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a  b  s  t  r  a  c  t

Zineb  [ethylene  bis(dithiocarbamate)  zinc]  is a widely  employed  foliar  fungicide  for  agricultural  and
industrial  applications.  Allium  cepa L. is  a  reliable  model  for the  assessment  of  xenobiotic  genotoxicity
and  cytotoxicity.  We  evaluated  the  effects  of  the  zineb-containing  commercial  formulation  Azzurro®

(70%  zineb)  in  cell  cycle  stages  of the  meristem  root  cells  of  A. cepa.  The  mitotic  index  (MI),  chromoso-
mal  aberrations  at anaphase/telophase  (CAs),  micronuclei  (MN),  and  abnormalities  in immunodetected
microtubule  structures,  e.g.,  preprophasic  band  (PPB),  mitotic  spindle  (MS),  and  phragmoplast  (Phrag),
were  used  as  end-points.  Azzurro® (1  and  10 �g/ml)  induced  a  significant  increase  in the frequency
of  CAs  (P  <  0.05),  and  the  higher  concentration  inhibited  the  MI  (P <  0.05)  compared  to  control  values.
The  frequency  of MN  did  not  differ  from  control  values  at  any  concentration.  Treatment  with  1  �g/ml
Azzurro® induced  a  significant  increase  in  the  frequency  of  abnormal  PPB  (P <  0.01),  MS  (P <  0.001),  and
Phrag  (P  <  0.01)  and,  at  10 �g/ml,  enhancements  in  the  frequencies  of  abnormal  MS  (P  <  0.05)  and  Phrag
(P  <  0.05)  were  seen.  A  tubulin  immunodetection  assay  showed  that  exposure  to  Azzurro® interferes  with
normal  assembly  of  microtubule  structures  during  mitosis.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Carbamates are chemicals used in agriculture as insecticides,
fungicides, herbicides, nematocides, or sprout inhibitors [1].  These
chemicals are among the large group of synthetic pesticides that
have been used on a large scale within the last 50 years. They are
also used as biocides for industrial and household applications [1].
Large amounts of carbamate pesticides have been released into
the environment. Humans may  be exposed to them through food
and drinking water around residences, schools, and commercial
buildings [1].  Consequently, carbamates are potentially harmful to
ecosystem health [2].

Among the carbamate pesticides, zineb [ethylene
bis(dithiocarbamate) zinc] is a widely employed foliar fungi-
cide with prime agricultural and industrial applications. Zineb
has been registered for use on fruits, vegetables, field crops,
ornamental plants, and for the treatment of many seeds. It has also
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been registered as a fungicide in paints and for mold control on
fabrics, leather, linen, painted and wood surfaces, etc. [3].

Dithiocarbamates have given conflicting results in mutagenicity
tests [1,4,5].  Available data on zineb do not allow a definitive evalu-
ation of its carcinogenicity [1].  Zineb is considered non-mutagenic
in bacterial systems, but this does not conclusively rule out damage
to genetic material [1].  Possible genotoxic effects of zineb have been
tested with regard to occupational exposure [6] and in vitro trans-
forming properties [7].  In Drosophila melanogaster, zineb showed
genotoxic effects in somatic and germ cells [8].  More recently, both
in vitro monitoring of human peripheral blood lymphocytes and
studies of CHO-K1 cells revealed its genotoxic effects by analyzing
the frequency of biomarkers with inhibition of the mitotic activ-
ity, delay in cell cycle progression, and increase in the frequency of
chromosomal aberrations and sister chromatid exchanges [9–11].
We have previously observed that immunodetection of �-tubulin
allows characterization of mitotic spindle abnormalities induced in
CHO-K1 cells by zineb and its Argentinean commercial formulation
Azzurro® (zineb 70%) [11]. However, the mechanisms of chromo-
somal aberration induction are not known.

Immunodetection of tubulins has been used to characterize
cytological changes induced by xenobiotics; effects are seen on
architecture and cell function. Test systems have been developed,
employing fungi and plant species, aimed at assessing the effects of
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agents on the cytoskeleton and mitotic apparatus. Aspergillus nidu-
lans, Allium cepa, Vicia faba, Hordeum vulgare, and Zea mays are
the most commonly used species [12–19].  In A. nidulans, effects
on the dynamics of tubulin polymerization were studied follow-
ing exposure to benzimidazoles and phenylalanine derivatives
[15]. In H. vulgare,  microtubule was evaluated following exposure
to cadmium chloride, econazole nitrate, benomyl, thiabendazole,
griseofulvin, thimerosal, and hydroquinone [14]. Another study
determined the effects of cycloheximide on microtubule structures
in A. cepa [12,13].

