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BOUNDS OF GELFAND-TSETLIN MULTIPLICITIES AND

TABLEAUX REALIZATIONS OF VERMA MODULES
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Abstract. We introduce the notion of essential support of a simple

Gelfand-Tsetlin gln-module as an attempt towards understanding the

character formula of such module. This support detects the weights in

the module having maximal possible Gelfand-Tsetlin multiplicities. Us-

ing combinatorial tools we describe the essential supports of the simple

socles of the universal tableaux modules. We also prove that every sim-

ple Verma module appears as the socle of a universal tableaux module.

As a consequence, we prove the Strong Futorny-Ovsienko Conjecture

on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplici-

ties. We also give a very explicit description of the support and essential

support of the simple singular Verma module M(−ρ).
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Keywords: Gelfand-Tsetlin modules, Gelfand-Tsetlin bases, reflection groups,
Verma modules.

1. Introduction

Gelfand-Tsetlin modules of the complex general linear Lie algebra gl(n,C)
have been studied since the 1950’s both by mathematicians and physi-
cists. These modules admit a locally finite action of the Gelfand-Tsetlin
subalgebra Γ, a maximal commutative subalgebra of the universal en-
veloping algebra U(gl(n)). The recent discovery of Gelfand-Tsetlin de-
rivative tableaux in [FGR16] initiated the systematic study of singular
Gelfand-Tsetlin modules. This theory attracted considerable attention in
the last three years and many interesting and important results have been
obtained in [EMV, FGR17, FGR17b, FGRZ18, FRZ19, Har17, MV, RZ18, Vis,
Vis18, Zad17]. Singular Gelfand-Tsetlin modules turned out to be related
to different but overlapping theories. For example, connections with Schu-
bert calculus were discovered in [FGRZ18] and with tensor product cate-
gorifications and KLRW algebras in [KTW+18]. With the aid of KLRW
algebras, in [KTW+18], the authors provide a bijection between the set
of simple Gelfand-Tsetlin gl(n,C)-modules with a fixed character and the
zero weight space of an sl(n,C)-crystal. Furthermore, the properties of the
singular Gelfand-Tsetlin modules have been studied with combinatorial
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tools, [FGR16, FGRZ18, FRZ19, RZ18], as well as with geometric methods,
[EMV, MV, Vis18].

A maximal ideal m of Γ defines a point v = vm in Cµ = C1 ×C2 × · · · ×
Cn up to a permutation of coordinates. Given such v one constructs a
”universal” tableaux Gelfand-Tsetlin module V(T(v)) which contains a simple
Gelfand-Tsetlin subquotient M having m in its support, i.e. M[m] 6= 0 (see
§3.1 for precise definitions). It was shown in [EMV, RZ18] that V(T(v))
has a basis of derivative tableaux, and the action of gl(n,C) on this basis
was described in [FGRZ18] in terms of BGG differential operators and
Postnikov-Stanley polynomials. We conjecture that the module V(T(v)) is
universal in the sense that every simple Gelfand-Tsetlin module having m

in its support is a subquotient of V(T(vm)). This conjecture was proven
for generic v in [FGR15] and for 1-singular v in [FGR16, FGR17b].

In the present paper we make a significant step in the understanding of
the structure of V(T(v)), in particular its socle. As a generating vector we
choose a special vector v ∈ Cµ, called a seed (see Definition 2.2), and show
that the module V(T(v)) = V(T(v)) has a simple socle Vsoc whose struc-
ture can be described in terms of certain oriented graphs. The simple mod-
ule Vsoc is also a Gelfand-Tsetlin module such that Vsoc =

⊕
z Vsoc[v + z]

where the sum is taken over a certain set of points of Cµ with integral coor-
dinates. The dimensions of the weight spaces Vsoc[v + z] (called Gelfand-
Tsetlin multiplicities) are finite and uniformly bounded as explained in
more detail below.

Set Sµ := S1 × · · · × Sn and consider the free abelian group Z
µ
0 consisting

of elements in Cµ with integer coordinates the last n of which equal zero.
Denote by GT the category of all Gelfand-Tsetlin gl(n,C)-modules, and for

each equivalence class ζ ∈ Cµ/(Z
µ
0 #Sµ) denote by GTζ the full subcategory

of GT consisting of modules whose support is contained in ζ. We have a
decomposition of GT into a direct sum of components

GT =
⊕

ζ∈Cµ/(Z
µ
0 #Sµ)

GTζ

in the sense that Exti
GT

(M, N) = 0 for all i ≥ 0 and for any M and N in
different components (see [FO14, Corollary 3.4]).

An upper bound for the Gelfand-Tsetlin multiplicities of any simple
Gelfand-Tsetlin module was found in [FO14, Theorem 4.12(c)]. To write
this bound, fix a seed v and consider the stabilizer Sπ(v) of v in Sµ. Let

z ∈ Z
µ
0 be such that v + z is in normal form (see Definition 2.1) and let

(Sπ(v))z be the stabilizer of z in Sπ(v). Set ζ = ζv = Cµ/(Z
µ
0 #Sµ)v. Then,

as shown in [FO14], for any simple module M in GTζ the upper bound on
2



a Gelfand-Tsetlin multiplicity is given by

(1) dim M[v + z] ≤
|Sπ(v)|

|(Sπ(v))z|
.

We will refer to (1) as the FO inequality. In [FO14, Remark 5.4] Futorny and
Ovsienko conjectured that this inequality is sharp, and more precisely, that
there is a simple module M for which equality holds in (1) for some z with
trivial stabilizer. This conjecture follows from either [FGRZ18, Theorems
8.3, 8.5] or [EMV, Theorems 10,11] for z with any stabilizer. In fact, the re-
sults in [EMV] and [FGRZ18] imply that (1) holds for M = V(T(v)). In the
special case where none of the differences between entries in consecutive
rows of v are integers, V(T(v)) is simple.

In this paper we prove a stronger result, which we call the Strong Futorny-
Ovsienko Conjecture. We show that the socle of V(T(v)) is simple, and that

taking M to be this socle, the set of all z ∈ Z
µ
0 such that equality holds

in (1) (the essential support of M) is a union of rational polyhedral cones,
at least one of which has dimension n(n − 1)/2. We also show that the
subgroups (Sπ(v))z run over all parabolic subgroups of Sπ(v). This shows
that the FO inequality gives a sharp bound in each subcategory GTζ .

In the following theorem we summarize the above discussed results.

Theorem 1.1. Let v be a seed in Cµ and ζ = ζv. Then the following hold.

(i) The module V(T(v)) has a simple socle Vsoc.
(ii) The Strong Futorny-Ovsienko Conjecture holds for Vsoc, i.e. the essential

support of Vsoc is nonempty. Moreover, this essential support consists of
the integral points of a finite union of polyhedral rational cones, at least

one of which is of maximal possible rank, n(n−1)
2 .

(iii) The maximal Gelfand-Tsetlin multiplicity of a character in GTζ is |Sπ(v)|,
and this is attained at the socle Vsoc.

(iv) For any v + z in the essential support of Vsoc, the module Vsoc is the
unique simple Gelfand-Tsetlin module having v + z in its support.

(v) For any parabolic subgroup G ⊂ Sπ(v), the quotient
|Sπ(v) |

|G|
appears as a

Gelfand-Tsetlin multiplicity of the module Vsoc.

In Section 6 we apply the above results to study the Gelfand-Tsetlin
structure of Verma modules. Theorems 6.4 and 6.6 describe the support
and the essential support of the simple singular Verma module M(−ρ̃),
respectively, where ρ̃ = −(0, 1, . . . , n − 1); notice that as sl(n,C)-module,
this is isomorphic to the Verma module associated to minus the half-sum
of the positive roots. Our second main result is summarized below.

Theorem 1.2. (i) Every Verma module is a submodule of a certain universal
tableaux module V(T(v)), and every simple Verma module appears as the
socle of some V(T(v)). In particular, M(−ρ̃) is the socle of V(T(0)).
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(ii) The essential support of M(−ρ̃) is a rational cone. It contains weights

with Gelfand-Tsetlin multiplicities
Πn−1

i=1 i!

|G|
for any standard parabolic

subgroup G of S1 × . . . × Sn−1.

(iii) The maximal Gelfand-Tsetlin multiplicity in M(−ρ̃) is Πn−1
i=1 i!.

The paper ends with a counterexample to the “hope” that the simple
subquotients of V(T(v)) have bases consisting of derivative tableaux. We
show that this is not the case even for the simple Verma gl(4,C)-module
M(−ρ̃).

