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Electric and magnetic axion quark nuggets, their stability and their

detection

Osvaldo P. Santillán ∗and Mat́ıas Sempé †

Abstract

The present work studies the dynamics of axion quark nuggets introduced in [1] and developed
further in the works [3]-[15]. The new feature considered here is the possibility that these nuggets
become ferromagnetic. This possibility was pointed out in [16] for ordinary quark nuggets, although
ferromagnetism may also take place due some anomaly terms found in [17]-[19]. The purpose of
the present letter however, is not to give evidence in favor or against these statements. Instead, it
is focused in some direct consequences of this ferromagnetic behavior, if it exists. The first is that
the nugget magnetic field induces an electric field due to the axion wall, which may induce pair
production by Schwinger effect. Depending on the value of the magnetic field, the pair production
can be quite large. A critical value for such magnetic field at the surface of the nugget is obtained,
and it is argued that the value of the magnetic field of [16] is at the verge of stability and may
induce large pair production. The consequences of this enhanced pair production may be unclear.
It may indicate that the the nugget evaporates, but on the other hand it may be just an indication
that the intrinsic magnetic field disappears and the nuggets evolves to a non magnetized state
such as in [1]-[15]. The interaction of such magnetic and electric nugget with the troposphere of
the earth is also analyzed. It is suggested that the cross section with the troposphere is enhanced
in comparison with a non magnetic nugget but still, it does not violate the dark matter collision
bounds. Consequently, these nuggets may be detected by impacts on water or by holes in the
mountain craters [20]. However, if the magnetic field does not decay before the actual universe,
then this would lead to high energy electron flux due to its interaction with the electron gases of
the Milky Way. This suggests that these magnetized quarks may be a considerably part of dark
matter, but only if their hypothetical magnetic and electric fields are evaporated.

1. Introduction

The existence of lumps of quark matter has been postulated long ago [21]-[22]. This is not to be

confused with nuclear matter, which is composed by a large number of protons and neutrons whose

main interaction is due to nuclear forces. Instead, quark matter is approximately a Fermi gas composed

of 3NB quarks constituting a color singlet baryon of baryon number NB , and their interaction is much

weak, due the fact of the quotient of the cross section to the mass of the object σn/M is very small.

Some of these states of quark matter are composed only by u and d quarks, and these are known as

non strange quark matter. Other form is strange matter, which contains s quarks as well as u and

d quarks, in such a way that flavor equilibrium is established by weak interactions d → u + e + ν,

s → u + e + ν and s + u → d + u. Strange matter also contain gluons, and a small component of

electrons whose role is insure electric charge neutrality [22]. These strange lumps may be formed
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during an hypothetical phase transition of the early universe from a quark gluon plasma state to a

hadron phase. There is debate about the nature of this transition, it can be a first order or second

order one, a crossover or even an spinodal type of transition. But there are segregation scenarios which

predicts the formation of these lumps, irrespective on the order of the phase transition. An example

is given in the reference [23].

Strange form of matter has received special attention, since it is conjectured to have lower energy

per baryon number than ordinary nuclei, thus it may constitute a stable state [24]-[25]. In other words,

the energy per baryon is less than 930 MeV, at least at very low temperatures. An heuristic argument

for stability comes from the fact that a non strange quark lump posses a Fermi momentum pf ∼ 300-

350 MeV, while the strange quark mass is around ms ∼ 80-130 MeV. As the Fermi momentum is very

high in comparison, it may be energetically favored for some non strange quarks to become strange, as

this conversion may lower the energy and the Fermi momentum of the system. The estimations given

in [24]-[25] suggest that the inclusion of strange matter decrease the energy per baryon by 50-70 MeV.

The range of baryon numbers allowed for these objects is 102 < NB < 1057 [26]. The upper bound is

due to the fact that higher baryon numbers collapse into a black hole. The lower bound arises due to

shell effects which raise the energy per baryon.

The bounds 102 < NB < 1057 have been further constrained. By use of detailed balance arguments,

it is found that primordial nuggets with NB < 1052 evaporate. However [30] suggested that nuggets

with NB > 1046 survive hadron emission, and lower charge nuggets also survive due to reabsortion

of hadrons. Another constraint comes from nucleosynthesis. The point is that, if quark nuggets exist

and are stable, then iron may not be the ground state of nuclear interactions. This is a delicate aspect

when studying nucleosynthesis and was initially considered in [37]. For instance, for an inflationary

universe with Ω = 1, the prediction of the density of the 3He and D elements is below the observed

value. This problem may be solved if there is some unknown mechanism of photodisintegration of 4He

into this elements. This requires high energy photons which may be produced by decay of massive

neutrinos by non standard interactions. Such channels may be sourced by the presence of quark

nuggets through a weak interaction of high order, as in this case the decay rate will be close to zero.

