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This work provides a means of accounting for the presence of pressurized cavities on the
overall response of elastomeric solids undergoing large deformations. The main idea is to
refer the kinematics to a stress-free configuration and to express the overall response
of the elastomer with pressurized cavities in terms of its overall response when the
cavities are vacuous. This is achieved via a change of variables valid whenever the common
assumption of incompressibility is used for the elastomeric matrix. The result permits then
to incorporate straightforwardly the effect of internal pressure on any micromechanical
model already available for elastomeric solids with vacuous cavities. The resulting models
account for constitutive and geometric nonlinearities as well as for deformation-dependent
internal pressure concomitant with large deformations. Sample results for isotropic porous
rubbers under plane-strain conditions are provided and discussed.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Several micromechanical models have been proposed in recent years to account for the presence of microcavities on
the mechanical response of elastomeric solids undergoing large deformations. These include models based on approximate
solutions of a hollow shell [1,2], homogenization estimates based on the concept of a linear-comparison medium [3,4],
and iterated-dilute homogenization estimates based on sequential microgeometries [5]. In all these models the cavities are
assumed to be vacuous. There are circumstances, however, where the cavities are filled up by a gaseous phase that exerts an
internal pressure on the surrounding elastomeric matrix. This internal pressure can produce, for instance, the cavitation of
elastomeric seals in high-pressure gas tanks upon rapid decompression [6–8] and the shrinkage of elastomeric foams after
demolding [9]. Pressurized cavities have also been recently proposed as a means to probe the mechanical properties of soft
materials [10].

In order to account for the simultaneous action of internal pressure and external loading, the overall response of elas-
tomeric solids with pressurized cavities must be determined. Inspired by recent works on the viscoplasticity of nuclear fuels
[11,12], we make use here of a change of variables in the relevant elastostatics problem to express the overall response of
an elastomer with pressurized cavities in terms of its overall response when the cavities are vacuous. As explained in detail
below, this is straightforward whenever the common assumption of incompressibility is used for the elastomeric matrix.
The result – given in Section 3.3 – permits then to incorporate readily the effect of internal pressure on any micromechan-
ical model already available for elastomeric solids with vacuous cavities. The resulting models account for constitutive and
geometric nonlinearities as well as for the deformation-dependent internal pressure concomitant with large deformations.
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Argentina.
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Fig. 1. Schematic of a representative volume element in its initial and deformed configurations.

2. Local description of the material and its configurations

2.1. Initial and deformed configurations

Pressurized porous elastomers are taken here to consist of a continuous incompressible matrix containing a random
distribution of disconnected cavities filled with a gaseous substance. Attention is restricted to short enough time scales for
which there is no (significant) diffusion of the gas into the elastomeric matrix; in other words, the gas is assumed to remain
within the cavities for any given loading process.

We consider a representative volume element of the material occupying a domain Ω0 with boundary ∂Ω0 in its initial
configuration. The matrix is labeled as phase r = 1 while the filled cavities are collectively identified as phase r = 2. The
domains occupied by each individual phase are denoted by Ω

(r)
0 so that Ω0 = Ω

(1)
0 ∪ Ω

(2)
0 . Consistent with the notion of

representative volume element, it is assumed that the characteristic size of the cavities is much smaller than the size of Ω0
(this is the so-called separation-of-length-scales hypothesis), and that their random distribution in Ω0 is statistically uniform
and ergodic.