A. cepa L. is a suitable model for assessment of genotoxic com-
pounds and complex mixtures [20–22] and for in situ analysis of
contaminated soils [23–27].  This model is also widely used to inves-
tigate the role of microtubules on different structures involved
within cell division [28–32].  These structures, known as prepropha-
sic band (PPB), mitotic spindle (MS), and phragmoplast (Phrag)
are organized sequentially during mitosis and participate in deter-
mining level of division, chromosome segregation, and cytokinesis,
respectively.

We  have evaluated the effects on mitotic index, chromosomal
aberrations at anaphase/telophase, micronucleus, and immun-
odetected microtubule structures (PPB, MS,  and Phrag) following
exposure of A. cepa to the zineb-containing commercial formulation
Azzurro® (70% zineb).

2. Materials and methods

2.1. Test chemicals

Azzurro® (70% zineb) was kindly provided by Chemiplant S.A. (Avellaneda,
Buenos Aires, Argentina). Dimethyl sulfoxide (DMSO, CAS 67-68-5), bovine serum
albumin (CAS 9048-46-8), mouse fluorescein isothiocyanate (FITC)-conjugated
anti  �-tubulin monoclonal antibody, propidium iodide (CAS 25535-16-4), 4′ ,6-
diamidino-2-phenylindole (DAPI, CAS47165-04-8), and paraformaldehyde (CAS
68476-52-8) were purchased from Sigma Chemical Co. (St. Louis, MO,  USA). Orcein
(CAS 1400-62-0) was  obtained from Sistemas Analíticos S.A. “Biopack” (Ciudad
Autónoma de Buenos Aires, Buenos Aires, Argentina). Methanol (CAS 67-56-1),
EGTA (CAS 67-42-5), cellulase (CAS 9012-54-8) and pectinase (CAS 9032-75-1) were
obtained from Merck KGaA (Darmstadt, Germany), and PIPES (CAS 5625-37-6) was
purchased from MP  Biomedicals (Solon, OH, USA).

2.2. A. cepa meristematic cell source and fungicide treatment

Bulbs of onion (A. cepa L., 2n = 16) were procured from a local market. Hand-
picked bulbs of uniform size were scraped so that the apices of the root primordial
were exposed and their dry scales peeled off. Bulbs were prepared by removing
the  cataphylls and rootlets of the growth plate, to avoid damage. After rinsing
with tap water (1 h), three bulbs were placed in containers with filtered tap water
for  24 h to stimulate rooting. Bulbs were then selected for root growth start and
uniform growth length (1–2 mm).  Roots were exposed for 30 h to Azzurro® , 1 or
10  �g/ml (23 ◦C, constant aeration and light protection). Azzurro® concentrations
were selected according to previous studies on CHO-K1 cells [11]. Negative controls
were processed concurrently.

2.3. Conventional cytogenetic analyses

Following fungicide treatment, roots were cut, fixed in ethanol:acetic acid
(3:1), and stored in 70% ethanol (4 ◦C) until analyzed. Cytogenetic preparations
of  root meristem cells were performed using the conventional squash technique
after digestion with ClH (1 N, 15 min) and staining with acetic orcein. Slides were
coded and analyzed blind by one researcher with a 1000× optical light micro-
scope (Leica DMLB). Parameters analyzed were mitotic index (MI), micronucleus
(MN), and chromosomal aberrations at anaphase/telophase (CAs). The IM and MN
genotoxicity values were determined by analyzing at least 1000 cells per onion
for  each experimental point; CA were determined by analyzing 100 mitoses per
bulb. Chromosome abnormalities (acentric fragments, anaphases bridges, sticky
chromosomes, C-metaphases, multipolar and disorganized anaphases, lagging chro-
mosomes, chromosomal loss, and polyploid cells) were analyzed applying the
criteria described by Fiskesjo [21]. The criteria employed for identifying MN  were:
diameter of MN  varies between 1/16 and 1/3 of the diameter of the main nucleus;
not refractive; not linked to the main nucleus. The MN may  touch but not cover the
nucleus and its membrane must be seen clearly. The MN  staining is similar to the
main nucleus but can sometimes be more intense [33]. MI were expressed as the
number of dividing cells among 1000 scored cells. CAs were expressed as the total

number of aberrations per 100 anaphases/telophases, as the percentage of total CAs.
MN  was  expressed as the number of micronuclei per 1000 nuclei.