Despite these observations, it was suggested in [38] that quark nuggets with 1016 < NB < 1022 are

consistent with a universe with Ω = 1 and with the predicted abundances of the light elements. This

motivated a special interest for studying the cosmological consequences of these objects, in particular,

in dark matter applications.

The mass density of a quark nugget is ρ ∼ 35. 1016kg/cm3, and its mass is approximately 6m =

NB GeV. The surface electron cloud for nuggets with NB < 1015 extend to a distance r ∼ 10−8 cm

from the surface while for very high baryon numbers this distance can be around 400 fm. Such nuggets

therefore possess a Coulomb barrier, with a value close to 10 MeV. Due to this barrier, only neutrons

at low energies may be absorbed by the nugget. There is also a probability of emission of a neutron.

Further stability issues were considered in [26]-[36], and it is believed that stable nuggets have a mass

in the range 10−8 kg< mn < 1020 kg. Thus, very large quark nuggets may masses of planetary order.

2



Several years ago it was suggested that quark nuggets may reach a highly magnetized final state

[16]. This observation is partially motivated from the Bloch works about the possible ferromagnetism

of an electron gas [39]. This hypothesis was supported in [40], who showed that for an electron gas

in a fully polarized state the ferromagnetic state is stable. These claims were subsequently tested

for a quark liquid in [16] and some evidence supporting a ferromagnetic state was collected for quark

nuggets. The presence of an intrinsic magnetic field is an attractive feature, as it may make the nugget

more stable if B < 1016T [41]. A problem is that such highly magnetized magnetic fields may violate

the collision requirements for dark matter. However, it was shown in [20] that due to the fall of the

magnetic field as R−3, the resulting cross section is acceptable for representing dark matter.

The present work is devoted to the effect of such magnetic fields in a different type of quark nuggets,

which were introduced in [1], in which the quarks are trapped in the bulk of an axion domain wall.

There are several theoretical reasons for which these axion quark nuggets are interesting. First, the

axion particle is an attractive candidate for solving the CP problem in QCD [48]-[50]. However, the

formation of axion domain walls is problematic, since they generate an energy density which largely

overcomes the critical density. Nevertheless, there are some axion models for which the axion domain

structure does not possess this problem [42]. These domain walls induce a large value of baryon

number due to the fermions living on the wall, which can be shown by bosonization techniques [6].

Due to the surface tension, these wall tend to contract and segregate baryons and anti-baryons. It is

likely that the contraction of these objects stops when the surface tension compensate the pressure

difference and the resulting bubble enters into the CS phase [54]-[55]. These nuggets may be formed

without relying on the order of the phase transition from the quark gluon plasma to the confined

phase.

The organization of the present work is as follows. In section 2.1 the modified Maxwell equations

for magnetized quark nuggets in presence of an axion domain wall are considered. It is argued that

neither the magnetic field found in [16] nor the axion wall profile are considerably deformed by the

interaction between each other. The resulting electric field in the nugget is then estimated. In section

2.2 the pair creation by Schwinger effect in the wall is calculated by use of several methods, and it is

argued that the magnetic field [16] is at the verge of stability. In section 3 the fate of a quark nugget

impacting in the earth is analyzed and its possible detection is specified. It is also argued that if these

nuggets had a density close to dark matter then they would generate a high energy flux due to their

interactions with the Milky Way electrons. Section 4 contains the interpretation of the results.

2. Ferromagnetic axion nuggets

2.1 The equations describing the configuration

If the arguments of [16] about a possible ferromagnetic nature of these nuggets are taken into account,

then there should be a magnetic field B due to bulk effects inside the object. For standard nuggets,
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the reference [16] presents a magnetic field that scales as

B =
B0r

3
n

r3
. (2.1)

Strictly speaking, a nugget does not have a spherically symmetric radial magnetic field. In fact it may

depend on the polar ψ angle in spherical coordinates. The value (2.1) represents a extrema value say,

at certain north or south pole drawn on the nugget. This extreme numerical value at the surface of

the nugget rn is estimated as B0 ∼ 1012±1T or B0 ∼ 1016±1Gauss [16]. For ordinary quark nuggets,

the work [41] suggests that such large magnetic field increase the stability of the configuration, if it

does not reach a critical value of the order B ∼ 1016T.

