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Abstract
Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic 
ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid 
binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. 
Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflam-
matory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. 
Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic 
echinococcosis (or hydatidosis). These diseases are included in the World Health Organization’s list of priority neglected 
tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target 
repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was 
developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of 
the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally 
confirming the model’s predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification 
of such four FABP, for which initial structural and functional characterization is reported here.

Keywords Drug repurposing · Target repurposing · FABP · Virtual screening · Echinococcus spp. · Neglected tropical 
diseases

Introduction

Echinococcus multilocularis and Echinococcus granulosus 
are, respectively, the causative agents of alveolar and cystic 
echinococcosis (or hydatidosis). These diseases are included 
in the list of twenty neglected tropical diseases (NTDs) con-
sidered as priority by World Health Organization [1]. NTDs 
affect more than a billion people every year, mainly in poor 
regions with limited access to adequate sanitary condi-
tions and living in close association with infectious vectors, 
domestic animals and livestock.

Echinococcosis is caused by the larval stage of Echi-
nococcus spp., which generates cyst-like structures in the 
intermediate host’s inner organs. Currently, the drug treat-
ment for echinococcosis relies on benzimidazoles, mainly 
albendazole, which was reported to be ineffective in 40% of 
cystic echinococcosis cases [2]; furthermore, it is parasito-
static only and not tolerated by many patients [3]. Arising 
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of resistance to albendazole has been reported for many hel-
minths [4]. The scarcity of available anthelmintic drugs and 
the emergence of resistant parasites make the discovery of 
new anthelmintic drugs mandatory.

The sequencing of tapeworm genomes [5], showed the 
absence of genes coding for de novo synthesis of fatty acids 
and cholesterol, confirming previous biochemical observa-
tions [6]. Additionally, an amplification and high expression 
of genes coding for lipid binding proteins (fatty acid binding 
proteins (FABPs) and Antigen B) was also observed. The 
encoded proteins could be involved in lipid acquisition from 
host tissues.

FABPs are small intracellular lipid binding proteins 
(around 15 kDa) that reversibly bind fatty acids and other 
hydrophobic ligands. They are usually highly expressed in 
cells with very active lipid metabolism [7, 8]. Members of 
this family have been found throughout the animal kingdom, 
but no counterparts have been found in plants or fungi [9]. 
Our group has functionally characterized a member of this 
family of proteins from E. granulosus (EgFABP1), [10]. 
Remarkably, EgFABP1, confirms the presence of all the 
usual FABPs structural characteristics and facilitates the 
search for specific compounds able to bind and interfere 
with their function.

These lipid-binding proteins have been suggested as pos-
sible drug targets and/or drug carriers against these parasites 
[11, 12]. By exploring the genomes of E. multilocularis and 
E. granulosus, six genes coding for FABPs were found in 
each organism. In the case of E. granulosus, all of them have 
different coding sequences, whereas in E. multilocularis, two 
of the genes code for the same protein [13].

Target repurposing is a relatively novel strategy to dis-
cover new hits against infectious agents, including NTDs 
[14]. Target repurposing begins with a defined parasitic tar-
get with an established homolog in another species (human 
or other). Drugs that target this second species (either 
approved drugs or clinical candidates), are then explored as 
a starting point to develop compounds that inhibit the pur-
sued infectious agent. Hits identified using such strategy are 
later subjected to molecular optimization to gain selectivity. 
For instance, Nallan et al. tested the ability of a panel of 
inhibitors for mammalian protein farnesyl transferase in pre-
clinical and clinical development to inhibit in vitro growth 
of Plasmodium falciparum parasites [15]. Similarly, other 
authors have repurposed human phosphodiesterase inhibitors 
against Trypanosoma brucei phosphodiesterases, as poten-
tial starting points for the development of new treatments 
against African trypanosomiasis [16, 17].

In this work, we explored the potential of cestode FABPs 
as drug targets. To this end, we have used a target repur-
posing approach to identify, through a virtual screening 
campaign based on an ensemble learning approximation, 
novel inhibitors of Echinococcus FABPs. Additionally, 

four E. multilocularis FABPs were purified for the first 
time and used in the experimental validation of the models’ 
predictions.

Materials and methods

Materials

Oleic acid, sulindac, clotrimazole, cetylpyridinium chloride, 
urea, and buffers were acquired from Sigma-Aldrich (St. 
Louis, MO). 1-anilino naphthalene-8-sulfonic acid (ANS) 
was purchased from Molecular Probes (Eugene, Oregon, 
USA).