Material points are identified by their position vector X in Ω0 relative to some fixed point O . The distribution of cavities
can be described by an indicator function θ0(X) that takes the value 1 if the position vector X is in a cavity, and 0 otherwise.
The volume average of θ0 over Ω0 corresponds to the initial volume fraction of cavities, or initial porosity, which we denote
by

f0
.= |Ω(2)

0 |
|Ω0| = 1

|Ω0|
∫
Ω0

θ0(X)dX (1)

Upon deformation of the solid, the position vector of a point in the deformed configuration Ω is specified by

x = χ(X) (2)

relative to some fixed point o, where χ is a one-to-one mapping from Ω0 to Ω . We assume that χ is twice continuously
differentiable, except possibly on the cavities/matrix boundaries. The pointwise deformation of the matrix material will be
measured by the deformation gradient tensor

F(X) = Gradχ(X) (3)

which must satisfy the incompressibility constraint

J
.= det F = 1 (4)

in Ω
(1)
0 . The initial and deformed configurations are shown schematically in Fig. 1.

2.2. The reference configuration

As will become apparent further below, the mechanical response of the pressurized solid is most conveniently character-
ized in a reference configuration identified with the domain ΩR occupied by the solid in its drained state – i.e., in the absence
of gas within the cavities. Such a configuration is stress-free and corresponds to the natural state of the matrix material.

The total deformation of the solid can then be decomposed into two separate deformations, as shown schematically in
Fig. 2. The position vectors X in the initial configuration are expressed in terms of the position vectors in the reference
configuration XR as

X = χ ′(XR) (5)

where the function χ ′ is a one-to-one mapping from ΩR to Ω0. The corresponding deformation gradient tensor is denoted
by
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Fig. 2. Schematic of a representative volume element and its configurations.

F′(XR) = Gradχ ′(XR) (6)

subject to the incompressibility constraint J ′ .= det F′ = 1 in Ω
(1)
R . It is emphasized that the distribution of cavities in the

reference configuration is not the same as that of the initial configuration, and should be described by an indicator function
θR(XR) that depends on θ0(X) and on the deformation χ ′ .

The position vectors x in the deformed configuration can be similarly expressed in terms of the position vectors XR as

x = χ ′′(XR) (7)

where χ ′′ is a one-to-one mapping from ΩR to Ω . The corresponding deformation gradient tensor is denoted by

F′′(XR) = Gradχ ′′(XR) (8)

subject to the incompressibility constraint J ′′ .= det F′′ = 1 in Ω
(1)
R . Note that the deformation gradients (3), (6), and (8) are

related via

F′′ = FF′ (9)

a relation that will be invoked later in the analysis.

2.3. Constitutive behavior of the elastomeric matrix and the gas within the cavities

In the interest of relative simplicity, we assume here that the elastomeric matrix is incompressible and hyperelastic.
Now, as a result of the internal pressure, the matrix material in the initial configuration Ω0 is pre-stressed. Therefore,
its mechanical constitutive response is most conveniently described relative to the reference configuration ΩR introduced
above, where the matrix material is present in its natural state. Relative to this configuration, the local stress-deformation
relations for the matrix material in the initial and deformed states take the conventional form

S′ = ∂W

∂F

(
F′) − q′F′−T and S′′ = ∂W

∂F

(
F′′) − q′′F′′−T (10)

where W stands for the stored-energy function of the matrix, S′ and S′′ denote first Piola–Kirchhoff stress measures, and
q′ and q′′ are Lagrange multipliers associated with the incompressibility constraints on F′ and F′′ , respectively. The stored-
energy function W is taken here to be objective and strongly elliptic.

In view of relation (10)2, the Cauchy stress T at each point x ∈ Ω(1) can be written as

T = S′′F′′ T =
[

∂W

∂F

(
FF′)]F′T F − q′′I (11)

where use has been made of relation (9). Making use of this last expression, we can define the first Piola–Kirchhoff stress S
at each point X ∈ Ω