Consider now a magnetized quark nugget as above, but including an axion domain wall [1]-[15]. The

domain wall profile function is denoted by a(r), and interpolates between two axion vacuums a0 and

a0 + 2πfaN with fa the axion constant, whose standard values run between 109GeV< fa < 1012GeV

[42]. The value of N is usually not far from unity. The choice of the window of values for fa has been

justified previously as follows. Below the QCD temperature Tqcd ∼ 100 − 150 MeV, there appears an

induced periodic potential U(a), and the axion becomes light but massive. A customary assumption

is that the axion is at some value of the order of the top of the potential U(a) at the time where

this transition occurs. When the Hubble constant is of the same order as the axion mass this pseudo

scalar falls to the potential minimum and starts coherent oscillations around it. The initial amplitude,

which correspond to a maximum, is A ∼ fa and thus, the energy stored at by these oscillations is

of the order E ∼ A2m2
a. The authors of [43]-[45] analyzed the evolution of these oscillations to the

present universe and found that the axion energy density today would be larger than the critical

one ρc ∼ 10−47GeV4 unless the bound fa < 1012GeV takes place. On the other hand, there are

phenomenological observations which fix this scale fa > 109GeV [46]. This lower bound is required for

suppressing the power radiated in axions by the helium core of a red giant star to the experimental

accuracy level. Current algebra methods [47] estimate the axion mass by the relation

ma ∼ mπfπ
fa

. (2.2)

This fixes the axion mass in the window 10−6eV< ma < 10−3eV. The axion potential U(a) is given

in these terms by

U(a) =
m2

πf
2
π

2

(
1− cos

na

fa

)
. (2.3)

Here n takes integer values, which depends on the particular axion model in consideration.

It should be emphasized however, that the previous discussions holds for the standard QCD axions

[48]-[50]. There exists several alternatives to this picture. An example are axion models which try

to avoid the isocurvature problems [51]-[52], examples can be found in [53] and references therein.

Nevertheless, the present work is focused in the standard QCD axion [48]-[50], as the axion nuggets

in [1]-[15] seems focused in these type of Goldstone pseudo-bosons.

The explicit form of the function a(r) describing the axion domain wall is not too relevant in the

following discussion. The important point is that a(r) evolves from one vacuum to the other in a
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radial distance of the order

R ∼ (0.3 − 0.5)
N

1
3
B

160MeV
(10−3 − 10−6),

the last factors take into account the axion mass bound 10−6eV< ma < 10−3eV, which is assumed

to hold in the present work. The baryon number range that the references [1]-[15] employ is 1023 <

NB < 1032. For the larger baryon number one has 10−6cm< R < 10−3cm, while for the smallest value

10−9cm< R < 10−6cm. The mass bound is given by 10−6kg< mn < 105kg, thus these objects can

be quite heavy. The value NB ∼ 1025 is attractive in the context of the physics of the 511 KeV line

emission from dwarf galaxies [14], but it will be assumed that the whole range is valid.

In presence of an axion field a(x, t), when a magnetic field is turned on, an electric field is induced

and viceversa. This follows from an inspection of the Maxwell equations in presence of an axion field,

which are given by

∇ ·E = −gaγγ∇ · (aB) + 4πρe, (2.4)

∇× E = −∂tB, (2.5)

∇ · B = 0, (2.6)

∇×B = ∂tE + gaγγ∇a× E − gaγγB∂ta+ 4πJ, (2.7)

�a+
∂U

∂a
= −gaγγE · B. (2.8)

The axion dependent terms in these equations arise due to the interaction La = gaγγaE ·B between the

axion and the electromagnetic field. Here gaγγ = cα/πfa with α = 1/137 the fine structure constant.

The constant c is model dependent, but its value is not far from the unity. It is seen from (2.4) that

the quantity ρa = −gaγγ∇·(aB) can be interpreted as a charge source for the electric field, not present

in the standard Maxwell theory. Thus, when a magnetic field passes through an axion wall, an electric

field is induced due to this source. In addition, U(a) is the axion potential defined in (2.3).

From the discussion given above it follows that the magnetic field (2.1) is modified due to the

equation (2.7). Furthermore, an electric field E is induced, as is seen from equation (2.4). It is

explicitly given by

E = −gaγγaB. (2.9)

The presence of the electric field may generate electron positron pairs due to Schwinger effect. The

stability of the configuration is then compromised if the resulting electric field (2.9) is very strong.