Dataset collection

Human FABP2 inhibitors were compiled from literature 
[18–31]. 108 compounds assayed through a fluorescence 
polarization assay and 159 compounds identified through 
8-anilino-1-naphthalenesulfonic acid displacement assay 
were found, adding a total of 267 compounds. After remov-
ing duplicated compounds, we were left with a 258-com-
pound dataset. Such compounds were labelled as either 
ACTIVE or INACTIVE according to their reported inhibi-
tory data. Compounds with  IC50 < 20 µM were allocated to 
the ACTIVE class; otherwise, they were allocated to the 
INACTIVE class. Considering such criteria, the dataset 
included 125 active compounds and 133 inactive com-
pounds. The molecular representations of the dataset com-
pounds were standardized using the standardization tool 
Standardizer v. 17.2.6.0 available in JCHEM Suite (Che-
maxon). The molecular diversity of the whole dataset and 
within each category can be appreciated in Figure 1 of the 
Supplementary Material. The heatmap shows, for every 
compound pair, the Tanimoto distances computed using 
ECFP_4 molecular fingerprints. The heatmap was built 
using the Python library Plotly (https ://plotl y.com/pytho n/) 
and Tanimoto distances were calculated using ScreenMD—
Molecular Descriptor Screening v. 17.3.27.0 (ChemAxon). 
The dataset is included as Supplementary Data 1.

Dataset partition

The dataset was split into a representative training set (which 
was used to calibrate the models) and a test set (which was 
used to assess the performance of the models in an inde-
pendent manner). It has been reported that representative 
splitting tends to produce models with better predictivity 
[32, 33]. Accordingly, we resorted to a representative sam-
pling procedure to divide the dataset; such representative 
partition resulted from a sequential clustering procedure. In 
the first place, the hierarchical clustering method included 
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in LibraryMCS software (version 17.2.13.0–ChemAxon) 
was applied, which relies on the Maximum Common Sub-
structure. A compound from each of the resulting clusters 
was then randomly chosen and used as a seed to perform a 
non-hierarchical clustering using the k-means algorithm, as 
implemented in Statistica 10 Cluster Analysis module (Stat-
soft). Hierarchical clustering allowed deciding on an initial 
partition of n molecules into k groups, and this preliminary 
clustering was then optimized through the non-hierarchical 
procedure, as suggested by Everitt et al. [34]. This combined 
approach has earlier been applied for representative dataset 
partitioning, with good results [35–37].

The previous clustering procedure was performed sepa-
rately for the ACTIVE and INACTIVE classes. 75% of the 
elements in each cluster of the ACTIVE class were held for 
the training set (making a total of 93 training examples); an 
equal number of compounds were taken from the INAC-
TIVE category clusters (74% of each INACTIVE cluster). In 
this way, a balanced training sample (comprising an identical 
proportion of active and inactive examples) was obtained 
and model bias toward predicting an overrepresented class 
was avoided. The remaining 32 active and 40 inactive com-
pounds were allocated to the test set (72 compounds in total).

Molecular descriptor calculation and modelling 
procedure

3668 conformation-independent descriptors were computed 
with Dragon 6.0 software. A random subspace approxima-
tion was applied to sample 1000 descriptor subsets of 200 
potential independent features each. In the random subspace 
approach, the molecular descriptors are randomly sampled, 
and each model is trained on one subset of the feature space 
[38, 39], resulting in models that do not over-focus on fea-
tures that display high explanatory power for the calibration 
sample.

A dummy variable (class label) was used as a depend-
ent variable. It was assigned observed values of 1 for com-
pounds within the ACTIVE category and observed values 
of 0 for compounds in the INACTIVE one. Using a Forward 
Stepwise procedure and a semi-correlation approach [40], 
1000 linear classifiers were so obtained, one from each ran-
dom subset of features. To reduce the probability of overfit-
ting, only one molecular descriptor every twelve training 
examples was allowed into each model. A maximal Variance 
Inflation Factor of 2 was tolerated to exclude highly cor-
related descriptor pairs from the models. R language and 
environment was used for all data analysis. The R package 
data table (https ://cran.r-proje ct.org/packa ge=data.table ) 
was employed to handle datasets.

The robustness and predictive ability of the mod-
els were firstly assessed through Y-randomization and 
Leave-Group-Out cross-validation tests. In the case of 

randomization, the class label was randomized across the 
compounds in the training set. The training set with the 
randomized dependent variable was then used to train new 
models, from the descriptor selection step. Such procedure 
was repeated 100 times for each descriptor subset, and 
the 95% confidence interval was built around the mean 
accuracy of the randomized models, under the expectancy 
that the randomized models will perform poorly compared 
to the real ones. Regarding the Leave-Group-Out cross-
validation, random stratified subsets comprising 9 active 
compounds and 9 inactive compounds were removed from 
the training set in each cross-validation round, and the 
model was regenerated using the remaining compounds as 
training examples. The resulting model was used to predict 
the class label for the removed compounds. The procedure 
was repeated 100 times for each mode, with each of the 
training set compounds removed at least once. The results 
were informed as the average accuracy across the folds, 
and this was compared to the accuracy of the model for 
the original training set and also, as advised by Gramatica 
[41], to the No-Model error rate or risk (NOMER%), i.e., 
the error provided in absence of model.

The predictivity of each individual model was assessed 
through external validation, using the 72-compound test 
set that was already described in Dataset Collection sec-
tion. A diversity of statistical parameters commonly used 
to assess the performance of classificatory models were 
estimated [41, 42] for both the training and test sets: sen-
sitivity (Se, i.e., true positive rate), specificity (Sp, i.e., 
true negative rate), accuracy (Acc, i.e., overall percentage 
of good classifications), positive and negative predictivity 
and the F-measure.