2.4.  Slide preparation and direct immunofluorescence ˇ-tubulin labeling

Following treatment, roots were fixed (45 min, room temp.) in 4% paraformalde-
hyde in microtubule stabilizing buffer (MSB) containing 50 mM PIPES, 5 mM MgSO4

and 5 mM EGTA in distilled water, as recommended by Eleftheriou and Palevitz
[32] with minor modifications. Fixation was followed by three washes with MSB
(45  min  each, room temp.). Afterwards, the MSB  was discharged, slides were incu-
bated with 10 �l MSB  containing cellulase 2% P/V-pectinase 20% V/V (20 min, 37 ◦C)
in  a humidified atmosphere, and finally rinsed three times (5 min each) in MSB. The
meristematic region was separated from the apex and placed flattened onto pre-
cleaned slide. A coverslip was placed, the squash technique applied, and then the
slides were fixed in methanol at −20 ◦C (15 min). After rinsing twice in MSB  (15 min
each), the cells were incubated with mouse FITC-conjugated anti-�-tubulin mono-
clonal antibody in a humidified atmosphere (37 ◦C, 3 h). The antibody was  diluted
1:50 in MSB  containing 3% bovine serum albumin. Subsequently, slides were rinsed
three times with MSB  (5 min  each), air-dried at room temp., stained with either
propidium iodide (0.1 �g/ml, 10 min) or DAPI (2.5 mg/ml  diluted to 0.05% V/V),
and mounted with an antifading medium (Vectaschield mounting medium H1000,
Vector Laboratories, Burlingame, CA, USA). Slides were coded and scored blind by
one researcher using a Leica DMLB fluorescence photomicroscope equipped with
an  appropriate filter combination and an integrated high-sensitivity monochrome
charge-coupled device (CCD) camera (Leica DFC 340 FX).

2.5. Analysis of microtubule structures anomalies

Preprophasic bands (PPB), mitotic spindles (MS), and phragmoplasts (Phrag)
were  scored, according to recommendations reported elsewhere [14,34,35]. Incom-
plete or abnormal MS,  tripolar spindles, incomplete PPB, and aberrant Phrag were
considered as abnormal structures. A minimum of 1000 microtubule structures per
sample were analyzed to determine the percentage of normal and abnormal figures
and the type of anomalies. Data were expressed as the frequency of abnormal figures
among 100 structures counted.

2.6. Statistical analysis

Results were analyzed using Student’s t-test with Statistica software (Stat Soft
1999). The chosen level of significance was 0.05 unless indicated otherwise.

3. Results

3.1. Conventional cytogenetics

No differences in MI,  MN  and CAs were observed between
untreated (negative control) and DMSO-treated cells (solvent con-
trol) (P > 0.05, Table 1). Both Azzurro® concentrations induced a
significant increase in the frequency of CAs in anaphase–telophase
(P < 0.05). Only the higher (10 �g/ml) concentration inhibited MI
compared to control values (P < 0.05). The most frequently observed
CAs consisted of abnormal anaphases and C-mitosis and, less often,
rings, bridges and lagging chromosomes (Fig. 1). The frequency
of MN did not differ from control values regardless of fungicide
concentration (P > 0.05, Table 1).

3.2. Analysis of microtubule structures

No alterations among the frequencies of normal BPP
(Figs. 2a and 3a-a′), MS  (Figs. 2b and 3b-b′), and Phrag
(Figs. 2c and 3c-c′) were observed between untreated (nega-
tive control) and DMSO-treated cells (solvent control) (P > 0.05,
Table 2). Treatment with Azzurro®, 1 or 10 �g/ml, induced a
significant increase in the frequency of abnormal PPB (P < 0.01), MS
(P < 0.001), and Phrag (P < 0.001) (Table 2). Further analysis of the
morphology of the microtubule structures showed that depoly-
merized PPB (Fig. 2d), depolymerized MS  (Figs. 2e, 3d-d′, 3e-e′), and
aberrant Phrag (Figs. 2f and 3f)  were the most frequently observed
abnormal structures after Azzurro® treatment, regardless of the
concentration tested (Table 2).
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Table  1
Mitotic index (MI), micronucleus (MN), anaphase–telophase aberrations (CA) in meristem root cells of Allium cepa exposed to Azzurro® .

Treatment MI  ± SD (%) MN  ± SD Total CA No of division cells CA ± SD (%)

Bridges Ring Lag C-met Dis An

Control 7.50 ± 1.80 5.4 ± 4.7 4 8 955 1.32 ± 0.32
DMSO  (1%) 7.53 ± 1.09 9.7 ± 10.0 3 4 870 1.17 ± 0.47
Azzurro  (1 �g/ml) 6.50 ± 1.30 10.0 ± 4.2 8 7 17 25 54 900 12.85 ± 4.37*

Azzurro (10 �g/ml) 3.80 ± 0.20* 11.2 ± 4.2 8 8 9 25 27 913 8.46 ± 1.54*

Lag, lagging chromosome; C-met, C-metaphase; Dis An, disorganized anaphase. MI,  expressed as percentage of mitoses among among 1000 interphase nuclei from each
experimental point; MN,  expressed as mean number of MN among 1000 interphase nuclei from each experimental point; CA expressed as number of aberrations among 300
anaphase–telophase per experimental point; SD, standar deviation; DMSO, solvent control.