(1)
0 as

S
.= TF−T =

[
∂W

∂F

(
FF′)]F′ T FF−T − q′′F−T (12)

which provides the constitutive relation of the pre-stressed matrix material relative to the initial configuration.
In turn, we assume that the Cauchy internal pressure p exerted by the gas on the matrix surrounding the cavities

depends only on the current gas density ρ , and hence write

p = P(ρ) (13)
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where P is a monotonically increasing function of ρ such that P → 0 as ρ → 0. Motivated by physical considerations (see,
e.g., [13,7]), the initial gas density ρ0 is assumed here to be the same in all cavities; we denote the corresponding pressure
level in the initial configuration by p0 =P(ρ0). For reasons that will become apparent below, it is convenient to define the
Cauchy stress tensor T at all points x ∈ Ω(2) – and not just on ∂Ω(2) – as

T = −pI (14)

and the nominal pressure at all points X ∈ Ω
(2)
0 as

S = −p JF−T (15)

Similarly,

S′ = −p0 J ′F′−T and S′′ = −p J ′′F′′−T (16)

denote the nominal pressures associated with the deformations χ ′ and χ ′′ at each point XR ∈ Ω
(2)
R .

3. The overall response

Granted the hypothesis of separation of length scales and statistical uniformity in the representative volume element Ω0,
the overall response of the pressurized solid can be defined as the relation between the volume averages of the first Piola–
Kirchoff stress S and the deformation gradient F over the volume Ω0 [14].1 Given that the overall response is independent of
the particular boundary conditions imposed on the representative volume element, we follow common practice and impose
an affine boundary condition of the form

χ = FX on ∂Ω0 (17)

where the second-order tensor F is a prescribed quantity. The average deformation gradient over Ω0 is then given
by |Ω0|−1

∫
Ω0

F(X)dX = F, and the derivation of the overall response reduces to finding the average stress S
.=

|Ω0|−1
∫
Ω0

S(X)dX for a given F, namely, the relation

S = S(F; θ0) (18)

where the dependence on the microstructure has been made explicit for clarity. Note that this function also depends on the
internal pressure.

Following a similar reasoning, overall response functions relative to the reference configuration can be defined as
the relations between the volume averages over the volume ΩR of the first Piola–Kirchoff stress and the deforma-
tion gradient of the initial and deformed configurations. We denote those averages by S′ .= |ΩR |−1

∫
ΩR

S′(XR)dXR and

F′ = |ΩR |−1
∫
ΩR

F′(XR)dXR , and similarly by S′′ .= |ΩR |−1
∫
ΩR

S′′(XR)dXR and F′′ = |ΩR |−1
∫
ΩR

F′′(XR)dXR , and write their
relations as

S′ = S ′(F′; θR
)

and S′′ = S ′′(F′′; θR
)

(19)

Like the function S , these functions depend on the internal pressure but, unlike the function S , are referred to a stress-free
natural configuration.

Now, the function S can be written in terms of S ′′ by making use of the fact that the overall Cauchy stress in the
deformed configuration can be expressed as

T = 1

J ′′ S′′F′′ T = 1

J
SFT (20)

where T
.= |Ω|−1

∫
Ω

T(x)dx, J
.= det F, and J ′′ .= det F′′ . The validity of this relation rests upon the assumed separation

of length scales whereby the porous solid is regarded macroscopically as a homogeneous material. From this relation we
deduce that

S(F; θ0) = J

J ′′ S
′′(F′′; θ ′

0

)
F′′ T F−T (21)

In turn, similar to their local counterpart (9), the overall deformation gradients F and F′′ are related by

F′′ = FF′ (22)

1 See also [15,16] for more mathematically precise definitions in the context of hyperelastic solids with periodic microstructures.
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where F′ = |ΩR |−1
∫
ΩR

F′(XR)dXR . Given that the initial configuration is traction-free on its external boundary, the tensor

F′ is solution to the equation

S ′(F′; θR
) = 0 (23)

Comments on the possibility of multiple solutions to the algebraic nonlinear equation (23) are deferred to Section 3.3.
Once F′ is obtained from Eq. (23), the overall response (21) can be finally written as

S(F; θ0) = 1

J ′ S
′′(FF′; θ ′

0

)
F′ T (24)

where J ′ = det F′ . Thus, the computation of S reduces to finding the overall response functions S ′ and S ′′ , which are
referred to a natural configuration with microstructure θR . Now, these functions still depend on the internal pressure in view
of expressions (16) for the stresses in the pressurized cavities. However, they can be expressed in terms of the response
function of the drained solid making use of a suitable change of variables, as shown next.