Retrospective screening campaigns

For further validation of our models, a retrospective vir-
tual screening experiment was implemented, seeding the 
32 known active compounds from the test set among 1568 
decoys obtained from the Directory of Useful Decoys 
Enhanced (DUD-E; [43]), a widely used benchmarking tool 
which allows obtaining putative inactive compounds.

Using rigorous simulated ranking experiments, Truchon 
and Bayly [44] have previously demonstrated that the Area 
Under the Receiver Operating Characteristic curve (AUC 
ROC) is dependent on the ratio of active compounds/inac-
tive compounds, and the standard deviation of the metric 
converges to a constant value when small yield of actives 
(Ya) are observed in the screened library (Ya below 0.05 
provides robust results). Furthermore, a reasonably small 
Ya ensures that the saturation effect is constant or absent. A 
high number of decoys (around 1000 or higher) and a small 
Ya contribute to a controlled statistical behaviour.
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Ensemble learning

Classifier ensembles are known to enhance generalization 
and accuracy in comparison to individual (single model) 
classifiers [45, 46].

The best individual models were selected and combined 
using the area under the ROC curve metric (AUC ROC) 
in the retrospective screen as criterion of performance. To 
choose the ideal number of models to be included in the 
ensemble, systematic combinations of the 2 to 100 best 
performing individual models were considered (the two 
best-performing models were combined, then the three best-
performing models, and so on up to a total of 100 models 
included in the ensemble). Four combination strategies were 
applied to obtain a combined score: MIN operator (which 
returns the minimum score among the individual scores of 
the combined models); Average Score; Average Ranking 
and; Average Voting. Voting was calculated according to 
the equation previously used by Zhang and Muegge [47]. 
AUC ROCs were obtained with the pROC package [48]; the 
Delong method was used to statistically compare the AUC 
ROCs. BEDROC and the enrichment factor (considering the 
1% top-ranked compounds) (EF1%) were also computed. For 
that purpose, we resorted to the online open source applica-
tion Rocker [49].

Use of positive predictive value surfaces to choose 
an adequate score threshold

A practical concern in any virtual screen involves estimating 
the probability that a predicted hit will confirm its activity 
when submitted to experimental testing (i.e., the Positive 
Predictive Value, PPV). A priori estimation of such prob-
ability is however not possible due to its dependency on the 
Ya of the screened library, which is not known beforehand:

where Se represents the sensitivity associated to a given 
score threshold value and Sp represents the specificity. 
Equation (1) was applied to build PPV surfaces. In order to 
choose an optimal threshold value to select predicted hits 
in prospective virtual screening experiments, 3D plots dis-
playing the interplay between PPV, the Se/Sp ratio and Ya 
were built for each individual model and for each model 
ensemble, as previously described [35]. Using the library 
built for the retrospective screening experiment, Se and Sp 
were computed in all the range of possible score thresh-
old values. Since controlled statistical behaviour has been 
observed for libraries of 1000 compounds or more and Ya 
below 0.05, we can sensibly assume that the ROC curve and 

(1)PPV =
Se × Ya

Se × Ya + (1 − Sp) × (1 − Ya)

its derived metrics will be similar when applying the models 
to screen other chemical libraries with similar characteristics 
(size > 1000 compounds, Ya < 0.05). Having in mind that 
in real virtual screening applications Ya is ignored a priori 
but invariably low, this parameter was varied between 0.001 
and 0.010. The R package plotly was used to obtain all the 
PPV graphs. Visual analysis of the resulting PPV surfaces 
allowed us to select a score threshold value associated to the 
desired PPV range.

Prospective virtual screening

Based on the visual inspection of the resulting PPV graphs, 
we have realized a prospective virtual screen, applying a 
5-model ensemble (see description later, under “Results”) 
using the MIN operator to combine individual classifiers. 
Based on PPV surface analysis, we chose a score threshold 
that provides a PPV ≥ 25% at Ya = 0.01.

We have used the 5-model ensemble to screen Drug-
Bank 5.0.8 database, a public database containing extensive 
information about the US Food and Drug Administration 
(FDA) approved, experimental, illicit and investigational 
drugs [50], as well as approved and investigational drugs 
from other regulatory agencies, such as Health Canada or 
the European Medicines Agency. The molecular represen-
tations of the database compounds were standardized using 
Standardizer 16.10.10.0 (ChemAxon). The following actions 
were applied to obtain homogeneous representations of the 
molecular structure for the subsequent virtual screen: (1) 
strip salts; (2) remove solvents; (3) clear stereo; (4) remove 
absolute stereo; (5) aromatize; (6) neutralize; (7) add explicit 
hydrogens; and (8) clean 2D. Duplicated structures were 
removed using Instant JCHEM v. 17.2.6.0. Belonging to 
the applicability domain was checked using the leverage 
approach. Three hits were selected for experimental evalua-
tion, using the following criteria: (a) no previous reports of 
activity on Echinoccocus spp.; (b) availability through local 
suppliers; (c) cost; (d) belonging to the applicability domain 
of the five models included in the best ensemble and; (e) 
molecular diversity: after clustering the in silico hits using 
Chemaxon’s LibraryMCS (minimal maximum common sub-
structure containing 12 atoms) the assayed candidates should 
not fall within the same cluster. Using these criteria, three 
hits, the anti-inflammatory sulindac, the antiseptic cetylpyri-
dinium and the antifungal agent clotrimazole, were selected 
for experimental validation of the predictions.