* Student’s t-test p < 0.05.

Fig. 1. Allium cepa meristematic cells exposed to Azzurro® . (a) Abnormal metaphase; (b) abnormal metaphase with ring chromosome and sticky chromosomes; (c) abnormal
anaphase with bridge; (d) abnormal anaphase with vagrant chromosomes.

Fig. 2. Immunostaining of microtubule structures from Allium cepa meristematic cells with propidium iodide counterstaining. (a–c) Negative control cells; (a) preprophasic
band;  (b) mitotic spindle apparatus; (c) phragmoplast; (d and e) Cells exposed to Azzurro®; (d) depolimerized preprophasic band; (e) abnormal mitotic spindle; (f) abnormal
phragmoplast (1000×).
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Fig. 3. Immunostaining of microtubule structures from Allium cepa meristematic cells. (a–c) Negative control cells stained with DAPI. (a′–c′) Negative control cells labeled with
FITC  conjugated anti-�-tubulin. (a) Prophase; (a′) preprophasic band; (b) anaphase; (b′) mitotic spindle; (c) telophase; (c′) phragmoplast; (d–f) Azzurro®-treated cells stained
with  DAPI; (d′–f′) Azzurro®-treated cells labeled with FITC conjugated anti-�-tubulin; (d) disorganized metaphase; (d′) depolimerized mitotic spindle; (e) disorganized
anaphase; (e′) not formed mitotic spindle; (f) telophase; (f′) not formed phragmoplast (1000×).

Table  2
Frequency of abnormal microtubule arrays in meristematic root cells of Allium cepa
exposed to Azzurro® .a

Treatment PPB MS Phrag

Control 3.86 ± 3.41 – 3.03 ± 5.25
Azzurro 1 ug/ml 21.17 ± 5.52** 30.30 ± 3.60*** 37.64 ± 7.26***

Azzurro 10 ug/ml 22.41 ± 2.51** 17.59 ± 6.99*** 34.17 ± 8.04***

PPB, preprophasic bands; MS,  mitotic spindle; Phrag, phragmoplas.
a Expressed as number of abnormal figures among 100 microtubule arrays ana-

lyzed.
** Student’s-t test p < 0.01.

*** Student’s-t test p < 0.001.

4. Discussion

Azzurro® induced cytotoxic and genotoxic damage in A. cepa
meristematic root cells. The effect of the fungicide was evaluated
using observation of abnormalities of the microtubule structures
as endpoint. The method used provided a sensitive bioassay for
detecting damage at the cellular level. These observations verify
previous reports showing that microtubule structure anomalies are
a reliable tool in genotoxicity and cytotoxicity studies in animal
[11,36–43] or plant cells [44–47].

Azzurro® induced genotoxic effects, including disorga-
nized anaphases, C-metaphases, chromosomal aberrations, and
anaphase–telophase bridges, but not MN.  Cytotoxic effects were
observed as mitodepressive activity. These findings are consistent
with observations previously reported by us in other in vitro
systems, i.e.,  human lymphocytes and hamster cells [9–11,48,49].
In cultured peripheral blood lymphocytes, the total number of
chromosome- and chromatid-type aberrations was increased
within the 0.1–100 �g/ml Azzurro® dose range, whereas a reduc-
tion of mitotic activity was  observed with doses above 10 �g/ml [9].
Recently, we  observed induction of MN  when Azzurro®, 25 �g/ml,
was  added to cultures [49]. In CHO cells, equivalent concentrations
significantly inhibited mitotic activity (1–25 �g/ml) and, in the
comet assay, induction of DNA single-strand breaks was observed
only at doses higher than 100 �g/ml [48].

The tubulin immunodetection assay showed that exposure to
Azzurro® interferes with the formation of microtubule structures
during mitosis. However, the results of the present study differ
from those in CHO cells: multipolar spindles were present in CHO-
treated cells but not in A. cepa [11]. Failure to induce multipolar
spindles in A. cepa could be due to differences in the diversity of
microtubule organizing centers in animal cells and vascular plants.
Microtubule organizing centers of higher plants can be recognized
by the presence of �-tubulin [46,50]. Plant cells lack microtubule
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organizing center comparable to centrosomes; instead, micro-
tubule nucleation sites are distributed in the cytoplasm and in
membranes such as the endoplasmic reticulum, nuclear envelope,
or plastids. The microtubule organizing centers in seed plants are
diffuse and migratory, which makes them difficult to identify, a
major difference from centrosomes of animal cells [51].
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