Fig. 5. Biotransformation of thymol (1) to 6-hydroxythymol (2), (1R,2S)- (3) and (1R,2R)-2-

hydroxy-3-p-menthen-5-one (4), thymol-7-oic acid (5), 7-hydroxythymol (6), 7,9-

dihydroxythymol (7), 9-hydroxythymol (8), and thymol-9-oic acid (9), by the actinomycete 

strain Streptomyces humidus, Tu-1, and fungi Aspergillus niger, Mucor ramannianus, 

Rhizopus arrhizus, and Trichothecium roseum (Noma and Asakawa, 2010).

Fig. 6. Glycosylation of thymol (1) 5-methyl-2-(1-methylethyl)phenyl b-D-glucopyranoside 

(10) and 5-methyl-2-(1-methylethyl)phenyl 6-O-(b-D-glucopyranosyl)-b-D-glucopyranoside 

(11) by the cultured cells of Eucalyptus perriniana (Shimoda et al., 2006).

Fig. 7. Representative images of burn wounds in control, BC, and BCT groups at days 5, 

10, 5, 20, and 25 (Jiji et al., 2019).

Fig. 8. Symptoms of bacterial pustule disease on soybean plants in pot experiments (a) 

lesions expanded and merged in control, (b) small yellow to brown lesions in soybean leaf 

at 0.06% v/v thymol nanoemulsion (Kumari et al., 2018).