Acknowledgements. We thank Ben Webster for pointing out that a con-
jecture in an earlier version of the paper was not true. V.F. is supported
by CNPq grants (304467/2017-0 and 200783/2018-1). D.G. is supported in
part by Simons Collaboration Grant 358245. L.E.R. is supported by Fapesp
grant (2018/17955-7). P.Z. is supported by a CONICET postdoctoral fel-
lowship.

2. Preliminaries on the combinatorics of Gelfand-Tsetlin tableaux

2.1. Notation. Given a, b, k ∈ N we set Ja, bK = {i ∈ N | a ≤ i ≤ b},
with JbK = J1, bK; also we denote by Sk the symmetric group in k elements.
Given π = (π1, . . . , πr) ∈ Nr with ∑i πi = k we denote by Sπ the product
Sπ1

× Sπ2 × · · · × Sπr , which we see as a subgroup of Sk.
Fix n ∈ N and let µ = (1, 2, . . . , n). Given σ ∈ Sµ and k ∈ JnK we denote

by σ(k) the projection of σ to Sk. With a slight abuse of notation, we identify
Sk with the subgroup of Sµ consisting of elements σ such that σ(i) is the
identity for all i 6= k. Thus we can write σ = σ(1)σ(2) · · · σ(n).

The group Sµ is a Coxeter group with generating set

{(i i + 1)(k) | k ∈ JnK, i ∈ Jk − 1K},

where (i i + 1) is the simple transposition interchanging i and i + 1. The
usual notions of length, Bruhat order, parabolic subgroups, etc. will be
considered with respect to this generating set. In particular, the length of
σ ∈ Sµ is ℓ(σ) = ℓ1(σ(1)) + · · · + ℓn(σ(n)), where ℓk stands for the usual
length in Sk. Also if τ ∈ Sµ then σ < τ in the Bruhat order if and only if
σ(k) < τ(k) for all k.

Henceforth we fix Σ = {(k, i) | 1 ≤ i ≤ k ≤ n}. The group Sµ acts on
Σ with the action given by σ · (k, i) = (k, σ(k)(i)). The subset Σ′ = {(k, i) |
1 ≤ i ≤ k ≤ n − 1} is clearly invariant under this action.

For k ≥ a, b we set Ja, bKk = {(k, i) | i ∈ Ja, bK} ⊂ Σ. Such a set will be
called an interval of Σ, and given an interval I = Ja, bKk we write a(I) =
a, b(I) = b, k(I) = k. A partition of Σ is a family of nonempty subsets of
Σ, which we call blocks, whose disjoint union is Σ. An interval partition is
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a partition I whose blocks are intervals. We write I[k] for the set of all
intervals I ∈ I with k(I) = k.

2.2. Let Cµ = C×C2 × · · ·×Cn, so every v ∈ Cµ is an n-tuple (v1, v2, . . . , vn)
with vk = (vk,1, vk,2, . . . , vk,k) ∈ Ck. For each (k, i) ∈ Σ we denote by δk,i

the unique element in Cµ such that (δk,i)l,j = δk,lδi,j, and refer to the set

{δk,i | (k, i) ∈ Σ} as the canonical basis of Cµ. The group Sµ acts on
Cµ by linear operators whose action on the canonical basis is given by

σ · δk,i = δσ·(k,i) = δk,σ(k)(i). We denote by Z
µ
0 the additive subgroup of Cµ

generated by {δk,i | (k, i) ∈ Σ′}, which is stable under the action of Sµ.
Given an interval I = Ja, bKk we will write v(I) for (vk,a, vk,a+1, . . . , vk,b).

Given an interval partition I of Σ we refer to the tuples v(I) with I ∈ I as
the blocks of v. We associate to v a partition of Σ denoted by I(v), where
the block of (n, i) is {(n, i)}, and for k < n the block of (k, i) is the set of
all (k, j) such that vk,i − vk,j ∈ Z.

Definition 2.1. We say that v ∈ Cµ is in normal form if whenever vk,a − vk,b ∈
Z for some a ≤ b ≤ k ≤ n, then vk,i − vk,j ∈ Z≥0 for all a ≤ i < j ≤ b.

Notice that if v is in normal form then I(v) is an interval partition (but
not the other way around). Clearly for each v ∈ Cµ there exists at least
one element in its Sµ-orbit which is in normal form. Suppose v is in
normal form and let I(v)[k] = {I1, I2, . . . , Ir}, with a(Ii) = b(Ii−1) + 1.
We set π(v, k) = (|I1|, |I2|, . . . , |Ir|), so Sπ(v,k) is a parabolic subgroup of
Sk; observe that by definition Sπ(v,n) is the trivial subgroup of Sn. We

denote by π(v) the concatenation of π(v, 1), . . . , π(v, n), and set Sπ(v) =
Sπ(v,1) × Sπ(v,2) × · · · × Sπ(v,n) ⊂ Sµ. This is a parabolic subgroup of Sµ.

2.3. The graph Ω(v). We now associate to each element v ∈ Cµ a graph,
which will be a major combinatorial tool in this paper. Given v ∈ Cµ the
graph Ω(v) is defined as follows: the set of vertices of Ω(v) is {[k, i] |
(k, i) ∈ Σ}, and we have an edge between [k, i] and [l, j] if and only if
vk,i − vl,j ∈ Z and |k − l| ≤ 1. We will use the notation [k, i] − [l, j] for an

edge between [k, i] and [l, j].

Definition 2.2. We say that v ∈ Cµ is a seed if it is in normal form and for
[k, i] and [l, j] in the same connected component of Ω(v) the following holds: if
k, l < n then vk,i = vl,j, while if l = n then vk,i ≤ vn,j.

As mentioned before, Sµ acts on Cµ and Z
µ
0 is stable under this action.

Also, Z
µ
0 acts on Cµ by translations: z · v = v + z for z ∈ Z

µ
0 and v ∈ Cµ.

Thus the semidirect product Z
µ
0 #Sµ acts on Cµ. If v is in normal form then

there exists z ∈ Z
µ
0 such that v + z is a seed. Hence for every v ∈ Cµ there

exists a seed in its (Z
µ
0 #Sµ)-orbit. Two elements v, w ∈ Cµ lie in the same

orbit if and only if there exists σ ∈ Sµ such that σ(Ω(v)) = Ω(w) and
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v − σ(w) ∈ Z
µ
0 , where σ acts on the vertices of the graph in the obvious

way.

Example 2.3. We will write elements of Cµ as triangular arrays with k entries
in the k-th row counting from the bottom. In this example we assume that the set
{1, a, b, c, . . .} ⊂ C is linearly independent over Z.

1 a + 1 a b 0
a b − 1 b a + 1

c c + 1 c

a a − 1

a + 1

An element v of Cµ

1 0 a + 1 a b
a + 1 a b b − 1

c + 1 c c

a a − 1

a + 1

An element in normal form in Sµv

a + 1 a 1 0 b
a a b − 1 b − 1

c c c

a − 1 a − 1

a − 1

A seed in (Z
µ
0 #Sµ)v The graph of the previous elements

2.4. The set D(v). Recall that we denote by Z
µ
0 the set of all z ∈ Cµ with

zk,i ∈ Z for all (k, i) ∈ Σ and zn,i = 0 for all i ∈ JnK.

Definition 2.4. Let v ∈ Cµ be a seed. We denote by D(v) the set of all z ∈ Z
µ
0

such that z(I) is a nonincreasing sequence for all I ∈ I(v).

For the rest of this section we fix a seed v and set I = I(v), π = π(v)
and D = D(v). Notice that D is the set of those z ∈ Z

µ
0 such that v + z is in

normal form. For example, if v is the zero vector 0 ∈ Cµ then D(0) is the

set of z ∈ Z
µ
0 such that zk,1 ≥ zk,2 ≥ · · · ≥ zk,k for all k ∈ Jn − 1K.

Let z ∈ D. The stabilizer of z in Sπ is again a parabolic subgroup
of Sπ, which we denote as usual by (Sπ)z, so each coclass in Sπ/(Sπ)z

has a unique minimal length representative. We denote by Sz
π the set of

these minimal length representatives, and refer to them as z-shuffles. Given
σ ∈ Sπ we write σz for the unique z-shuffle in σ(Sπ)z.

We denote by I(v, z) the interval partition of Σ where (k, i) and (k, j)
lie in the same block if and only if k < n and (v + z)k,i = (v + z)k,j.