Clearly, the axion profile a(r) of references [1]-[15] should be modified in presence of the magnetic

field B, which is also deviated from its original form (2.1). In fact, the equation (2.5) shows that

∇×E = 0, as the magnetic field B is static. In other words, the electric lines for the configuration are

never closed. This may be non true if ∇× (aB) 6= 0, as seen from (2.4), unless the profile a and the

magnetic field B(r) are adapted for this to happen. Thus, the task of solving the explicit profiles may

be a complicated one. For this reason, it will be assumed below that the axion domain wall function
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a(r) keep its shape approximately and that the magnetic field B(r) do not deviate considerably from

(2.1). But before considering the decay of the induced electric field by Schwinger effect, it may be

convenient to justify these approximations first.

Consider first the approximation that the magnetic field does not deviate considerably from the

functional dependence (2.1). The term Ja = gaγγ∇a×E is the axion induced current in (2.6). If one

assumes that the field a make a sudden change of a→ a+ 2πfa at the nugget surface, then the axion

surface magnetization is proportional to M ∼ 2πfagaγγE × n with n the surface unit normal. The

induced magnetic field at the surface is of the order |Ba| ∼ |M |. But |M | ∼ fagaγγ |E| and, by taking

into account that E = −gaγγaB, it follows that |Ba| ∼ |M | ∼ f2ag
2
aγγ |B| ∼ α2|B|. This suggest that

the magnetic field Ba induced by the axion current is around four orders of magnitude smaller that the

internal magnetic field (2.1), and thus the axion current does not deviate the value (2.1) considerably.

Another heuristic argument for this statement about Ba comes from the study of the magnetic field

of an infinite wire with radius rw ∼ m−1
a near its border. This magnetic field is Bw ∼ µ0Jw/rc with rc

the standard cylindrical radius. If the field value in the border of the wire is near B = 1012±1 TeV, then

its current should be Jw ∼ 1012±1 TeVma. On the other hand, the axion current is Ja = gaγγ∇a×E,

this follows from (2.6). If the domain wall a is not considerably modified, it should have a size of

length La ∼ m−1
a and therefore, the current is of order |Ja| ∼ gaγγ∆amaE. But the equation (2.4)

shows that E = −gaγγaB and therefore

|Ja| ∼ g2aγγ∆a
2maB ∼ 1

(137)2
maB.

Here the fact that ∆a ∼ 2Nfaπ has been taken into account, with N an integer not far from unity.

This current is fourth orders of magnitude larger than J ∼ 1012±1 TeVma, which suggest that the

induced magnetic field due to the axion wall is of smaller order than the magnetic field (2.1) itself.

The estimations given in the last two paragraphs assume that the profile a(r) is not strongly

modified in presence of a magnetic field. To see that this may be the case, one should check that

the term E · B is not considerably larger than ∂aU in (2.8), otherwise the axion domain wall will

be considerably deformed by this new term. Since the potential (2.3) can be approximated for small

values of a as ∂aU ∼ m2
aa and gaγγE ·B ∼ g2aγγaB

2, with B ∼ 1011±1T, one has to check that

m2
a ∼ m2

πf
2
π

f2a
> g2aγγ10

22±2T2 ∼ 1

(137)2f2aπ
2
1022±2T2.

Butm2
πf

2
π = 10−4 GeV4 and 1022±2 T2 ∼ 10−10±2 GeV4, and thus the last inequality is true. Therefore,

the assumption that the magnetic field B do not deviate from its form (2.1), and that the electric field

E does not induce a considerable deformation of the domain wall is, at least, consistent. This is the

approximation to be used below.

The field (2.1) is induced by a ferromagnetic behavior of a quark liquid at the bulk of the nugget.

On the other hand, the axion wall can be a source of a magnetic field as well. This is understood from

an analysis of anomaly terms for axions [17]-[19], in presence of a non zero chemical potential, which

is the case for a nugget in the Color Superconducting phase [54]-[55]. There are two anomaly terms,
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one is the standard one L1 ∼ aFµν F̃
µν , which induces the decay a → γ + γ by the ABJ anomaly

diagram. However, in presence of a non zero chemical potential µ there is a further WZW type of

anomaly term given by [17]-[19]

L2 =
e2C

4π
µB · ∇a.

Here B is an external magnetic field, and C a model dependent constant, but not far from unity. From

the fact that ∇ · B = 0 it is seen that this term is a total derivative, thus it does not contribute to

the equations of motion. However, the presence of this term is not trivial. To see this, consider a flat

axion domain wall. Then this term induces an extra energy contribution proportional to µBA with A

the area of the wall. This energy is produced by a magnetic moment by unit area located at the wall,

given by

M =
e2C

4π
µ.