Recombinant FABP expression and purification

FABP 1 to 4 from E. multilocularis were overexpressed in 
Escherichia coli, harboring the pET28a(+)-EmFABP1 to 4. 
All proteins were purified from soluble extracts except for 
EmFABP2 that was recovered from inclusion bodies (see 
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below). Cells were lysed by sonication and centrifuged at 
30,000×g for 40 min at 4 °C. The His-tagged fusion proteins 
were purified by nickel affinity and gel filtration chromatog-
raphy using a Superdex-75 (GE Healthcare). In each case a 
final delipidation step was performed using Lipidex-1000 
(Sigma) hydrophobic chromatography. When necessary the 
removal of copurifying ligands from the bacterial expression 
system was achieved by an extra step using reverse-phase 
high performance liquid chromatography (RP-HPLC) with 
a C8 stationary phase and water/acetonitrile/trifluoroacetic 
acid mobile phase. Proteins were refolded in water and then 
a final buffer change step was performed to 137 mM NaCl, 
2.7 mM KCl, 10 mM  Na2HPO4 and 1.8 mM  KH2PO4 pH 
7.4 (PBS). For the case of EmFABP2, inclusion bodies were 
isolated by centrifugation (at 30,000×g for 40 min at 4 °C) 
and washed with buffer 20 mM Tris–HCl, 500 mM NaCl, 
5 mM imidazole and 1 mM DTT, pH 7.4, supplemented 
with urea up to 8 M concentration. After the sample was 
dissolved, it was further centrifuged at 30,000×g for 20 min 
at 4 °C and the supernatant applied to a nickel column (GE 
Healthcare) equilibrated with the same buffer in presence 
of urea. Refolding was achieved by eluting EmFABP2 in 
20 mM Tris–HCl, 500 mM NaCl, 250 mM imidazole and 
1 mM DTT, pH 7.4.

Purity was assessed in SDS-PAGE gels. Finally, pooled 
fractions containing the concentrated proteins were stored 
at − 80 °C. Protein concentration was assessed by spectro-
photometer measurements at 280 nm with the correspond-
ing extinction coefficients: 10,033 M/cm, 11,523 M/cm, 
14,105 M/cm and 20,003 M/cm for EmFABP1 to 4, respec-
tively. For the case of EgFABP1 was purified as described 
previously [10].

Circular dichroism

Spectra were recorded on a Jasco J-810 spectropolarimeter. 
Data in the far-UV (200–250 nm) region was collected using 
a 1 mm path cuvette. A scan speed of 20 nm/min with a time 
constant of 1 s was used. EmFABP 1 to 4 were dissolved 
in buffer PBS. Each spectrum was measured at least three 
times, and the data were averaged to reduce noise. Molar 
ellipticity was calculated as described elsewhere [51], using 
mean residue weight values of 13,355, 1155, 1153, 1126 for 
EmFABP1 to 4, respectively.

Equilibrium unfolding studies

Conformational transitions were monitored as a function 
of denaturant concentration by measuring the change in 
the intrinsic fluorescence intensity of proteins. Urea stock 
solutions were prepared on the same day of the experiment. 
Individual samples ranging in denaturant concentration from 
0 to 8 M Urea were obtained by dilution of a fixed volume 

of protein stock solution in mixtures of buffer PBS and 8 M 
Urea. Spectra were measured after incubation for at least 
1 h to ensure that the equilibrium had been reached. Fluo-
rescence data were corrected for the background signal of 
buffer and denaturant and expressed in arbitrary units.

ANS binding

In this assay the binding was monitored by changes in the 
probe emission. The ligand was repeatedly added from a 
stock solution to each protein dissolved in PBS buffer. Incu-
bation for 2 min at 25 °C ensured complete equilibration. 
Initially, nonlinear regression fitting to the binding data was 
achieved to a model considering a single class of binding 
sites using the software GraphPad Prism.

Competition experiments

Displacement of bound ANS (20 μM) from EmFABPs by 
oleic acid, a known FABPs ligand [52, 53] or the corre-
spondent in silico hit was measured by the decrease of fluo-
rescence intensity with increasing oleic acid or drug con-
centration. Protein concentration was 1uM in PBS buffer, 
pH 7.4. The spectra were recorded after equilibration for 
2 min at 25 °C. The apparent dissociation constant  (Kdapp) 
was calculated by fitting the following equation to the data:

where ΔF represents the value of the observed fluorescence 
intensity subtracted from the contribution of the probe at 
each concentration of oleic acid assayed; ΔF0 is the differ-
ence in fluorescence intensity measured in the absence or in 
the presence of an excess amount of oleic acid; and ΔFres is a 
term that accounts for the remnant fluorescence at high oleic 
acid concentration. All fluorescence data were normalized 
by dividing each difference by ΔFmax (= ΔF0 + ΔFres).