Equivalently, an interval lies in I(v, z) if and only if it is an orbit of the
action of (Sπ)z on Σ. Let us say that σ ∈ Sπ is increasing, resp. decreasing,
over an interval Ja, bKk ⊂ Σ if σ(k)(i) < σ(k)(j), resp. σ(k)(i) > σ(k)(j),
whenever a ≤ i < j ≤ b. A permutation σ is a z-shuffle if and only if it
is increasing over every interval in I(v, z), so σz is the unique permutation
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in Sπ which is increasing over all intervals in I(v, z) and such that σz(z) =
σ(z).

Given an interval I = Ja, bKk we denote by ω(I) the permutation i 7→
b+ a− i. This is the longest element in the symmetric group of the interval
I, seen as a subgroup of Sµ. It follows that the longest element in (Sπ)z is

∏I∈I(v,z) ω(I). We also write

α(I) = (b b − 1 . . . a)(k) = (b b − 1)(k)(b − 1 b − 2)(k) · · · (a + 1 a)(k),

β(I) = (a a + 1 . . . b)(k) = (a a + 1)(k)(a + 1 a + 2)(k) · · · (b − 1 b)(k).

These two permutations play a central role in the sequel. Notice that these
permutations are mutual inverses.

Lemma 2.5. Let z ∈ D(v) and let ω0 be the longest element in Sπ .

(a) We have ωz
0 = ω0 ∏I∈I(v,z) ω(I).

(b) Given (k, i) ∈ Σ, we have z + δk,i ∈ D(v) if and only if i = a(I) for

some I ∈ I(v, z)[k], and z − δk,i ∈ D(v) if and only if i = b(I) for some
I ∈ I(v, z)[k].

(c) Let I = Ja, bKk ∈ I(v, z) and set u = z + δk,a, v = z − δk,b. There exist
σ, τ ∈ Sz

π such that ωu
0 = σα(I) and ωv

0 = τβ(I).

Proof. Put I′ = I(v, z). By definition ω0 is decreasing over each interval
I in I′. Since ω(I) is decreasing over I, it follows that ω0 ∏I∈I′ ω(I) is
increasing over every interval I ∈ I′, so it is a z-shuffle lying in the coclass
ω0(Sπ)z. This proves part (a). Part (b) follows from the definitions.

To prove part (c) we only have to show that σ = ωu
0 β(I) and τ = ωv

0α(I)
are z-shuffles. We verify this for σ, as the verification for τ is similar. Let
J be the interval in I(v, u) corresponding to (k, a), so J = Jc, aKk for some
c ≤ a. Taking J′ = J \ {(k, a)} and I ′ = I \ {(k, a)}, by part (a),

ωu
0 β(I) = ω0

(

∏
K∈I(v,u),K 6=I′,J

ω(K)

)
ω(J)ω(I ′)β(I)

= ω0

(

∏
K∈I′,K 6=I,J′

ω(K)

)
ω(J)ω(I ′)β(I).

It is enough to check that the composition of the product in the parenthesis
with ω(J)ω(I ′)β(I) is decreasing over the intervals of I′. This is immediate
for K 6= I, J′, so it remains to check that ω(J)ω(I ′)β(I) is decreasing over
I, J′. This follows immediately from the definitions �

3. Background on universal tableaux Gelfand-Tsetlin modules

Throughout this section we will work with the Lie algebra gl(n,C). We
denote by h the Cartan subalgebra of diagonal matrices. We identify the
dual of h with Cn in the usual way.
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3.1. Generalities on Gelfand-Tsetlin modules. For each k ∈ JnK we de-
note by Uk the universal enveloping algebra of gl(k,C), and set U = Un.
By top-left-corner inclusion of matrices we obtain a chain

gl(1,C) ⊂ gl(2,C) ⊂ · · · ⊂ gl(n,C),

which in turn induces a chain U1 ⊂ U2 ⊂ · · · ⊂ Un. Denote by Zk the
center of Uk and by Γ the subalgebra of U generated by

⋃n
k=1 Zk. This is a

maximal commutative subalgebra of U called the Gelfand-Tsetlin subalge-
bra. It is generated by the elements

ck,i = ∑
(r1,...,ri)∈JkKi

Er1,r2 Er2,r3 · · · Eri,r1
(k, i) ∈ Σ.

By a result of Zhelobenko, there exists an isomorphism

Γ → C[xk,i | (k, i) ∈ Σ]Sµ

given by ck,i 7→ γk,i, where

γk,i =
k

∑
j=1

(xk,j + k − 1)i ∏
m 6=j

(
1 −

1

xk,j − xk,m

)
,

see [FGR16, Subsection 3.1] for details. We will denote the image of c ∈ Γ

under this isomorphism by γc. It follows that Specm Γ ∼= Cµ/Sµ, hence,
every v ∈ Cµ induces a character χv : Γ → C by setting c 7→ γc(v). Notice
that χv = χw if and only if w lies in the Sµ-orbit of v.

Definition 3.1. A U-module M is called a Gelfand-Tsetlin module if it is
finitely generated and

M =
⊕

m∈Specm Γ

M[m],

where M[m] = {x ∈ M | mkx = 0 for some k ≥ 0}. The Gelfand-Tsetlin
support, or simply the support, of M is the set of all m such that M[m] 6= 0,
and will be denoted by supp M. For every m ∈ Specm Γ its Gelfand-Tsetlin
multiplicity in M is dim M[m].

Let M be a Gelfand-Tsetlin module and let v ∈ Cµ. We put M[v] =
M[ker χv], and denote by pv : M → M[v] the projection map. We will
identify the support of M with the set of all v ∈ Cµ such that M[v] 6= 0.
We will say that the elements of M[v] have Gelfand-Tsetlin weight v, and
refer to M[v] as the Gelfand-Tsetlin component of weight v. We will usually say
”weight” instead of ”Gelfand-Tsetlin weight”. To avoid confusion we will
sometimes use the expression ”Cartan weight“ for elements in the dual of
h. Since U(h) ⊂ Γ it follows that two elements with the same Gelfand-
Tsetlin weight have the same Cartan weight, but the converse does not
hold.
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It is easy to check that a finitely-generated module M is a Gelfand-
Tsetlin module if and only if for each x ∈ M the complex vector space Γx
has finite dimension. The following lemma is an immediate consequence
of that observation.

Lemma 3.2. Let M be a Gelfand-Tsetlin module and let N ⊂ M be a U-submodule.
Then N is also a Gelfand-Tsetlin module. In particular for each x ∈ N we have
pv(x) ∈ N for all v ∈ Cµ.

3.2. Universal tableaux Gelfand-Tsetlin modules. Fix a seed v and set
π = π(v), I = I(v) and D = D(v). In [RZ18] a Gelfand-Tsetlin module
V(T(v)) is associated to any seed v (a similar construction appears in
[EMV]). The module V(T(v)) was called the “big Gelfand-Tsetlin module
at v” in [RZ18], but here we refer to it as the universal tableaux module
associated to v. It is a module with C-basis given by the set

{Dσ(v + z) | z ∈ D, σ ∈ Sz
π}

whose elements are called derivative tableaux. A tableau of the form De(v+
z) is called the classical tableau associated to v + z. Given z ∈ D(v) and σ ∈
Sz

π we denote by D<σ(v + z) an arbitrary linear combination of tableaux
Dτ(v + z) with τ ∈ Sz

π strictly smaller than σ in the induced Bruhat order
(for details on the Bruhat order on shuffles see [BB05, Section 2.5]).

We review the details regarding the explicit action of U on V(T(v)),
which were proved in [FGRZ18]. Given I = Ja, bKk with k < n we set

eI =

k+1

∏
j=1

(xk,a − xk+1,j)

∏
(k,j)/∈I

(xk,a − xk,j)
; f I =

k−1

∏
j=1

(xk,b − xk−1,j)

∏
(k,j)/∈I

(xk,b − xk,j)
.

Notice that if I ∈ I(v, z) then eI(v + z) and f I(v + z) are well defined. We
also set

hk = xk,1 + · · ·+ xk,k − (xk−1,1 + · · ·+ xk−1,k−1) + k − 1.

The following theorem is a direct consequence of [FGRZ18, Lemma 8.4].

Theorem 3.3. The action of the canonical generators of gl(n,C) on V(T(v)) is
given by the formulas

Ek,k+1Dσ(v + z) = − ∑
I∈I(v,z)[k]

∑
τ≤σα(I)

Dv+z
τ,σα(I)

(eI)Dτ(v + z + δk,a(I)),

Ek+1,kDσ(v + z) = ∑
I∈I(v,z)[k]

∑
τ≤σβ(I)

Dv+z
τ,σβ(I)( f I)Dτ(v + z − δk,b(I)),

Ek,kDσ(v + z) = hk(v + z)Dσ(v + z),

9



where Dτ,σ are the Postnikov-Stanley operators introduced in [FGRZ18, Defini-
tion 3.1], and elements Dτ(v + u) such that τ is not a u-shuffle should be treated
as zero.