3.1. Overall response function SSS ′

The tensor function S ′ represents the relation between the volume averages of the fields F′(XR) and S′(XR) over the
reference configuration ΩR . These fields are solution to the following boundary-value problem:

Div S′ = 0 in ΩR

S′ = ∂W

∂F

(
F′) − q′F′−T in Ω

(1)
R

S′ = −p0 J ′F′−T in Ω
(2)
R

F′ = Gradχ ′ in ΩR

J ′ = 1 in Ω
(1)
R

S′N = 0 on ∂ΩR

(25)

where p0 is a prescribed quantity. Here, it is important to emphasize that the mechanical fields χ ′ and S′ are defined over
the entire domain ΩR – and not just over the matrix material Ω

(1)
R – by making use of the description (14)–(16) for the

gas within the cavities and the fact that Div[ J ′F′−T ] = 0.
Now, borrowing ideas from the works of Julien et al. [11] and Vincent et al. [12] on viscoplastic nuclear fuels, we rewrite

the above problem as a boundary-value problem for a drained solid with the same microstructure θR . This is achieved by
introducing the change of variables

Ŝ′ .= S′ + p0 J ′F′−T (26)

so that, in view of the assumed uniformity of p0 and the fact that the field J ′F′−T is divergence-free, Eqs. (25) take the
form

Div Ŝ′ = 0 in ΩR

Ŝ′ = ∂W

∂F

(
F′) − q̂′F′−T in Ω

(1)
R

Ŝ′ = 0 in Ω
(2)
R

F′ = Gradχ ′ in ΩR

J ′ = 1 in Ω
(1)
R

χ ′ = F′X on ∂ΩR

(27)

where, for convenience, we have also replaced the boundary condition on the stress (25)6 for the equivalent affine boundary
condition on the deformation (27)6 with F′ solution to (23).

At this point, it is a simple matter to recognize from condition (27)3 that the stress field Ŝ′ corresponds to that of
a drained solid, and therefore, the relation between the volume averages of the fields F′ and Ŝ′ is given by the overall
response S̃ of a drained solid relative to its natural state. By averaging relation (26) over ΩR we arrive at the following
expression for S ′ in terms of S̃:

S ′(F′; θR
) = S̃(

F′; θR
) − p0 J ′F′−T (28)

where use has been made of the identity |ΩR |−1
∫
ΩR

J ′F′−T dXR = J ′F′−T .
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3.2. Overall response function SSS ′′

The tensor function S ′′ represents the relation between the volume averages of the fields F′′(XR) and S′′(XR) over the
reference configuration ΩR . Similar to the preceding case, these fields are solution to the following boundary value problem:

Div S′′ = 0 in ΩR

S′′ = ∂W

∂F

(
F′′) − q′′F′′−T in Ω

(1)
R

S′′ = −p J ′′F′′−T in Ω
(2)
R

F′′ = Gradχ ′′ in ΩR

J ′′ = 1 in Ω
(1)
R

χ ′′ = F′′XR on ∂ΩR

(29)

where the second-order tensor F′′ is a prescribed quantity and the internal pressure p is given by (13). Now, since each
cavity will grow differently during a general deformation process, the pressure p will take different values in different
cavities. This prevents the use of the change of variables introduced in the previous section to express the response function
S ′′ in terms of the function S̃ . However, noting that most of the available models for porous elastomers assume that
all cavities undergo the same deformation, the internal pressure p is taken here to have the same value in all cavities
throughout the deformation process. Granted this uniformity of the internal pressure and matrix incompressibility, we can
then write

p = P(ρ) = P
(

ρ0 f0

J − 1 + f0

)
.= P( J ) (30)

so that the local pressure p in all the cavities can also be regarded as a prescribed quantity for a given macroscopic de-
formation F. The above problem can then be rewritten as a boundary-value problem for a drained solid by following the
strategy of the previous section, and the overall response function S ′′ can be expressed in terms of S̃ as