Results

A ligand-based virtual screening approach was used to dis-
cover inhibitors of Echinococcus spp. FABPs’. 1000 indi-
vidual linear classifiers were obtained by applying a random 
subspace approach on a pool of more than 3000 Dragon 
conformation-independent (0D–2D) molecular descriptors. 
The individual models were validated both internally and 
externally.

Results of the internal validation for the five best indi-
vidual models are shown in Table 1. Regarding the Leave-
Group-Out, results for each individual classifier are informed 
as the mean accuracy across the folds, which is in all cases 

(2)ΔF =
ΔF0

1 +
[oleic acid]

Kdapp

+ ΔFres

Author's personal copy



1280 Journal of Computer-Aided Molecular Design (2020) 34:1275–1288

1 3

similar to 80% and close to the correspondent accuracy on 
the training set, suggesting the models are robust. Since the 
proportions of the active and inactive compounds in the 
training set are identical (as are in each of the Leave-Group-
Out folds) the correspondent NOMER% (accuracy associ-
ated to random classification) is 50%, well below the per-
formance of the models in the cross-validation, as expected.

Regarding the randomization results, Table 1 shows the 
95% confidence interval around the mean accuracy of the 
randomized models. The accuracy of the randomized models 
is in all cases much below the accuracy of the true (non-ran-
domized) models, and close to the NOMER%, suggesting a 
low probability of spurious correlations for the true models.

External validation was performed using the 72-com-
pound independent test set. Table 2 summarizes the results. 
In general, no matter which parameter is taken into consid-
eration, the best individual classifiers show a similar perfor-
mance in the training and test set.

The best individual model (model 997) included the fol-
lowing features:

with Wilks’ Lambda = 0.51, F = 20.970 and p < 0.0000. 
Dragon’s nomenclature for the molecular descriptors has 
been kept in the previous expression, where the molecu-
lar descriptors correspond either to topological indices or 
atom pair counts or presence. NaasN is an atom-type E-state 
index representing the number of E State of the atom type 
aaS; JGI6 is the topological charge index of order 6; J_D/
Dt is a Balaban-like index derived from the distance/detour 
matrix; ATSC4m is a Broto-Moreau autocorrelation of lag 
4 weighted by atomic mass; F04[N–N] symbolizes the fre-
quency of Nitrogen—Nitrogen atom pairs at a topological 
distance of 4; Eig15_AEA(ed) denotes the 15th eigenvalue 
from the augmented edge adjacency matrix weighted by 
edge degree; F04[N-S] indicates the frequency of Nitro-
gen–Sulphur atom pairs at a topological distance of 4 (2D 
Atom Pairs) and B06[N–O] denotes the presence of Nitrogen 
– Oxygen atoms at topological distance of 6.

The five best individual models and a brief description of 
the molecular descriptors in them have been listed as Sup-
plementary Data 2.

For a more challenging and realistic simulation, the 
enrichment behavior of the individual models was studied 
through a retrospective virtual screen, where a small propor-
tion of active compounds (32) was dispersed among a high 
number (1568) of presumed inactive compounds (decoys). 
Table 3 shows the enrichment metrics of the five best per-
forming individual classifiers.

Whereas, the performance of the best individual clas-
sifiers was very satisfactory (AUC ROC above 0.94, with 

Class = 0.05428 + 0.26464 ∗ NaasN − 32.77330 ∗ JGI6

+ 0.07801 ∗ J_D∕Dt − 0.01735 ∗ ATSC4m

− 0.44701 ∗ F04[N−N] + 0.11065

∗ Eig15_AEA(ed) + 0.20216 ∗ F04[N−S]

− 0.15403 ∗ B06[N−O]

Table 1  Summarized results of the internal validation of the best 
individual classifiers

Model Training set Leave group out 
cross-validation

Fisher´s 
randomiza-
tion test

Mean accuracy (%) Mean 
accuracy 
(%)

Standard 
deviation

Confidence 
interval 
95%

M997 85.48 79.21 8.97 58.08 60.16
M177 82.26 77.56 9.25 57.87 59.71
M1 82.26 78.49 9.12 58.25 59.96
M556 83.87 80.09 8.56 57.52 59.29
M893 82.80 79.39 8.63 57.68 59.61

Table 2  Comparison of the 
performance of the five best 
individual classifiers on the 
training and test set

Model Se Sp Acc F-measure Positive predic-
tivity

Negative 
predictivity

Training set
 M997 0.82 0.89 0.85 0.19 0.88 0.83
 M177 0.77 0.87 0.82 0.22 0.86 0.79
 M1 0.80 0.85 0.82 0.25 0.84 0.81
 M556 0.81 0.87 0.84 0.22 0.86 0.82
 M893 0.78 0.87 0.83 0.22 0.86 0.80