Theorem 3.3 implies that every derivative tableau Dσ(v) is a Cartan
weight vector of weight λ = (h1(v), · · · , hn(v)). Hence V(T(v)) is a (Car-
tan) weight representation with infinite-dimensional weight spaces.

Remark 3.4. We record here for future reference that Dτ,σ is a differential operator
of degree ℓ(σ) − ℓ(τ). In particular Dv

σ,σ is the evaluation at v, which allows to
rewrite the formulas in a simplified form as

Ek,k+1Dσ(v + z) = − ∑
I∈I(v,z)[k]

(
eI(v + z)Dσα(I)(v + z + δk,a(I))

+ D<σα(I)(v + z + δk,a(I))

)
,

Ek+1,kDσ(v + z) = ∑
I∈I(v,z)[k]

(
f I(v + z)Dσβ(I)(v + z − δk,b(I))

+ D<σβ(I)(v + z − δk,b(I))

)
,

though we must keep in mind that in some cases Dσα(I)(v + z + δk,a(I)) and

Dσβ(I)(v + z − δk,b(I)) are zero. This happens when zk,a(I) + 1 = zk,a(I)−1 and
zk,b(I) − 1 = zk,b(I)+1 respectively.

The following proposition shows that V(T(v)) is a Gelfand-Tsetlin mod-
ule and describes the Gelfand-Tsetlin weight components of V(T(v)). For
the proofs of the statements see [FGRZ18, Proposition 6.4 and Lemma 6.5].

Proposition 3.5. Let z ∈ D, let m = ker χv+z and let T = ∑σ aσDσ(v + z).

(a) If c ∈ Γ then

cDσ(v + z) = γc(v + z)Dσ(v + z) + ∑
τ<σ

Dv+z
τ,σ (γc)Dτ(v + z)

= γc(v + z)Dσ(v + z) + D<σ(v + z).

(b) The Gelfand-Tsetlin component V(T(v))[m] is cyclic as a Γ-module, and T is
a cyclic vector if and only if aωz

0
6= 0.

(c) Let r > 0. Then mrT = 0 if and only if aσ = 0 for all ℓ(σ) ≥ r. In partic-

ular, mℓ(ωz
0)+1V(T(v))[m] = 0, and the only simultaneous Γ-eigenvector of

eigenvalue χv+z, up to a scalar multiple, is De(v + z).
(d) Let r = ℓ(ωz

0). Given c ∈ Γ let cv+z be the restriction of c on V(T(v))[m].
Then the set of all c such that the Jordan form of cv+z has exactly one block of
size r projects to a Zariski open set in Γ/mr+1. If cv+z falls outside this set
then its Jordan form contains blocks only of size strictly smaller than r.

10



It follows from this proposition that V(T(v))[v + z] is the C-span of
the derivative tableaux Dσ(v + z). Notice that, through the map Dσ(v +
z) 7→ v + σ(z), the support of V(T(v)) can be identified with v + Z

µ
0 ,

and the Gelfand-Tsetlin multiplicity of v + z is precisely the cardinality of
its Sπ-orbit. In [FO14, Theorem 4.12 (c)] Futorny and Ovsienko proved
that this is a bound for the dimension of the Gelfand-Tsetlin component
of weight v + z of a simple Gelfand-Tsetlin module and conjectured that
the bound is sharp. In particular these dimensions are bounded by (n −
1)!(n − 2)! · · · 2!. As explained in the introduction, the conjecture can be
proved using results from [FGRZ18] or [EMV]. We will refine this result
in the following sections.

4. Cyclic submodules of universal tableaux modules

Again, we fix a seed v and set π = π(v), I = I(v),D = D(v).

4.1. The oriented graph of v+ z. Recall that Ω(v) is the graph with vertex
set Σ and edges [k, i] − [l, j] whenever vk,i − vl,j ∈ Z and |k − l| ≤ 1; in

particular Ω(v) = Ω(v + z) for all z ∈ Z
µ
0 . In what follows we will define

for each z ∈ D an orientation of the graph Ω(v + z) and denote by
−→
Ω (v +

z) the resulting oriented graph. As usual, we will use the notation [k, i] →
[l, j] for “the oriented edge with tail [k, i] and head [l, j]”.

Definition 4.1. Let z ∈ D. The oriented graph
−→
Ω (v + z) has Ω(v + z) as its

underlying graph, and its orientation is subject to the following three rules.

(i) If [k, i] − [k, j] is an edge with i < j, then [k, i] → [k, j] is an edge of
−→
Ω (v + z).

(ii) If [k, i] − [k − 1, j] is an edge such that (v + z)k,i − (v + z)k−1,j ∈ Z≥0,

then [k, i] → [k − 1, j] is an edge of
−→
Ω (v + z).

(iii) If [k, i] − [k − 1, j] is an edge such that (v + z)k,i − (v + z)k−1,j ∈ Z<0,

then [k − 1, j] → [k, i] is an edge of
−→
Ω (v + z).

We denote by Ω+(v + z) the subgraph of Ω(v + z) obtained by keeping only

the edges of the form [k, i] → [k − 1, j] in
−→
Ω (v + z). Analogously we denote

by Ω−(v + z) the subgraph obtained by keeping only the edges of the form [k −

1, j] → [k, i] in
−→
Ω (v + z).

Notice that Ω+(v+ z) is an unoriented graph (though by its definition it

is easy to recover the orientation of its edges in
−→
Ω (v + z)). Note also that

the above definition can be considered as a refined version of the graph
associated to a set of relations introduced in §4 of [FRZ19]. In the latter
case, arrows between vertices on the k-th row are not allowed for k < n.

It follows from the definition that
−→
Ω (v + z) has no loops, so each of

its connected components has at least one source (a vertex that is not the
11



head of any edge) and at least one sink (a vertex that is not the tail of
any edge). It also follows that Ω−(v) is the graph with vertex set Σ and
no edges, while for every z ∈ D any edge of Ω+(v) is an edge of either
Ω+(v + z) or of Ω−(v + z).

Fix z ∈ D and let
−→
Ω =

−→
Ω (v + z). We next introduce a reduced version

of the graph
−→
Ω from which it can be recovered. We say that a directed

edge [k, i] → [l, j] in
−→
Ω is superfluous if there exists a path of directed edges

[k, i] = [k0, i0] → [k1, i1] → · · · → [kr , ir ] = [l, j] with r > 1. The reduced

graph of v + z, denoted by Ω̃(v + z), is the oriented subgraph obtained by
removing all superfluous edges.

Since
−→
Ω (v + z) is a directed graph without loops, so is Ω̃(v + z). We

recover
−→
Ω (v + z) from Ω̃(v + z) by adding a directed edge [k, i] → [l, j]

whenever there is a path from [k, i] to [l, j] in Ω̃(v + z) and |k − l| ≤ 1.

Thus given y ∈ D we have that
−→
Ω (v + z) =

−→
Ω (v + y) if and only if

Ω̃(v + z) = Ω̃(v + y).

Example 4.2. Below we show a few examples of reduced graphs Ω̃(v + z).

v + z Ω̃(v + z)

0 0 0 0

0 0 0

0 0

0

3 2 1 0

2 1 0

1 0

0

a + 1 a 1 0 b
a + 1 a b b − 1

c + 1 c c

a a − 1

a + 1

4.2. Cyclic submodules. We now begin with our study of the internal
structure of V(T(v)). We use the notation Ω±(x) ⊂ Ω±(y) to indicate that
the edge set of Ω±(x) is contained in that of Ω±(y). We also denote by
∅ the graph with vertex set Σ and no edges. The following lemma is a
generalization of [FGR15, Theorem 6.8].

Lemma 4.3. Let y, z ∈ D. If Ω+(v + z) ⊂ Ω+(v + y), or equivalently if
Ω−(v + y) ⊂ Ω−(v + z), then the following hold.
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(a) De(v + y) ∈ UDe(v + z).
(b) Dω

y
0
(v + y) ∈ UDωz

0
(v + z).

Proof. We apply induction on |y − z| = ∑(k,i)∈Σ |yk,i − zk,i|. That is, we will

show that it is possible to choose (k, i) ∈ Σ and u = z ± δk,i with the sign
chosen so that |y − u| < |y − z| and the following hold:

(1) u ∈ D,
(2) Ω+(v + z) ⊂ Ω+(v + u) ⊂ Ω+(v + y),
(3) De(v + u) ∈ UDe(v + z), and
(4) Dωu

0
(v + u) ∈ UDωz

0
(v + z).