S ′′(F′′; θR
) = S̃(

F′′; θR
) −P( J ) J ′′F′′−T (31)

3.3. Overall response function SSS of the pressurized solid

Combining (24) and (31) finally renders

S(F; θ0) = 1

J ′ S̃
(
FF′; θR

)
F′ T −P( J ) JF−T (32)

where F′ is a solution to

S̃(
F′; θR

) = p0 J ′F′−T (33)

in view of expressions (23) and (28). Relation (32) constitutes the main result of this paper: it expresses the overall response
function S of the solid containing pressurized cavities in terms of the initial pressure within the cavities and the overall response
function S̃ of a drained solid with vacuous cavities.

For completeness, we recall here that the overall response of the drained solid can be written as [14]

S̃(F; θR) = ∂W̃
∂F

(F; θR) (34)

where W̃ is the so-called effective stored-energy function defined by

W̃(F; θR) = min
F′′∈K(F)

1

|ΩR |
∫

ΩR

[
1 − θR(XR)

]
W

(
F′′)dXR (35)

In this last relation, K denotes a suitable set of kinematically admissible deformation gradients F′′ with prescribed volume
average |ΩR |−1

∫
ΩR

F′′(XR)dXR = F; see, for instance, [17,18] and references therein. Physically, the function W̃ represents
the total elastic energy stored in the solid.

In view of (34), it is interesting to recognize that the constitutive relation (32) can be rewritten as

S(F; θ0) = ∂W
∂F

(F; θ0) (36)

where W can be thought of as the effective stored-energy function of the pressurized elastomer and is defined as
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W(F; θ0) = 1

J ′ W̃
(
FF′; θR

) +
J 0∫

J

P(z)dz (37)

where J 0 is an arbitrary positive constant. Note that for F = I this function is in general different from zero.
A few comments regarding the above formulae are in order. Firstly, the reference microstructure θR will depend on F′ in

an intricate manner and, consequently, solving Eq. (33) will be complicated in general. However, homogenization estimates
do not require complete knowledge of the microstructure, and if the initial porosity and the matrix material in its natural
state exhibit certain symmetries, significant simplifications can be expected (see Section 4 below for an example). Secondly,
owing to its nonlinearity, the algebraic equation (33) may have multiple solutions, but given that the solution F′ represents
the overall deformation gradient of the initial configuration relative to the natural configuration of the drained solid, and
that the microstructure of the initial configuration is prescribed, only one solution is expected to be admissible. Note also
that primed quantities depend nonlinearly on the initial level of internal pressure, and so the overall response of the
pressurized solid depends on internal pressure in a highly nontrivial manner.

3.4. A remark on the macroscopic stability of the pressurized solid

In addition to characterizing the macroscopic constitutive response, the above formalism can provide information about
the onset of macroscopic instabilities, that is, geometric instabilities with wavelengths much larger than the characteristic
size of the microstructure [19,20]. During an arbitrary loading path starting from the initial configuration, the pressurized
solid may become macroscopically unstable whenever the condition

min‖u‖=‖v‖=1
Q (u,v,F; θ0) = 0 (38)

is first satisfied; here,

Q (u,v,F; θ0) = Li jkl(F; θ0)u jul vi vk (39)

where

Li jkl(F; θ0) = F jp F lq
∂Skq

∂ F ip
(F; θ0) (40)

is the overall instantaneous modulus tensor of the pressurized solid [21].
Making use of (32), the function Q for the pressurized solid can be rewritten as

Q (u,v,F; θ0) = 1

J ′ Q̃
(
u,v,F F′; θR

) − J 2 dP
d J

( J )(u · v)2 (41)

where Q̃ is defined in terms of the response function S̃ by an expression analogous to (39). Note that P( J ) is a decreasing
function of J , since gas pressure should decrease with increasing volume. The second term inside the square brackets in (41)
is thus nonnegative, suggesting that internal pressure increases the overall macroscopic stability of the solid. In particular,
the above conditions imply that if the drained solid with microstructure θR is strongly elliptic, so is the pressurized solid
with microstructure θ0.

