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Resumen / La teoŕıa Escalar-Tensorial-Vectorial es una teoŕıa alternativa para la interacción gravitatoria, fomu-
lada en el año 2006 por John Moffat. El ĺımite de campo débil de la misma ha descrito exitosamente observaciones
del Sistema Solar, curvas de rotación galáctica, la dinámica de cúmulos de galaxias y observaciones cosmológicas,
sin la necesidad de imponer componentes oscuras. Estudiamos las soluciones con contenido de materia de esta
teoŕıa y las aplicamos a la construcción de modelos estelares sencillos. Espećıficamente, derivamos la ecuación
modificada de Tolman-Oppenheimer-Volkoff y la integramos para distintas ecuaciones de estado politrópicas.
Encontramos que estos modelos admiten masas mayores a los correspondientes modelos relativistas. Los valores
máximos de las masas totales dependen del factor α ∈ [0, 1) que cuantifica la desviación de la teoŕıa general de la
relatividad.

Abstract / Scalar-Tensor-Vector Gravity (STVG) is an alternative theory of the gravitational interaction. Its
weak field approximation has successfully described Solar System observations, galaxy rotation curves, dynamics
of galaxy clusters, and cosmological data, without the imposition of dark components. The theory was formulated
by John Moffat in 2006. We explore non-vacuum solutions of STVG and apply them to some stellar toy-models.
Specifically, we derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different
polytropic equations of state. We find that stellar models in STVG admit larger masses than in general relativity
(GR). Maximum masses depend on the factor α ∈ [0, 1) that quantifies the deviation from GR.
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1. Introduction

The Scalar-Tensor-Vector Gravity theory (STVG), also
referred as MOdified Gravity (MOG), is an alternative
theory for the gravitational interaction formulated by
John Moffat (2006). In STVG, the gravitational cou-
pling constant G is replaced by a scalar field whose
numerical value usually exceeds Newton constant GN.
This assumption allows to describe correctly galaxy ro-
tation curves (Brownstein & Moffat, 2006), dynamics
of galaxy clusters (Moffat & Rahvar, 2014), phenomena
associated with the Bullet Cluster (Brownstein & Mof-
fat, 2007), and cosmological data (Moffat & Toth, 2007).
All this without requiring the existence of dark compo-
nents. In order to counterpart the enhanced gravita-
tional constant at Solar System scales, Moffat proposed
a gravitational repulsive Yukawa-like vector field φµ. In
this way, Newton gravitational constant can be retrieved
and STVG coincides with GR in all Solar System pre-
dictions.

In this work, we study spherically symmetric, static,
and non-vacuum solutions of STVG field equations, and
obtain the modified Tolman-Oppenheimer-Volkoff equa-
tion (TOV). These results are used to construct three
stellar toy models: Sun-type stars, withe dwarfs (WD),
and neutron stars (NS). We integrate numerically the
modified TOV equation for different polytropic equa-
tions of state (EoS) and compare the outcomes with
general relativity results.

Our work is organized as follows. In Sec. 2. we

present the STVG field equations and derive the space-
time metric components. Then, in Sec. 3., we show the
modified TOV equation and the EoS used for numerical
integration. Sec. 4. is devoted to our main results and
conclusions.

2. STVG static, spherically symmetric, matter
sourced solution

A simplified version of Moffat’s original action is (2006):

S = SGR + Sφ + SS + SM, (1)

SGR =
1

16πG

∫
d4x
√−gR, (2)

Sφ = ω

∫
d4x
√−g

(
1

4
BµνBµν −

1

2
µ2φµφµ

)
, (3)

SS =

∫
d4x
√−g

[
1

G3

(
1

2
gµν∇µG∇νG− V (G)

)
+

1

Gµ2

(
1

2
gµν∇µµ∇νµ− V (µ)

)]
.

(4)

Here, gµν denotes the spacetime metric, R is the cor-
responding Ricci scalar, and ∇µ is the covariant deriva-
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tive; φµ denotes a Proca-type massive vector field, µ
is the mass of the field, Bµν = ∂µφν − ∂νφµ, and
ω = 1/

√
12; V (G), V (µ) denote the potentials of the

scalar fields G(x), µ(x), respectivly. We adopt the
metric signature ηµν = diag(1,−1,−1,−1), and choose
units with c = 1 (velocity of light in vacuum). The term
SM refers to possible matter sources.

In this work, we neglect the mass of the vector field
because its effects manifest at large distances from the
source and we are interested in the local stellar structure
(see Moffat, 2015). Also, we ignore the contributions
of the scalar fields to the field equations because we
approximate G as a constant. Numerical values for G
are chosen in accordance with Moffat’s previous works.

Varying the action with respect to gµν and taking the
previous simplifications into account, we get the metric
field equations:

Gµν = 8πG
(
TM
µν + Tφµν

)
, (5)

where Gµν denotes the Einstein tensor, and TM
µν , T

φ
µν

are the matter and vector field energy-momentum ten-
sors, respectively. We take for the enhanced gravita-
tional coupling constant the same prescription as Moffat
(2006):

G = GN(1 + α), (6)

where GN denotes the Newton gravitational constant,
and α a free parameter whose value we sample. Within
the adopted approximations, STVG coincides with GR
for α = 0.