Clearly the lemma follows from the existence of such u.

Denote by Ω<, respectively Ω>, the induced subgraph of
−→
Ω (v + y)

with vertex set consisting of those [k, i] such that zk,i < yk,i, respectively
zk,i > yk,i; here induced means that there is a directed edge between two
vertices of the subgraph if and only if there was a directed edge between
these vertices in the original graph. Notice that no vertex of the form [n, i]
is in either graph. If both Ω< and Ω> are empty then y = z and there is
nothing to prove. Suppose Ω< is not empty. Then, since it is an oriented

subgraph of
−→
Ω (v + y), it has no loops and hence has at least one source,

say [k, i]. We claim that (1), (2), (3) and (4) hold with u = z + δk,i. If Ω<

is empty then we take [k, i] to be a sink in Ω> and set u = z − δk,i. We
now proceed with the proof assuming Ω< is not empty. The other case is
similar and we discuss how to adapt the proof at each step.

Proof of (1). By Lemma 2.5(b), it is enough to show that if [k, i− 1] → [k, i]

is an edge of
−→
Ω (v) then zk,i−1 > zk,i. If this edge is indeed present then

since y ∈ D we know that yk,i−1 ≥ yk,i. On the other hand since [k, i]
is a source of Ω< we must have zk,i−1 ≥ yk,i−1 and zk,i < yk,i, and these
inequalities imply the one we are looking for.

Proof of (2). To show that Ω+(v + z) ⊂ Ω+(v + u) it is enough to prove
that if either [k, i]− [k− 1, j] or [k+ 1, j]− [k, i] is an edge of Ω+(v+ z) then
it is also an edge of Ω+(v + u). The first case is obvious. For the second,
the choice of (k, i) as a source of Ω< implies that zk+1,j = uk+1,j ≥ yk+1,j

while uk,i = zk,i + 1 ≤ yk,i. Since Ω+(v + z) ⊂ Ω+(v + y) we see that
uk+1,j ≥ yk+1,j ≥ yk,i ≥ uk,i, so the edge [k + 1, j]− [k, i] is in Ω+(v + u).

To show that Ω+(v + u) ⊂ Ω+(v + y) we again need to consider only
edges of the form [k + 1, j]− [k, i] and [k, i]− [k − 1, j] of the first graph. In
the first case we have zk+1,j = uk+1,j ≥ uk,i = zk,i + 1, so [k + 1, j] − [k, i]
is an edge of Ω+(v + z), and by the hypothesis it is also and edge of
Ω+(v + y). In the second case we have zk,i + 1 = uk,i ≥ uk−1,j = zk−1,j. If

the inequality is strict then [k, i] − [k − 1, j] is an edge of Ω+(v + z), and
hence of Ω+(v + y). If on the other hand equality holds, then zk,i < zk−1,j

and so [k − 1, j] → [k, i] is an edge of
−→
Ω (v + z). Since [k, i] is a source
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of Ω<, we must have that yk−1,j ≤ zk−1,j = zk,i + 1 ≤ yk,i, and hence

[k, i]− [k − 1, j] is an edge of Ω+(v + y).
Proof of (3). Let I ∈ I(v, z) be the interval containing (k, i). It follows

from the definitions that α(I) is a u-shuffle. Using the formulas for the
action of U as given in Remark 3.4, we see that

pv+u(Ek,k+1De(v + z)) = eI(v + z)Dα(I)(v + u) + D<α(I)(v + u),

where pv is the projection to the Gelfand-Tsetlin component V(T(v))[v].
By Lemma 3.2, this element lies in UDe(v + z).

If eI(v + z) = 0, then there is some (k + 1, j) ∈ Σ such that zk+1,j = zk,i,

which implies that [k + 1, j] − [k, i] is an edge of Ω+(v + z) and, hence,
yk+1,j ≥ yk,i. On the other hand since [k, i] is a source of Ω< we have
zk,i < yk,i ≤ yk+1,j ≤ zk+1,j, which leads to a contradiction. Thus we see

that pv+u(Ek,k+1De(v + z)) 6= 0. By Proposition 3.5(c) this implies that
De(v + u) ∈ UDe(v + z). The proof in the second case is analogous, except
that we must look at pv+u(Ek+1,kDe(v + z)), and instead of eI(v + z) 6= 0,
we show that f I(v + z) 6= 0.

Proof of (4). Recall from Lemma 2.5(c) that there exists σ ∈ Sz
π such that

ωu
0 = σα(I). By Proposition 3.5 (b), Dσ(v + z) ∈ UDωz

0
(v + z). Again by

the formulas in Remark 3.4 and by Lemma 3.2,

pv+u(Ek,k+1Dσ(v + z)) =

eI(v + z)Dσα(I)(v + u) + D<α(I)(v + u) ∈ UDωz
0
(v + z).

As we saw in the proof of the previous point, the leading coefficient
is nonzero. By Proposition 3.5(b) this element generates the Gelfand-
Tsetlin weight component V(T(v))[v + u], so in particular Dωu

0
(v + u) ∈

UDωz
0
(v + z). For the second case we must take pv+u(Ek,k+1Dτ(v + z)),

with τ as in Lemma 2.5(c), and then the rest of the proof is similar. �

4.3. The socle of V(T(v)). An element z ∈ D is said to be fully critical if
zk,i = zk,j whenever [k, i] − [k, j] is an edge of Ω(v + z). Equivalently, z is

fully critical if and only if (Sπ)z = Sπ. The following proposition shows
that V(T(v)) is a cyclic module, and that it has a unique minimal module.
Item c of the next Proposition is a special case of [EMV, Theorem 11] and
[FGRZ18, Theorem 8.5]. We include it here for completeness.

Proposition 4.4. Let z ∈ D be fully critical.

(a) If Ω+(v + z) = ∅ then UDe(v + z) = V(T(v)). In particular V(T(v)) is
a cyclic module.

(b) If Ω−(v + z) = ∅ then UDe(v + z) is simple and contained in any other
submodule of V(T(v)).

(c) If Ω(v) has no edges of the form [k, i]− [k − 1, j] then V(T(v)) is simple.

Proof. Notice that it is always possible to find fully critical elements z ∈ D

satisfying the hypothesis of the first item. If z is such an element, being
14



fully critical, then ωz
0 = e. Also by Lemma 4.3 (b), every derivative tableau

Dω
y
0
(v + y) with y ∈ D is in UDe(v + z). Thus

UDe(v + z)[v + y] ⊃ ΓDω
y
0
(v + y) = V(T(v))[v + y]

and this proves part (a).
Assume now that Ω−(v + z) = ∅, and set N = UDe(v + z). Then for

any y ∈ D we have Ω+(v + y) ⊂ Ω+(v + z), so by Lemma 4.3(a) N ⊂
UDe(v + y). Since every submodule of V(T(v)) contains some tableaux of
this form, it follows that N is contained in every submodule of V(T(v))
which proves part (b). Part (c) is an easy consequence of (a) and (b). �

As mentioned in the proof of the Proposition, if Ω−(v + z) = ∅ then
UDe(v + z) is minimal among the submodules of V(T(v)).

Corollary 4.5. The socle of V(T(v)) is simple and equal to UDe(v + z) for any
z such that Ω−(v + z) = ∅. In particular, soc V(T(v)) = UDe(v).

5. The essential support of the socle and a proof of the Strong

Futorny-Ovsienko conjecture

As before, v is a fixed seed and π = π(v), I = I(v),D = D(v).

5.1. The essential support of the socle of V(T(v)). We denote the socle of
V(T(v)) by Vsoc. As mentioned above Vsoc is simple. The dimension of the
Gelfand-Tsetlin component Vsoc[v + z] is bounded by dim V[v + z] = |Sz

π |
(this is the same bound given in [FO14, Theorem 4.12 (c)]).

Definition 5.1. Let z ∈ D and let M be a simple Gelfand-Tsetlin module such
that M[v + z] 6= 0. We say that v + z is in the essential support of M if
dim M[v + z] = |Sz

π |. We denote the essential support of M by essupp M.

We introduce the following notations

supp(v) = {z ∈ D | dim Vsoc[v + z] 6= 0}

ess(v) = {z ∈ D | v + z ∈ essupp Vsoc}

In view of the fact that Vsoc is simple, its essential support is the set of those
z ∈ D for which the dimension of Vsoc[v + z] is as large as the Futorny-
Ovsienko bound allows.