For a spherical wall, the total magnetic moment may be zero, since the gradient contributions of a

at opposite points are equal and of opposite sign. This implies that the leading contribution to the

external magnetic field is the quadrupole one. However, for a simple estimation, one may remember

that for a magnetized sphere at the south and north poles the magnetic field is |B| = µ0|M |, with
M its uniform permanent magnetization. If this value is employed as a guide for a magnitude order,

then it is mandatory to estimate the value of M . By a naive application of formula (57) of [18] one

finds that

M ∼ 1012
Tµ

1.5GeV

∆

30MeV
.

Here ∆ is a gap characterizing the formation Cooper color pairs, by assuming that the evolution of

the object is such that the CFL phase is achieved [54]-[55]. A typical value for the chemical potential

is 1GeV and ∆ ∼ 50 MeV. This implies that the magnetic field these references predict may be of the

order of B ∼ 1012T, which is pretty close to the value of [16]. The physics describing these fields is

however different.

In view of the present discussion, a generic magnetic field will be considered below without relying

wether it is induced by the axion wall or by the quark liquid inside the nugget. The working assumption

is then that an electric field E = −gaγγaB is induced, and the task is to estimate its decay probability

due to electron positron pair production.

2.2 Schwinger effect and estimation of the critical magnetic field of the configu-

ration

In order to study the electron positron creation by the induced electric field E, one may avoid the

complication of the inhomogeneity of the electric field E and simply assume that E ∼ gaγγa0B0 with

B0 the surface magnetic field of the bubble. This is the roughest possible approximation. In this

situation, the vacuum persistence probability is given by

P0 = | < 0i|0f > |2 = exp(−
∫

M
dx4we).
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Here the rate of pair creation w by a constant electric field E is expressed by the well known Schwinger

formula

we =
2e2E2

π2

∑

n=1

1

n2
e−

m2
eπn

eE . (2.10)

This formula implies that the vacuum transition probability can be written as follows

P0 = | < 0i|0f > |2 = exp

(
− 2V TαE2

π2

∑

n=1

1

n2e
m2

eπn

eE

)
.

The approximate volume occupied by the field is roughly Vf ∼ 4πR3/3. The critical field electric field

is

Ec ∼
m2

e

e
. (2.11)

If the critical field is reached, then evaporation in electron positron pairs may be relevant. This will

be the case when

E =
4cB

137
=
m2

e

e
.

Taking into account that |E| ∼ gaγγfa|B| happens when the numerical value of the magnetic field at

the surface is B ∼ 1011 T.

The conclusion given above is avoiding some subtle point. From the relation E = −gaγγaB it

follows that the magnetic field and the electric field of the bubble are collinear. In this situation, it

is known that the magnetic field B suppresses pair creation for scalar fields if it is large enough, but

enhance it for fermions [70]-[71]. Thus, the pair production corresponding to the value B found above

may be too large. To see that this is not the case, recall that the rate of electron positron pair creation

when the collinear magnetic field is turned on is given by [70]

wm =
2e2EB

π2

∑

n=1

1

n
e−

m2
eπn

eE coth
πnB

E
.

From this formula it is seen that a large magnetic field increases w. In the present case, the magnetic

field is large, but it is related to the electric field by E = −gaγγaB with a taking values close to 2π.

By taking into account that gaγγ = cα/πfa it follows that E ∼ αB, with α the fine structure constant.

The rate given above is then

wm =
274e2E2

π2

∑

n=1

1

n
e−

m2
eπn

eE coth(137πn). (2.12)

The leading term of (2.12) and (2.10) represent the pair production rate by unit time and unit volume.

These are

Ne =
2e2E2

π2
e−

m2
eπ

eE , Nm =
274e2E2

π2
e−

m2
eπ

eE coth(137π). (2.13)

Now, a rough approach for estimating the value of the field E for which pair creation is significant

may be to evaluate the first rate (2.13) at the value Ec = m2
e/e and find the electric field E such that

the second rate has the same numerical value. The cotangent factor in (2.12) is close to the unity and

can be neglected. Then the numerical relation defining E is thus given by

137E2e−
Ec
E = E2

c e
−π.
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The last equation can be cast in the Lambert form

Ec

2E
e

Ec
2E =

1

2

√
137eπ .

From here, the solution is given in terms in the Lambert function W (x) as follows

Ec

2E
=W (

1

2

√
137eπ) ∼ 2.44.