Test set
 M997 0.81 0.83 0.82 0.29 0.79 0.85
 M177 0.78 0.88 0.83 0.22 0.83 0.83
 M1 0.81 0.83 0.82 0.29 0.79 0.85
 M556 0.78 0.88 0.83 0.22 0.83 0.83
 M893 0.85 0.80 0.83 0.32 0.81 0.84
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1.00 corresponding to a perfect classifier, and enrich-
ment factor up to 43), we explored ensemble learning 
approaches to obtain meta-classifiers with improved 
accuracy and a more robust behaviour. Figure 1 shows 
the AUC ROC values obtained in the retrospective screen 
when systematically combining between the 2 and 100 
best performing individual models, using the four combi-
nation strategies: MIN, AVE, RANK and VOT.

The expectations on the ensemble approach were con-
firmed, since several combinations were found statistically 
outperforming the best individual models from a statistical 
viewpoint. The MIN operator consistently outperformed 
the other combination strategies, both in terms of AUC 
ROC in the retrospective screen and dispersion around 
the mean AUC ROC. The MIN combination of the 5 best 

models seemed to provide, in terms of AUC ROC, the 
best results in the retrospective screen (0.99, p = 0.0011 in 
comparison to the best individual model). The EF1% was 
also increased to 50. The enrichment metrics for the best 
ensembles are also shown in Table 3.

After selecting the MIN combination of the five best indi-
vidual models (MIN-5), we resorted to PPV surface analysis 
to choose the optimal score threshold for prospective vir-
tual screening applications. With the help of PPV surfaces, 
the evolution of the most relevant metric for our purposes, 
the PPV, i.e., the actual probability that a predicted hit will 
confirm activity when experimentally tested, can be visu-
ally optimized as a function of the (Se/Sp) ratio across a 
range of Ya values. For this analysis, we have considered 
that the association between the Se/Sp and the score values 

Table 3  Performance of the five 
best individual classifiers and 
the best model ensemble in the 
retrospective screen

AUC ROC BEDROC EF_1.0

Training set Test set Retrospective
screen

Retrospective
screen

Retrospective
screen

M997 0.90 0.86 0.95 0.67 30
M177 0.89 0.88 0.95 0.76 43
M1 0.89 0.88 0.94 0.76 40
M556 0.91 0.87 0.94 0.67 27
M893 0.90 0.86 0.94 0.64 30
MIN_5 ensemble – – 0.99 0.88 50

Fig. 1  AUC ROC obtained in the retrospective screen as a function of the number of combined models. a Minimum score; b average score; c 
average ranking; d average voting
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of the MIN-5 model ensemble (observed in the retrospective 
screening campaign) would hold when performing screens 
on other libraries. This is a strong assumption that is not 
necessarily true. Nevertheless, since the AUC ROC values 
obtained for the retrospective screen are clearly high (0.99 
for the best model ensemble) while on the other hand the 
Ya ratio (0.02) and size (> 1000 compounds) speak of a 
controlled statistical behaviour [44], we believe it is a valid 
assumption in the current setting.

Using PPV surfaces (Fig. 2), we have chosen 0.4075 as 
the MIN-5 ensemble score threshold to be used in our pro-
spective virtual screening campaign. This score is associated 
to a Se/Sp ratio of 0.8199 and a PPV value above 0.25 for 
a Ya of 0.01. This means that, according to this theoretic 
analysis, if Ya in the real virtual screen was 0.01, we would 
have to submit about four predicted hits to experimental test-
ing in order to find one confirmed hit.

The prospective virtual screen of DrugBank 5.0 using 
the previous score cut-off value resulted in 25 hits, with 21 
of them belonging to the applicability domain of the five 
models included in the ensemble. Two of these 21 com-
pounds had reports on inhibitory effects on human FABPs 
and belonged to the training set, thus being excluded from 
further analysis or testing. Based on the selection crite-
ria previously listed under the “Methods” section and our 
funding availability, we acquired and submitted three hits to 
experimental testing: the anti-inflammatory agent sulindac, 
the antifungal clotrimazole and the antiseptic cetylpyridin-
ium (Fig. 3).

For that purpose, recombinant EmFABPs 1 to 4 were suc-
cessfully expressed and purified from E. coli cultures. To 
control for structural and functional integrity, the following 

methods were employed: (a) circular dichroism spectros-
copy, (b) unfolding transitions, and (c) oleic acid binding 
using displacement assays.