5.2. Cones associated to the support. Denote by Rµ the set of points in
Cµ with real coordinates. Recall that a rational polyhedral cone is the
intersection of finitely many half-spaces {x ∈ Rµ | ϕ(x) ≥ q} where ϕ
is a linear functional with rational coefficients in the canonical basis and
q ∈ Q. The rank of a cone is the dimension of the smallest affine space that
contains it.
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Set

S = {Ω+(v + z) | z ∈ supp(v)}

E = {Ω+(v + z) | z ∈ ess(v)}.

These are finite sets, which we order by the relation of being a subgraph.
For each Ω ⊂ Ω+(v) we set

P(Ω) = {z ∈ D | Ω = Ω+(v + z)};

P(Ω) = {z ∈ D | Ω ⊂ Ω+(v + z)}.

By Lemma 4.3 if z ∈ supp(v) then P(Ω+(v + z)) ⊂ P(Ω+(v + z)) ⊂
supp(v), and the same holds if we replace supp(v) with ess(v). Denoting
by S0 and E0 the set of minimal elements of S and E respectively we see
that

supp(v) =
⋃

Ω∈S

P(Ω) =
⋃

Ω∈S0

P(Ω);

ess(v) =
⋃

Ω∈E

P(Ω) =
⋃

Ω∈E0

P(Ω).

Let w ∈ D and z ∈ Z
µ
0 , and put

−→
Ω =

−→
Ω (v + w). We have that z ∈

P(Ω+(v + w)) if and only if it satisfies the following conditions for all
k < n:

(a) if [n, i] → [n − 1, j] is a directed edge of
−→
Ω then zn−1,j ≤ vn,i − vn−1,j;

(b) if [n − 1, j] → [n, i] is a directed edge of
−→
Ω then zn−1,j > vn,i − vn−1,j;

(c) if [k, i] → [k − 1, j] is a directed edge of
−→
Ω then zk−1,j ≤ zk,j ;

(d) if [k − 1, i] → [k, j] is a directed edge of
−→
Ω then zk−1,j > zk,j;

(e) if [k, i] → [k, i + 1] is a directed edge of
−→
Ω then zk,i ≥ zk,i+1.

Furthermore, z ∈ P(Ω+(v+w)) if and only if it satisfies conditions (a), (c)
and (e) (this last condition guarantees that z ∈ D). It follows that both

P(Ω+(v + w)) and P(Ω+(v + w)) are the set of integral points of a ratio-

nal polyhedral cone. Since these sets are contained in Z
µ
0 their rank is at

most
n(n−1)

2 .

Theorem 5.2. Both the support and the essential support of Vsoc are the set of
integral points of a finite union of polyhedral rational cones. Furthermore, one of

these cones has rank n(n−1)
2 .

Proof. We have already shown that both supp Vsoc and essupp Vsoc can be

written as a union of sets of the form P(Ω) for appropriate subgraphs of
Ω(v), so the first part of the theorem is proved.

For the second part, we will show show that P(Ω+(v)) = P(Ω+(v)) is

the set of integral points of a cone of rank
n(n−1)

2 . Given 1 ≤ i ≤ k ≤ n − 1
16



let ck,i ∈ Z
µ
0 be such that ck,i

l,j is −1 if there is a directed path in
−→
Ω (v)

from [k, i] to [l, j], and 0 otherwise. Here we assume that [k, i] is linked

to itself by a trivial path, so ck,i
k,i = −1. Then Ω+(v + ck,i) = Ω+(v) and

so ck,i ∈ P(Ω+(v)). Now if z is any nonzero element in P(Ω+(v)) and

zk,i 6= 0 then Ω+(v + z − ck,i) = Ω+(v). By induction P(Ω+(v)) is the

monoid generated by the ck,i, and hence has the desired rank. �

Now we are ready to prove the Strong Futorny-Ovsienko Conjecture.
For each standard parabolic subgroup G ⊂ Sπ there exists z in P(Ω(v))
such that G = (Sπ)z. Indeed, the orbits of G form an interval partition
of Σ′, and the desired element is obtained by taking the inequalities (e)
presented above as equalities whenever (k, i), (k, i + 1) lie in the same G-
orbit, and as strict inequalities if they lie in different orbits. Thus we have
the following result.

Corollary 5.3. Let z ∈ D and let G = (Sπ)z. Then there exists z′ ∈ ess(v) such

that (Sπ)z′ = G. Thus dim Vsoc[v + z′] = |Sπ |
|G|

and the FO inequality is sharp

for all parabolic subgroups of Sπ.

In the next section we will show that in the case were v = 0 this bound
can be obtained when M a simple Verma module.

We conclude this section with the observation that Corollary 5.3 implies
that if the essential support of a simple Gelfand-Tsetlin module intersects
ess(v), then it must be isomorphic to soc V(T(v)).

Corollary 5.4. If z ∈ ess(v) then the module Vsoc = UDe(v) is, up to isomor-
phism, the unique simple Gelfand-Tsetlin module having v + z in its support.

Proof. Let m be the maximal ideal of Γ corresponding to v and let N =
U/Um. Then being a simple module, Vsoc appears as a quotient of N. By

[FO14, Theorem 4.12(c)], dim N[v + z] ≤ |Sπ |
|(Sπ)z)|

, while dim Vsoc[v + z] =
|Sπ |

|(Sπ)z)|
for all z ∈ ess(v). This implies the corollary. �

6. Realization of Verma modules in universal tableaux modules

Let λ ∈ Cn be a (Cartan) weight of gl(n,C). Recall that we can associate
to λ a Verma module M(λ) by extending λ to a character of the Borel
subalgebra of upper-triangular matrices and then inducing the resulting
module to gl(n,C). The module M(λ) is a highest weight module with
highest weight λ and any other such module is a quotient of M(λ).

6.1. Restriction from gl(n,C) to sl(n,C). We fix h′ ⊂ sl(n,C) to be the
usual Cartan subalgebra of diagonal matrices of trace 0.

Given a representation V of gl(n,C) we denote by V ′ its restriction to
sl(n,C), and given v ∈ V we denote by v′ the corresponding vector in
V ′. Then v is a Cartan weight vector if and only if v′ is a Cartan weight
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vector, and if λ = (λ1, . . . , λn) is the weight of v then the weight of v′ is
λ′ = (λ1 − λ2, . . . , λn−1 − λn). Verma modules restrict to Verma modules,
and M(λ)′ = M(λ′). In particular this implies that M(λ) is a free U−-
module, where U− ⊂ U is the subalgebra generated by the elements Ej,i

with 1 ≤ i < j ≤ n. We will say that λ is dominant, resp. integral, resp.
dominant integral, if the corresponding sl(n,C)-weight is dominant, resp.
integral, resp. dominant integral.

The natural action of Sn on Cn induces an action of Sn on Cn/L, where L
is the vector space generated by the vector (1, 1, . . . , 1). If we identify Cn/L
with the dual of the Cartan subalgebra of sl(n,C) and the corresponding
Weyl group with Sn, then the induced action of Sn and the action of the
Weyl group coincide. In other words, for each σ ∈ Sn and each gl(n,C)-
weight λ we have σ(λ)′ = σ(λ′).

Let ρ̃ = −(0, 1, . . . , n − 1). Then ρ̃′ is the half-sum of the positive roots
of sl(n,C). The dot action of Sn on Cn is given by σ · λ = σ(λ + ρ̃)− ρ̃ for
all σ ∈ Sn. This dot action induces the dot action of Sn on sl(n,C)-weights,
i.e. (σ · λ)′ = σ · λ′.

6.2. Highest weight vectors of universal tableaux modules. For each λ ∈
Cn we set λ̃ = λ + ρ̃.

Let λ ∈ Cn be such that λ̃ is a dominant weight, and let σ ∈ Sn. We
denote by HW(λ, σ) an element of Cµ in normal form whose k-th row is
a permutation of (λ̃σ−1(1), λ̃σ−1(2), . . . , λ̃σ−1(k)) for each k; this element may

not be unique, so we fix one for each choice of λ and σ. If λ̃ is dominant
integral then the top row of HW(λ, σ) is equal to λ̃.

Let τ ∈ Sn. If σ(λ) − τ(λ) ∈ Zn then we can and will assume that
HW(λ, σ) and HW(λ, τ) lie in the same (Z

µ
0 #Sµ)-orbit.

Lemma 6.1. Let v be a seed in the (Z
µ
0 #Sµ)-orbit of HW(λ, σ). Then the classical

tableau De(HW(λ, σ)) ∈ V(T(v)) is a highest weight vector of V(T(v)) of
weight σ · λ = σ(λ + ρ̃)− ρ̃.