This means that E ∼ Ec/4.5. Thus, the magnetic field does not change considerably the value of the

electrical field for which pair creation is appreciable. For this reason, the presence of the magnetic

field when studying pair creation can be neglected in this specific case, even though the nugget

magnetization is quite large.

The estimation made above assumes that the electric field is uniform in the volume Vf ∼ 4πR3/3.

But this estimation may be not accurate, as the field E is varying inside the wall. Thus, it is of interest

to study the effect of the inhomogeneity of the field inside the wall. A possible approach is to assume

that the radius of the bubble is large enough and to analyze what happens at the pole. There are

several works that derive results when such inhomogeneities are present [56]-[69], and in the following

these references will be followed closely. In order to study the role of the inhomogeneities, the electric

can be approximated by a one dimensional one E = E(z) where the axis ẑ connects the pole to the

center of the sphere. The field to be considered is of the Sauter form

E = E0 sech
2 z

R
. (2.14)

This choice is simply for convenience, as Schwinger pair creation is understood for this types of

potentials [56]-[69]. We have investigated other type of shapes, as shown in the appendix. However,

the results are mathematically more complicated and we do not believe that they change qualitatively

the present result. One of the reason for believing that is that the Sauter electric field (2.14) is

localized in a region of width R, and this imitates the field living on the axion wall bulk. Of course

the functional form postulated above correspond to a flat situation and not to a spherical one. But

for the sough estimation it may be enough. An important point is that, if the instanton method is to

be used for estimating the pair production, the two conditions eER >> me and meR >> 1 should

be fulfilled. The second is immediately satisfied since le ∼ m−1
e ∼ 10−13cm, which is much smaller

that the nugget radius estimated above. The first condition can be rewritten as eE >> 1/Rle. But

for electric fields near to the critical value one has eE ∼ 1/l2e and therefore eER ∼ R/l2e >> me, as

le << R. Thus, both conditions are satisfied for fields with values close or larger than the Schwinger

critical field. In this situation, there exists a formula for the pair production per area [67] which,

applied to the present case, gives

Nf =
2(eE0)

3

2π2m3
a

∫ ∫

R

(
coshZy − coshZx

coshZ − coshZx

)
(y2 − x2)dxdy, Z =

2πeE0

m2
a

.

The region R of integration is given by

R = {(x, y)| − 1 ≤ −y ≤ x ≤ y ≤ 1, ǫ2 ≤ (1− x2)(1− y2)}, ǫ =
mema

eE0
.
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In order to understand if the spatial inhomogeneity decreases pair production, assume that the electric

field is such that δ = eE0/πm
2
e >> 1. This is equivalent to say that the pair production becomes

significant when the value of E0 is considerably larger the critical field (2.11). Then the last formula

can be approximated by

Nf ∼ (eE0)
5
2

6π3m
.

In these terms, one may calculate a value E0 such that the last expression is equal to the value of Ne

in equation (2.13) evaluated at Ec. This calculation yields the following result

eπ

3

(
E0

Ec

)2√
δ = 1.

But this equation should be applied only for δ >> 1, as follows from the assumption that E0 >> πEc.

This condition contradicts the last equation. This implies that δ ∼ 1 and therefore the sough field

can not be much larger than Ec. This reasoning suggest that the spatial inhomogeneity does not alter

considerably mean value of pair production on the axion wall.

The result given are somehow similar to one related to scalar pair production for Sauter fields and

found in [56], but generalized to fermions. In that reference, it is found that the quotient of the rate

of pair creation for a Sauter field ws and for a uniform electric field we is given by

ws

we
= (1− γ2)

5
4 e

− m2
e

πeE

[
2

1+
√

1−γ2
−1

]

, γ =
me

eER
.

This quotient shows that the rate is suppressed due to the inhomogeneity parameter γ, which tends

to zero when R→ ∞. But the inhomogeneity parameter for the quark nugget with size R considered

here is much less than unity, and there is no significant numerical difference between ws and we. The

results of the previous paragraph generalize partially this result to the case in which there is electron

positron pair production instead of scalar fields.

The above discussion suggest hat a magnetic field of B ∼ 1011T may induce pair production

considerably. The value of the reference [16] is B ∼ 1012±1T, which shows that these magnetic field

is at the very verge for stability. The magnetic field of the references [17]-[19] are also of this order.

Thus, there may be considerably pair production, unless the combined physics axion quark gluon

plasma does considerably change the value of the magnetic field.