Variation of the simplified action with respect to φµ
yields:

∇νBµν = −
√
αGN

ω
Jµ, (7)

where Jµ denotes the four-current matter density,
and the constant

√
αGN is determined to adjust phe-

nomenology.
We model spacetime with a static, spherically sym-

metric geometry:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (8)

Regarding the stellar matter, we model it with
a static, spherically symmetric, perfect fluid energy-
momentum tensor:

TMµ
ν = [p(r) + ρ(r)]uµuν − p(r)gµν , (9)

where p(r) and ρ(r) denotes the pressure and density of
the fluid r-shell, respectively; and uµ →

(
e−ν/2, 0, 0, 0

)
denotes the four-velocity of a mass element with coordi-
nate r. The corresponding four-current matter density
is:

Jµ = 4πρuµ =
4πρ√
g00

dxµ

dx0
−→

(
e−ν/24πρ, 0, 0, 0

)
.(10)

Replacing the latter expression for Jµ in Eq. (7) we
obtain the components of Bµν . Then, we solve the field
Equation 5 and obtain the metric components:

e−λ(r) = 1− 2GM(r)

c2r
− 1

r

4πG

c4ω

∫
dr
Q2(r)

r2
, (11)

ν(r) = −λ(r)+
8πG

c4

∫
dreλ(r)r

(
c2ρ(r) + p(r)

)
,(12)

where we have reintroduced the speed of light factors,
and have defined the quantity:

Q(r) ≡
∫

dreλ(r)/2
√
αGNρ(r)4πr2. (13)

Notice that, for a point mass source, we retrieve Mof-
fat’s spherically symmetric black hole solution (Moffat,
2015).

3. Modified Tolman-Oppenheimer-Volkoff
equation

From the conservation equation:

∇µ
(
TM
µν + Tφµν

)
= 0, (14)

we isolate the derivative of the fluid pressure with re-
spect to the radial coordinate. Using expressions (11)
and (12) for the metric components, we obtain the mod-
ified Tolman-Oppenheimer-Volkoff equation for STVG:

dP (r)

dr
= −eλ(r)

r2

(
4πG

c4
p(r)r3 − 2GQ2(r)

ωc4r
+

+
GM(r)

c2
+

2πG

ωc4

∫
dr
Q2(r)

r2

)(
ρ(r)c2 + p(r)

)
+

+
Q(r)

wr4
dQ(r)

dr
.

(15)

Setting α = 0 nullifies every Q-term and the classic
relativistic TOV equation is retrieved.

In order to integrate Eq. (15), we need to determine
an EoS that relates the stellar density and pressure. We
consider three polytropic stellar models with different
central densities:
• Solar-type star (Padmanabhan, 2000):

P = 3.1367× 1014ρ4/3, ρc = 150 g cm−3, (16)
• Withe dwarf (Padmanabhan, 2000):

P = 4.881×1014ρ4/3, 105 g cm−3 < ρc < 106 g cm−3,(17)
• Neutron star (Orellana et al., 2013):

P = 105.29355ρ2, 1014.6 g cm−3 < ρc < 1015.9 g cm−3.(18)

Deviations from GR are expected for non-vanishing
α (see Eq. (6)). From Solar System observations, Moffat
(2006) determined the upper limit:

α� < 1. (19)

The stars considered in the models have a few solar
masses. Then, we expect α to be similar to its Solar
System value. We sample the theory with three values
of α given by α = 0, α = 10−3 and α = 10−2.

We proceed to integrate Eq. (15) numerically apply-
ing a fourth-order Runge-Kutta method (Press et al.,
1992).

4. Results and conclusions

The integration of Eq. (15) for the EoSs and for the α
values mentioned above yields the density profiles shown
in Fig. 1. As was expected, the repulsive behavior of
gravity slows down the radial decrease of the density.
Smaller values for α do not produce significant devia-
tions from GR and major values yield unrealistic results.

The repulsive behavior of gravity entails larger stel-
lar masses than GR models. In Fig. 2 we plot the final
masses as a function of the stellar radii for NS and WD
with different central densities. As can be seen from the
graph, STVG allows NS and WD masses up to 2.8 M�,
with non-exotic EoSs.
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Figure 1: From left to right, density profiles for STVG Sun-type, WD, and NS stellar models. We sample the theory with
three values of the free α parameter. For α = 0 we retrieve GR results. For α = 10−3 we do not obtain significant deviations
from GR. However, for α = 10−2 the effects of repulsive gravity become evident. In the case of WD and NS, we show
profiles for different central densities.

We conclude that STVG admits realistic matter-
sourced solutions that can be used to construct stellar
models. The main difference of STVG stellar models
and relativistic ones is the slower decrease of the den-
sity profile and therefore larger final masses.

Recent estimations of NS masses exceeds the max-
imum predicted by GR realistic models (Antoniadis
et al., 2013; Demorest et al., 2010; Kiziltan et al., 2013).
This fact and our results make STVG a theory worthy
of attention and further tests. We expect to include
the contributions of the scalar fields to the field equa-
tions and dynamics in the near future. Also, we expect
to construct STVG realistic models appealing to more
sophisticated EoSs.
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Figure 2: Total masses and radii for STVG WD (top) and
NS (bottom). We retrieve GR results for α = 0, and study
the STVG deviations for α = 10−2 and α = 10−3. Both
graphs show that STVG admits larger masses than GR.
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