4. Sample results for a 2D isotropic porous rubber under plane-strain conditions

For demonstration purposes, we make use of the above formalism to compute the overall response of a model rubbery
solid containing pressurized cavities. The cavities consist of a single family of aligned cylinders which are isotropically
distributed in the transverse plane, and the solid is subjected to plane-strain conditions. The problem is formulated in two
dimensions.

The matrix material is characterized by an incompressible Neo-Hookean energy of the form

W (F) =
{ μ

2 (F · F − 2) if det F = 1

+∞ otherwise
(42)

where the positive material parameter μ > 0 stands for the shear modulus in the ground state. In turn, the gas pressure is
assumed to depend linearly on the gas density, as in for instance the ideal gas model, so that

P( J ) = f0

J − 1 + f0
p0 (43)

Given that the matrix material and the in-plane distribution of porosity are isotropic, the solution to Eq. (33) in this case
must be of the form
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F′ =
√

J ′I (44)

and the porosity distribution θR in the reference configuration must be isotropic. In view of the matrix incompressibility,
the porosity in the reference configuration must in turn be expressible as

f R = 1 − J ′(1 − f0) (45)

A constitutive model for the drained solid is now required. By way of example we make use here of an iterated-dilute
homogenization model recently proposed by Lopez-Pamies and Idiart [5]. This model incorporates one- and two-point mi-
crostructural statistics, and has the distinguishing feature of being realizable in the sense that it is exact for porous solids
with a particular class of microgeometries. According to this model the effective stored-energy function (35) is, with a slight
abuse of notation, given by

W̃(F; f R) = 1

2
μ̃( f R)(I − 2) + ( J − 1)

{
μ

2
ln

[
J − 1 + f R

f R J

]
− μ̃( f R)

}
(46)

where I = F · F is the first principal invariant of FT F, and

μ̃( f R) = 1 − f R

1 + f R
μ (47)

denotes its effective shear modulus in the ground state. The corresponding overall response function is given by

S̃(F; f R) = ∂W̃
∂F

(F; f R) = μ̃( f R)
(
F − J F−T ) + μ

2

{
J ln

[
J − 1 + f R

f R J

]
+ (1 − f R)( J − 1)

J − 1 + f R

}
F−T (48)

Note that the only microstructural parameter that appears explicitly in this model is the porosity f R in the reference
configuration.

On combining the response function (48) with Eq. (33), and taking the trace of the resulting tensorial equation, we
obtain the following scalar equation for J ′:

ln

[
J ′ − 1 + f R

f R J ′

]
+ (1 − f R)( J ′ − 1)

J ′( J ′ − 1 + f R)
= 2p0

μ
(49)

where f R is given in terms of J ′ by (45). At this point, by making use of (48) and (32), it is a simple matter to deduce that
the overall response function of the pressurized solid is given by

S(F; f0) = μ̃( f R)
(
F − J F−T ) + μ

2

{
J ln

[
J ′ J − 1 + f R

f R J ′ J

]
+ (1 − f R)( J ′ J − 1)

J ′( J ′ J − 1 + f R)
− 2 f0 J

J − 1 + f0

p0

μ

}
F−T (50)

Note that this expression depends very intricately on the initial internal pressure p0 through the reference porosity f R , as
defined by relation (45), and through the variable J ′ , as defined by the nonlinear algebraic equation (49).