It is not clear for us what is the real fate of such nugget. These apparent instability may indicate

that the nugget evaporates, or simply that the ferromagnetic state is not effective due to pair decay

of the electric, and thus the magnetic field disappears. In the following, the second possibility will be

considered. In this case, the nugget will evolve to the state described in [1]-[15]

2.3 Further comments about the approximations made

There are some approximations made during the previous analysis, such as (2.9), which were justified

by use of the classical Maxwell equations (2.4)-(2.8). However, due to the strong nature of the electro-

magnetic field considered, there are quantum corrections to be added to Maxwell equations. This is
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due to the fact that the influence on the quantum vacuum of these fields may generate non linearities,

which should be properly included in the scenario. These linearities are an active research area, and

have several interesting effects. First, the photon polarization tensor in presence of homogeneous elec-

tromagnetic external fields was studied in [75] and [76]. The effect of slowly varying inhomogeneities

was also considered for instance in [77], and the magnetic response in presence of Coloumb sources

was studied in [78]. In addition, the presence of magnetic fields produce an enhancement at the light

shinning through wall experiments designed in [79]-[80], which may be seen in a near future. Further

applications of these non linearities for laser fields were considered in [81]. In addition, the interac-

tion between micro-bubbles with ultra intense laser pulses, by taking into account the QED vacuum

polarization, was studied in [82]. A research of QED vacuum polarization in presence of axion fields

was initiated in [83]. These result may have interesting cosmological applications.

The fact that the physics of QED non linearities is so rich raises an issue about the affirmation

made above that the nugget electric field En > Ec, as it may be the case that the non linearities

change its numerical value and render it subcritical En < Ec. We will argue below that this is not the

case. In order to see these effects, recall that the exact one loop QED effective lagrangian is given by

LHE = Lm +Laγ +
1

2(2π)2

∫ ∞

0

ds

s3

[
e2ǫβs2 coth(eǫs) cot(eβs)− 1− e2

3
(ǫ2 − β2)s2

]
e−is(m2

e−iη). (2.15)

This is the well known Euler-Heisenberg lagrangian. Here Lm is the Maxwell lagrangian, Laγ is the

axion photon coupling defined above and the following quantities have been introduced

ǫ =

√√
S2 + P 2 + S, β =

√√
S2 + P 2 − S,

S = −1

4
FµνF

µν =
1

2
(|E|2 − |B|2), P = −1

4
Fµν F̃

µν = E ·B.

As is well known, the Euler-Heisenberg lagrangian contains a real part and an imaginary one. The

imaginary part describes pair creation, which was analyzed in previous sections. However, the real

part describe corrections to the Maxwell equations due to quantum effects.

It is difficult to evaluate the integral (2.15) explicitly. However, in some limits, its approximate

form is known. For instance, the fields satisfying the condition ǫ << Ec and β << Ec are known as

weak fields. In this limit, the real part of the lagrangian (2.15) may be approximated by (see [72]-[74]

and references therein)

LR
HE ≃ Lm + Laγ +

2α2

45m4
e

(4S2 + 7P 2) +
64πα3

315m8
e

(16S3 + 26SP 2). (2.16)

The modified Maxwell equations that follow from (2.16) are

∇ · B = 0, ∇× E = −∂B
∂t
,

∇ ·
[(

1

2
+

8α2

45m4
e

S +
64πα3

315m8
e

(24S2 + 13P 2)

)
E

]
= 4πρe −∇ ·

[(
gaγγa+

28α2

45m4
e

P +
64π52α3

315m8
e

SP

)
B

]
,

∂

∂t

[(
1

2
+

8α2

45m4
e

S +
64πα3

315m8
e

(24S2 + 13P 2)

)
E +

(
gaγγa+

28α2

45m4
e

P +
64π52α3

315m8
e

SP

)
B

]
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= −∇×
[(

1

2
+

8α2

45m4
e

S +
64πα3

315m8
e

(24S2 + 13P 2)

)
B +

(
gaγγa+

28α2

45m4
e

P +
64π52α3

315m8
e

SP

)
E

]
.

In order to see if these corrections suppress the value of the electric field En, we have checked numer-

ically that given a constant solution B ∼ 1011T , the resulting electric field is E > Ec, so it seems that

quantum corrections do not suppress it considerably. The fields where assumed to be time independent

for simplicity. In fact, the approximation (2.16) assumes that the weak limit ǫ << Ec and β << Ec,

but it can be seen by inspection of the quantities defined below (2.15) that this is not the case for such

enormous magnetic field. This means that the approximation (2.16) breaks down for B ∼ 1011T .