The far-UV circular dichroism (CD) spectra described 
for all FABPs show two characteristic features: a minimum 
at approximately 216 nm and a strong positive band occur-
ring below 200 nm. This is in agreement with their over-
all structure that contains approximately 80% content of 
β-sheet and 20% α-helices [54, 55]. In the case of FABPs 
from E. multilocularis (Fig. 4), all of them showed minima 

Fig. 2  PPV surface for the 
retrospective screen using the 
best 5-model ensemble. The Se/
Sp ratio correspondent to the 
chosen score threshold value 
and the associated PPVs within 
the Ya 0.001–0.010 range are 
indicated

Fig. 3  Chemical structure of the in silico hits submitted to experi-
mental validation
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at 216 nm but only EmFABP1-3 presented a strong posi-
tive band centered at 200 nm. For the case of EmFABP4 
no signal was observed below 200 nm suggesting the lack 
of a helical content. This result could be due to the fact that 
EmFABP4 was the only EmFABP that behaved as a stable 
dimer in solution.

All EmFABPs except EmFABP2 unfold through a coop-
erative transition suggesting stable conformations (Fig. 5). 
Transitions were centered at 6.1, 6.35 and 4.9 M urea for 
EmFABP 1, 3 and 4, respectively. EgFABP1 was included 
as control and it presented a transition midpoint of 5.5 M 
urea. These results are in good agreement with previously 
reported midpoints for other vertebrates FABPs [56]. Since 
EmFABP2 showed to be highly unstable no further experi-
ments were conducted on this protein.

In order to assess ligand binding capacity of the recom-
binant EmFABPs, binding affinity to oleic acid was meas-
ured with a competition assay. Briefly, increasing amounts 

of oleic acid were added to a preformed protein-ANS com-
plex. As a first step Kd values for ANS were determined 
(Fig. 6) in order to define further experimental conditions. 
Binding isotherms for ANS to EmFABP1, 3 and 4 yielded 
Kd values of 0.3 ± 0.08, 0.9 ± 0.1, and 5.4 ± 0.6  μM, 
respectively. All the EmFABPs showed Kd values similar 

Fig. 4  The far-UV CD spectra of EmFABPs. CD spectra were col-
lected in the far UV region 190–250  nm for EmFABP 1 to 4. Pro-
teins (20–40 uM) were dissolved in PBS buffer (pH7.4) and spectra 
were recorded at 25  °C. Average of three spectra is shown for each 
EmFABP

Fig. 5  Equilibrium unfolding transitions of EmFABPs 1 to 4 moni-
tored by the change in fluorescence emission as a function of urea 
concentration. Data were plotted as the unfolded fraction of each pro-
tein vs urea concentration

Fig. 6  Binding of ANS to EmFABPs. EmFABP1, 3 and 4 (1  µM) 
were titrated with the fluorescent probe ANS. Increasing amounts of 
the ligand were added to the protein solution, and the fluorescence 
intensity was measured after equilibration of the sample for 2  min. 
Excitation wavelength was 350 nm, and the emission was monitored 
at 380–600 nm for ANS, respectively. The solid lines correspond to 
the optimal curve fitting of the data by nonlinear regression to one 
site binding model
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to those previously reported for IFABP (Kd: 1–10 μM, see 
also [57, 58].

Oleic acid was able to displace ANS from EmFABPs 
cavities at different degrees.  Kdapp values for EmFABPs 1, 

3 and 4 were 0.6 ± 0.08, 0.8 ± 0.12 and 13 ± 0.9 μM, respec-
tively (Fig. 7).

EmFABPs capacity to bind the three hits selected from 
the in silico screen was evaluated using competition assays. 
Increasing amounts of the hit compounds were added to a 
preformed protein-ANS complex. Figure 8 shows the degree 
of displacement of ANS exerted by different assayed drugs. 
At 15 µM concentration, sulindac displaced ANS from the 
EmFABPs 1, 3 and 4.

Discussion and conclusions

The current chemotherapy for echinococcosis is based on 
the use of benzimidazoles, particularly mebendazole and 
albendazole. This treatment has no lethal effects on para-
sites but severely affects proliferation resulting in the need 
of long lasting administration of drugs in order to control 
the cyst growth [3, 59]. Additionally, some patients present 
side effects and hepatotoxicity and in those cases no other 
alternative treatments are available [60].

Recent work reported the existence of six FABP encod-
ing genes on the available E. multilocularis genome [13]. 
Two of these genes encode proteins with identical primary 
sequence thus they were named emfabp1.1 and emfabp1.2. 
Regarding the other four genes, one is orthologous to 
egfabp2 [61], whereas the other three represented novel 
genes (named emfabp3 to 5). Recently published transcrip-
tomic information of E. multilocularis, show that all FABPs 
are transcribed at different stages of E. multilocularis [5, 62, 
63]. According to the different sets of data, emfabp1.1 and 
emfabp1.2 are the most highly expressed FABP genes in E. 
multilocularis, it is important to recall that these two genes 
are identical [13].