For the limiting cases of isochoric ( J = 1) and purely hydrostatic (I = 2) loading conditions, the overall constitutive
equation (50) admits some simplification worth recording. Indeed, it is easy to show that for isochoric loadings expression
(50) reduces to

S(F; f0) = μ̃( f R)
(
F − F−T )

(51)

Note that this expression still depends on p0 via f R . The fact that f R < f0 and μ̃( f R) > μ̃( f0) makes plain the stiffening
of the material response due to the internal pressure. Under isotropic deformations of the form F =

√
J I, expression (50)

reduces to

S(F; f0) = μ

2

{√
J ln

[
J ′ J − 1 + f R

f R J ′ J

]
+ (1 − f R)( J ′ J − 1)

J ′√ J ( J ′ J − 1 + f R)
− 2 f0

√
J

J − 1 + f0

p0

μ

}
I (52)

It is recalled that the hydrostatic response predicted by (46) agrees exactly with the hydrostatic response of a hollow
shell with the same void content (see Section 2 in [5]). The predicted stress-deformation response is shown in Fig. 3 for the
choice f0 = 0.01 and various internal pressure levels (p0/μ = 0,1,5,10), with s such that S = sI. The strong stiffening effect
due to internal pressure is evident under both extension, part (a), and compression, part (b). In fact, an asymptotic analysis
of Eqs. (45) and (49) reveals that the porosity f R in the reference configuration decreases exponentially with increasingly
large pressure p0 as f R/ f0 = e−2p0/μ + O (1). Thus, as soon as p0 is a few times the shear modulus μ of the elastomeric
matrix, the reference configuration becomes an almost fully dense solid exhibiting quasi-incompressible behavior, hence the
strong stiffening observed. We conclude this analysis by noting that the stored-energy function (46) for the drained solid is
strongly elliptic for all deformations (see Section 2 in [5]) and therefore the pressurized solid remains so for any level of
internal pressure.
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Fig. 3. Overall hydrostatic response of Neo-Hookean solids for various values of internal pressure (p0/μ = 0,1,5,10): a) hydrostatic extension, b) hydrostatic
compression. The initial porosity is f0 = 0.01.

5. Final comments

The formalism derived in this work can be utilized to study a variety of problems concerning porous elastomeric systems
wherein the cavities are pressurized. For instance, in the high-porosity regime, it can be used to study the mechanical
response and macroscopic stability of closed-cell elastomeric foams that are operated in atmospheric and higher pressure
environments. Given that the matrix materials used in such foams often have initial elastic moduli on the order of 1 atm,
it is anticipated that atmospheric and higher internal pore pressures may considerably influence the response of these
materials.

In the low-porosity regime, the above formalism can be used to study the failure of elastomeric seals in high-pressure
gas tanks upon rapid gas decompression [6]. When a gas is dissolved in an elastomer under high external pressure and the
pressure is then released, the gas comes out of solution. While part of this gas diffuses outwards through the edges of the
specimen, most of it diffuses into preexisting submicrometer cavities which grow in size as a result of the internal pressure
[13,8]. At some point after the release of external pressure, the gas contained in the cavities progressively migrates out of
the specimen releasing the internal pressure. If during this process the maximum level reached by the internal pressure
remains below a certain critical level, the cavities collapse back to their initial sizes [13]; above that critical level, however,
permanent damage in the form of blistering or “pop-corn” failure occurs [7]. The results presented in this work can be used
in conjunction with existing defect-growth theories of cavitation, such as the one recently proposed in [22,23], to determine
the critical pressure for blistering under arbitrary external loadings.

Finally, the formalism may also be useful to account for cavity surface tension on the overall response of porous elas-
tomers, given that surface tension enters the elastostatics equations in the form of an internal (Laplace) pressure. The effect
of surface tension becomes important at sufficiently small cavity sizes [24], and according to recent analyses it may turn
cavity growth unstable [25].
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