Proof. Put v = HW(λ, σ) and let k ∈ JnK. The fact that De(v) has the
desired weight follows from the definition of v and the formula for the
action of Ek,k. It remains to prove that De(v) is a highest weight vector.

Theorem 3.3 implies that Ek,k+1De(v) is a linear combination of deriv-

ative tableaux Dτ(v + δk,i) where (k, i) is the first entry in an interval
I = {(k, i), (k, i + 1), . . . , (k, j)} and τ < α(I). Furthermore, the coeffi-

cient of Dτ(v + δk,i) is Dτ,α(I)(eI)(v). To prove Ek,k+1De(v) = 0 it is enough

to show that Dτ,α(I)(eI)(v) = 0 for all such τ.
By definition, the interval I is such that vk,i = vk,i+1 = . . . = vk,j, and

since the k-th row of v is obtained by deleting one element from its k +
1-th row, there are at least |I| entries in the k + 1-th row of v equal to
vk,i. Thus eI is a rational function with a zero of order at least |I| in v.
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On the other hand, by definition Dτ,α(I) is a differential operator of order

ℓ(α(I))− ℓ(τ) < |I|, and hence Dτ,α(I)(eI)(v) = 0. �

We fix a seed v in the (Z
µ
0 #Sµ)-orbit of HW(λ, σ) (again, the top row

of v equals λ̃ if this is dominant integral). The lemma and the universal
property of Verma modules together imply that there is a map jλ,σ : M(σ ·
λ) → V(T(v)) mapping a highest weight vector vσ·λ to De(HW(λ, σ))
for each σ ∈ Sn. As the following theorem shows, this map is injective
and, therefore, any Verma module can be realized as a submodule of an
adequate universal tableaux module.

Theorem 6.2. For each dominant weight λ and each σ ∈ Sn the map jλ,σ is
injective. In particular every Verma module can be realized as a submodule of a
universal tableaux module.

Proof. By the classical Verma and BGG theorems, the Verma module M(σ ·
λ)′ has a simple socle, which is isomorphic to M(ν′), where ν is the unique
element in the orbit of Sn · λ such that ν′ is both linked to σ · λ′ and an-
tidominant (see for example [Hum08, Chapter 4]). These conditions imply

that v = HW(λ, σ) and w = HW(λ, ν) lie in the same Z
µ
0 #Sµ-orbit. In

particular, they are both highest weight vectors in V(T(v)) by Lemma 6.1.
Since M(ν) is simple and jλ,ν is nonzero, it defines an isomorphism

M(ν) ∼= UDe(w), and since the socle of V(T(v)) is simple, it must be
equal to UDe(w). By Proposition 4.4 (b) the socle of V(T(v)) is contained
in UDe(v), so the image of jλ,σ is a quotient of M(σ · λ) containing a
highest weight vector of weight ν · λ. By [Hum08, Theorem 7.16] this is
possible only if the map jλ,σ is injective. �

6.3. The support of the Verma module M(−ρ̃). It follows from Lemma 6.1
that the tableau De(0) is a highest weight vector of weight −ρ̃ in V(T(0)).
Since the Verma module M(−ρ̃) is simple, by Theorem 6.2 it is isomorphic
to the socle of the corresponding universal tableaux module. This allows
us to study both its Gelfand-Tsetlin support and its essential support. We
begin our study of the support of M(−ρ̃) with the following lemma.

Lemma 6.3. Let z ∈ D(0), let I = Ja, bKk ∈ I(0, z), let m = zk,a = zk,a+1 =
· · · = zk,b, and put z′ = z − δk,b. Also, let J be the (possibly empty) interval
formed by the (k − 1, j) ∈ Σ such that zk−1,j = m. Then pz′(Ek+1,kDe(z)) is

nonzero if and only if |J| ≤ |I|.

Proof. Recall that β = β(I) is the permutation (a a + 1 · · · b)(k). The for-

mulas for the action of U on V(T(0)) given in Theorem 3.3 tell us that

pz′(Ek+1,kDe(z)) = ∑
τ≤β

Dτ,β( f I)(z)Dτ(z
′).

The differential operator Dτ,β has order ℓ(β) − ℓ(τ) ≤ ℓ(β) = |I|, and by
definition f I has a zero of order |J| at z. Thus Dτ,β(I)( f I)(z) = 0 if |J| > |I|.
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Now suppose |J| ≤ |I| and let σ = (a + |J| a + |J| + 1 · · · b)(k). Then

the order of D = Dσ,β is ℓ(β) − ℓ(σ) = |J|. If we denote by ∂k,i the partial
derivative with respect to xk,i then D is a homogeneous polynomial of de-
gree |J| in ∂k,i with a ≤ i ≤ b. Using the definition of Stanley-Postnikov
differential operators from [FGRZ18, paragraph 3.3], we see that the co-

efficient of ∂
|J|
k,b in D is precisely

(−1)|J |

|J|!
. On the other hand, since f I is a

rational function on the variables xk,b and xk−1,j with (k − 1, j) ∈ J, we see

that D( f I) =
(−1)|J |

|J|!
∂
|J|
k,b( f I). Thus

D( f I)(z) = (−1)|J|
∏

(k−1,j)/∈J

m − zk−1,j

∏
(k,j)/∈I

zk,a − zk,j

6= 0.

Since this is the coefficient of Dσ(z′) in Ek+1,kDe(z), we are done. �

From this point on we identify M(−ρ̃) with UDe(0). We have already

presented the graph Ω̃(0) for n = 4 in Example 4.2. In general, its edges
are those of the form [k, i] → [k, i + 1] for 1 ≤ i ≤ k − 1 and [k, k] →
[k − 1, 1] for all 2 ≤ k ≤ n.

Let v ∈ Z
µ
0 be the element with vk,i = −i + 1 for all 1 ≤ i ≤ k ≤ n − 1.

For example, for n = 5 we have

v Ω̃(v)

0 0 0 0 0

0 −1 −2 −3

0 −1 −2

0 −1

0

The edges of Ω+(v) are precisely those of the form [n, i]− [n− 1, j] for all
i ∈ JnK, j ∈ Jn− 1K, along with all [k, i]− [k− 1, j] for 1 ≤ i ≤ j ≤ k ≤ n− 1.

Recall from §5.1 that P(Ω+(v)) is the set of those z ∈ D(0) such that
Ω+(v) ⊂ Ω+(z). We will prove that the support of M(−ρ) is equal to the

set of integral points P(Ω+(v)).

Theorem 6.4. Let z ∈ D(0). Then z lies in the Gelfand-Tsetlin support of
M(−ρ) if and only if zk−1,j ≤ zk,i ≤ 0 for all k ≤ n − 1 and i ≤ j. Equiv-

alently, the support of M(−ρ) coincides with P(Ω+(v)).

Proof. We first show that P(Ω+(v)) is contained in the support of M(−ρ̃).
By Lemma 4.3 it is enough to show that De(v) ∈ M(−ρ̃).

For each l ∈ Jn − 1K, let v(l) be the element of Z
µ
0 such that v(l)k,i =

−i + 1 if k ≤ l, while v(l)k = 0 if k > l; in other words, the k-th row of v(l)
is equal to that of v if k ≤ l and equal to zero if k > l, in particular v =
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v(n− 1). We now show that v(l) lies in the support of M(−ρ̃) by induction
on l, the case v(1) = 0 being obvious. Suppose v(l − 1) lies in the support.
Then row l has exactly l entries equal to 0, while row l − 1 has exactly one
entry that equals 0. If we apply Lemma 6.3 l − 1 times to rows l and l − 1

with m = 0 we obtain that v(1) = v(l − 1)− (δl,2 + δl,3 + · · ·+ δl,l) lies in the
support of M(−ρ̃). Applying now the same lemma l − 2 times to the same

rows for m = −1, we see that v(2) = v(1)− (δl,3 + · · ·+ δ(l,l)) also lies in the
support of M(−ρ̃). Repeating this argument for m = −2,−3, · · · ,−l + 1,
we see that

v(l−1) = v(l − 1)− (δ2,l + 2δ3,l + · · ·+ (l − 1)δl,l)

is in the support of M(−ρ̃). Thus v = v(n − 1) lies in the support.
We now prove that the support of M(−ρ̃) is contained in P(Ω+(v)).

Suppose there exists z in the support of M(−ρ̃) outside of P(Ω+(v)), that
is, that there exists some j ≤ i such that zk,i > zk+1,j. Since z ∈ D(0) we
must have zk+1,j ≥ zk+1,i, and hence zk,i > zk+1,l for all l ≥ i. We now show
that we can assume i = k.