In this work we have successfully purified in a recom-
binant form EmFABP 1 to 4 for the first time. All four 
EmFABPs showed a CD spectrum compatible with a high 
β-sheet content in their secondary structure and in agree-
ment with the in silico predictions already analysed [13]. 
For EmFABP4, the most striking feature is that the predicted 
sequence is much longer (176 amino acids) than that for 
a regular FABP (around 130 amino acids). In this case, a 
typical FABP fold is predicted but no specific structure is 
assigned to the C terminus of the protein [13]. Surprisingly, 
EmFABP4 was purified as a dimer and this state seemed to 
be stable in solution. Whether EmFABP4 exists as a dimer 
in its biological environment remains to be elucidated. It 
is noticeable that FABPs with C-terminal extensions from 
Fasciola spp. have been also reported recently [12]. Except 
for the case of EmFABP2, all EmFABPs showed to be stable 
in solution presenting unfolding midpoints similar to other 
well characterised vertebrate FABPs [53–55].

Fig. 7  Competition of ANS bound to EmFABPs by oleic acid. ANS 
bound to EmFABP 1, 3 and 4 was incubated with increasing amounts 
of oleic acid at 25 °C. The relative fluorescence intensity was plotted. 
Excitation wavelength was set at 350 nm. The continuous lines cor-
respond to the fitting of Eq. (2)
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As in vertebrate’s FABPs, the sequence identity 
between different FABPs from invertebrates varies signifi-
cantly but they still share their overall 3D protein structure. 
When compared to mammalian FABPs, they show higher 
similarity to those belonging to group IV [7, 64]. They all 
invariantly contain the P2 ligand-binding motif (an Arg…
Arg-x-Tyr motif involved in ligand binding) [65, 66], with 
the sole exception of EmFABP4 that has a Tyr instead of 
an Arg in the first position. Noticeably, EmFABP1, 3 and 
4 proved to bind oleic acid showing submicromolar affini-
ties for EmFABP1 and 3, in agreement with reports for 
other FABPs from vertebrates and invertebrates [52, 53, 
67, 68]. EmFABP4 showed considerably lower affinity in 
comparison with EmFABP1 and 3, which might be related 
to the fact that EmFABP4 exists as a dimer in vitro.

Vertebrates FABPs have drawn attention as drug targets 
for many diseases like obesity, atherosclerosis, diabetes 
and metabolic syndrome [69–71]. In this sense several 
compounds have been synthesized in order to achieve 
specificity and many patents were registered [72].

Using an ensemble learning approximation, we have 
performed a ligand-based virtual screening campaign 
to identify new Echinococcus spp. FABPs inhibitors as 
potential new treatments against echinococcosis. This is, 
to our best knowledge, the first virtual screening appli-
cation to identify new inhibitors of such potential drug 
targets in invertebrates.

Although the individual models obtained through the 
random subspace approximation showed very good per-
formance at a retrospective virtual screening experiment, 
we resorted to ensemble learning to achieve improved 
behaviour.

The three hits that emerged from the prospective in silico 
screen and were submitted to experimental assays confirmed 
the model ensemble predictions, as all of them displaced, 
at 15 µM concentrations, oleic acid from at least one of 

the four recombinant EmFABPs. The observed Positive 
Predictive Value (100% of confirmed predictions) exceeds 
our conservative theoretic estimation of a PPV of 25% for 
a hypothetic proportion of active compounds of 0.01 in the 
screened library, which confirms the utility of PPV surface 
analysis to optimize the score cut-off value that will be used 
in prospective screening applications.

Though the previous findings confirm the general validity 
of our strategy, contribute to the validation of the reported 
model ensemble and provide possible starting points to 
design new therapies against Echinococcus, it should be 
underlined that not all the three hits are equally attractive 
for further drug development, nor are they equally inter-
esting as direct drug repurposing candidates. In particular, 
whereas cetylpyridinium has been widely used in mouth-
washes, toothpaste, shampoos, deodorants, soaps and others, 
at low concentrations, as conservative and antiseptic, most 
undiluted quaternary ammonium salts are acutely toxic when 
given orally to mammals ([73] and refs therein), thus pre-
cluding their development as systemic medications.

Sulindac acts as a prodrug, that is converted in vivo to an 
active sulphide compound with anti-inflammatory activity 
by liver enzymes. Interestingly, the peak steady state plasma 
levels observed for sulindac and its sulphide at therapeutic 
doses are similar to the active concentrations reported here 
as EmFABPs inhibitor [74]. In contrast, the lower thera-
peutic doses in which clotrimazole is administered for the 
treatment of systemic mycoses, its poor oral absorption and 
extensive first pass metabolism result in much lower plasma 
concentrations, incompatible with the active concentrations 
reported here [75–77].

All in all and having in mind that it has proven effec-
tive in the displacement of ANS from the three recombinant 
FABPs assayed, sulindac seems to be the most interesting 
confirmed hit for further development of new treatments 
against echinococcosis.

Fig. 8  Drug binding assay. Recombinant EmFABPs were incubated 
with 20 µM ANS (black bar). The displacement of ANS is shown as a 
loss of fluorescence intensity. Natural ligand (Oleic acid) was used as 
a positive control of displacement. Compounds were tested in a range 

of 0–30  µM. The figure shows a representative concentration. Two 
drugs (sulindac and clotrimazole) were diluted in DMSO. DMSO 
does not make a significant contribution at the intensity drop in the 
range used (data not shown)
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