Suppose i < k and let w ∈ Z
µ
0 be the element given by

wl =





(0(l)) k + 2 ≤ l ≤ n

(0(i−1),−1(k−i+2)) l = k + 1

(0(i),−1(k−i)) l = k

(−1(l)) 1 ≤ l ≤ k − 1

where m(j) denotes a sequence of j consecutive entries equal to m. Then
Ω−(w) ⊂ Ω−(z) and hence by Lemma 4.3 we have De(w) ∈ M(−ρ̃). Ap-
plying Lemma 6.3 twice to rows k+ 1, k with m = −1, we see that z′ = w−
δk+1,k+1 − δk+1,k also belongs to the support of M(−ρ̃). Direct inspection

shows that Ω−(−δk+1,k − δk+1,k+1) ⊂ Ω−(w′), so z′′ = −δk+1,k − δk+1,k+1

also lies in the support of M(−ρ̃), or equivalently De(z′) ∈ M(−ρ̃).
Now any element in the Gelfand-Tsetlin component of weight z′′ has

Cartan weight ρ̃ − 2α, where α is the Cartan weight of Ek+2,k+1. The only
such elements in M(−ρ̃) are the scalar multiples of E2

k+2,k+1De(0). Apply-

ing Lemma 6.3 twice to De(0) we see that the projection of this element to
the z′′-Gelfand-Tsetlin weight component is zero. This is a contradiction,
which arose from assuming the existence of z in the support of M(−ρ̃) but

not in P(Ω+(v)). �

6.4. The essential support of M(−ρ̃). Let w ∈ D(0) be the element given
by wn,i = 0 and wk,i = wk+1,k+1 − i + 1 for all k ≤ n. For example if n = 5
then
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w =

0 0 0 0 0

0 −1 −2 −3

−3 −4 −5

−5 −6

−6

Clearly, Ω+(w) = Ω+(0) and hence

dim M(−ρ̃)[w] = |Sπ | = (n − 1)!(n − 2)! · · · 2!1!,

thus showing w lies in the essential support of De(0). In fact, we have even
a stronger statement, namely, that the essential support of M(−ρ̃) is equal

to the rational cone P(Ω+(w)). As in our study of the support, we need a

preliminary lemma; again, we denote by m(j) a sequence of j consecutive
entries equal to m.

Lemma 6.5. Let 1 ≤ s < k ≤ n − 2, and let z ∈ D(0) be such that zk+1 =
(0(k),−1) and zk = (0(s−1),−1(k−s+1)). If z lies in the essential support of
M(−ρ̃) then so does z + δk,s.

Proof. Set z′ = z + δk,s, and set I = Js + 1, kK(k). We put ω = ωz′

0 and

σ = ω(s s + 1)(k)β(I). An explicit calculation shows that

σ(k)(i) =





i + k − s − 1 if 1 ≤ i < s;

k if i = s;

i − s if s < i < k;

k − 1 if i = k;

while σ(l) = ω(l) for l 6= k, so σ is a z-shuffle. By definition, σα(I) =
ω(s s + 1), thus Dω,σα(I) = ∂k,s − ∂k,s+1.

Since z lies in the essential support of M(−ρ̃), we know that Dσ(z) ∈
M(−ρ̃). Using the formulas in Theorem 3.3, we see that the coefficient
of Dω(z′) in Ek,k+1Dσ(z) is (∂k,s − ∂k,s+1)(eI) evaluated at z. Putting ẽI =

eI
xk,s−xk+1,k+1

then

Dω,σα(I)(eI) = (xk,s − xk+1,k+1) (∂k,s − ∂k,s+1) (ẽI)− ẽI ,

which evaluates to (−1)k−s+1 at z. By Proposition 3.5(b) pz′(Ek,k+1Dσ(z))
generates V(T(0))[z′] and hence z′ lies in the essential support of M(−ρ̃).

�

Theorem 6.6. Let (k, i) ∈ Σ′, and denote by ck,i the element in Z
µ
0 for which

ck,i
l,j is 0 if l > k or if l = k and i < j, and −1 otherwise. Then P(Ω+(0)) =

∑1≤i≤k≤n−1 Nck,i, and P(Ω+(0)) coincides with the essential support of M(−ρ̃).

Proof. The description of P(Ω+(0)) given in the proof of Theorem 5.2, so
we just have to show that it is equal to the essential support of M(−ρ̃).
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We note first that the edges of Ω = Ω+(0) are the edges of the form [k+
1, j]− [k, i] for j ∈ Jk + 1K and i ∈ JkK. Take z ∈ D(0). Then z lies outside
P(Ω) if and only if Ω−(z) has at least one edge, say [k, i] − [k + 1, j], or
equivalently if and only if zk,i > zk+1,j. Since zk,i ≤ 0 for all k ≤ n − 1,
we must have k + 1 < n. Furthermore, since z is in normal form we have
zk,l ≥ zk,i > zk+1,k+1, so every edge in V(k, i) = {[k, l]− [k+ 1, k+ 1] | l ≤ i}
is an edge of Ω−(z). By Lemma 4.3 if z is in the essential support of M(−ρ̃)
then so is any element w such that the edges of Ω−(w) are contained in
V(k, i).

Assume there is an element z ∈ D(0) which is in the essential support
of M(−ρ̃) but not in P(Ω) and let k be minimal such that some V(k, i)
is contained in the edge set of Ω−(z). Suppose first that k = 1. Then
V(1, 1) is the set of edges of Ω−(−δ2,2), and hence −δ2,2 lies in the essen-
tial support of M(−ρ̃) and the Gelfand-Tsetlin component of this weight
has dimension 2. The Cartan weight of any element in this component is
−α − ρ̃, where α is the Cartan weight of E2,3, and since M(−ρ̃) is a free
U−-module and a highest weight module with highest weight −ρ̃, it con-
tains only one element with this weight, namely E3,2De(0), a contradiction.
Hence k ≥ 2.

Let (k, s) ∈ Σ and denote by z(k, s) the element given by

z(k, s)l =





(0(l)) for k + 2 ≤ l ≤ n;

(0(k),−1) for l = k + 1;

(0(s),−1(k−s)) for l = k;

(−1(l)) for 1 ≤ l ≤ k − 1;

Applying k − s times Lemma 6.5 to rows k, k + 1 we see that z(k, k − 1)
also lies in the essential support of M(−ρ̃). Now if k > 2 then we can also
apply Lemma 6.5 to z(k, k − 1) in rows k − 1, k to obtain an element z′ in
the essential support of M(−ρ̃) such that z′k−1,1 > z′k,k, contradicting the

minimality of k. Thus we must have k = 2 and z(2, 1) = −δ3,3 − δ2,2 − δ1,1

must lie in the essential support of M(−ρ̃). In particular this implies
that the component of Gelfand-Tsetlin weight z(2, 1) of M(−ρ̃) must be of
dimension 6.

On the other hand, any vector of Gelfand-Tsetlin weight z(2, 1) must
have Cartan weight −α1,4 − ρ̃, where α1,4 is the Cartan weight of E1,2E2,3E3,4.
However the space of weight −α1,4 in U− is four dimensional, which im-
plies that the dimension of the Gelfand-Tsetlin component of weight z(2, 1)
of M(−ρ̃) can be at most four, a contradiction. �

Example 6.7. If n = 4 then the support of M(−ρ̃) consists of all tableaux
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0 0 0 0
a b c

d e

f

such that

0 ≥ a ≥ b ≥ c

d ≥ e
a ≥ d ≥ f

b ≥ e

On the other hand, the essential support of M(−ρ̃) consists of those tableaux
such that 0 ≥ a ≥ b ≥ c ≥ d ≥ e ≥ f .

We conclude this paper with the observation that the simple Verma
modules of gl(n,C) (n ≥ 4), considered as Gelfand-Tsetlin modules, do
not have necessarily a basis of derivative tableaux.

Remark 6.8. Let z = −δ1,1 − δ2,2 − δ3,3. A consecutive application of the
Gelfand-Tsetlin formulas shows that

E4,3E3,2E2,1De(0) = −De(z) + D(32)(3)
(z)− D(123)(3)

(z)+

D(12)(2)
(z)− D(12)(2)(32)(3)

(z).

As mentioned above, the Gelfand-Tsetlin component of M(−ρ̃) of weight z has
dimension at most 4. Hence the Verma module M(−ρ̃) does not have a basis
formed by derivative tableaux. It is an interesting open question to find a basis of
the Verma modules, even of M(−ρ̃), inside V(T(v)).
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