The right situation to consider is instead B >> Bc and E << Ec. Some limit cases are well

known. The approximate form of the Euler-Heisenberg lagrangian for large electric magnetic fields

B >> Bc = Ec/e and no electric fields is the well known Weisskopf lagrangian [72]-[74]

LR
HE ≃ Lm + Laγ +

e2B2

24π2

[
log

πEc

B
+ γ

]
+
e2B2

4π4
ζ ′(2). (2.17)

Here γ ∼ 0.577216 is the Euler-Mascheroni constant and ζ(z) is the Riemann zeta function. For large

electric fields E >> Ec and no magnetic field the result is [72]-[74]

LR
HE ≃ Lm + Laγ +

e2E2

24π2

[
log

πEc

E
+ γ

]
− e2E2

4π4
ζ ′(2). (2.18)

For the case E << Ec and B >> Bc, which is the situation of interest here, the real part of the

lagrangian is described by the following series expansion [72]-[74]

LR
HE =

1

2(2π)2

∞∑

n,m=−∞

1

τ2n + τ2m
[(1− δm0)J(iτmm

2
e)− (1− δn0)J(τnm

2
e)]. (2.19)

Here

τn =
nπ

eǫ
, τm =

mπ

eβ
,

and the following function

J(z) = −1

2
[e−zE(z) + ezE(−z)],

has been introduced, with E(z) is the exponential integral function. Now, if it were the case that

B >> Bc and E << Ec, then 2S ∼ −|B|2 and P << −S. Thus

ǫ ∼
√

1

2
|S| |P ||S| ∼ E << Ec, β =

√
2|S| ∼ B >> Bc.

The denominator in (2.19) grows with n and m. The functions J(z) in the numerator tend to zero

for such large values. Based on this, one may consider the terms with n,m = 0, 1 as the leading ones.

This leads to the following approximated lagrangian1

LR
HE = − 1

2(2π)2
e2ǫ2

π2
J

(
π2m2

e

e2ǫ2

)
+

1

2(2π)2
e2β2

π2
J

(
iπ2m2

e

e2β2

)
+

1

2(2π)2
1

π2

e2ǫ2
+ π2

e2β2

[
J

(
iπ2m2

e

e2β2

)
−J
(
π2m2

e

e2ǫ2

)]
.

1In fact, one may use some summations formulas given in [72]-[74] to include much more terms, but for the estimation
to be done here we will assume that the first terms are enough.
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Still, if ǫ << β, this may be approximated by

LR
HE = − 1

(2π)2
e2ǫ2

π2
J

(
π2m2

e

e2ǫ2

)
+

1

2(2π)2
e2β2

π2
J

(
iπ2m2

e

e2β2

)
.

By taking into account that ǫ ∼ E and β ∼ B, and that

J(z) ∼ − 1

z2
, z << 1, J(z) ∼ − log(z) z >> 1,

it is found that

LR
HE ∼ 1

4π4
e6E6

m4
e

+
e2B2

8π4
log

(
π2m2

e

e2B2

)
.

This lagrangian should be added to the standard Maxwell one, together with the photon axion cou-

pling. In similar fashion as above, we have played with the resulting equations of motion. We find

that, if it is assumed that E << Ec, the corrections to the Maxwell equations are small. On the other

hand, if the corrections are small, this implies that the classical picture is still valid and E >> Ec.

This contradiction suggest that the assumption of small electric field is not quite right.

The arguments given above are not complete proofs, and they do not have into account higher

loop calculations [84]-[85]. But we conjecture that the effect of the non linearities will not correct the

electric field from a classical value E >> Ec to a corrected value E << Ec. It is worthy to mention

that there exists a discussion in the literature about the possible role of the non linearities in QED

for rotationally powered pulsars, with large magnetic fieldsr, as shown in [86] and references therein.

The reference [86] argues that these effect are negligible, at least for certain types of neutron stars.

Based on these heuristic argumetns, we assume that the non linearities of QED do not change the

supercritical value of En and that the relation (2.9) and the estimated values obtained in previous

section still apply for axion quark nuggets.

3. Imprints of a electrified nugget

3.1 Enhanced cross section at the troposphere

The study of the cross section of a quark nugget passing through the troposphere is important for

understanding which methods are suitable for their detection.

It should be recalled that for a non magnetized quark nugget [87] it is usually assumed that its

cross section σn is given by the cross sectional area of its core mass density. In this terms the following

formula for the energy loss of a quark nugget

dE

ds
= −σnρv2, σn = π

(
3m

4πρn

) 2
3

,

is found. One may consider velocities of the order v ∼ 250km/s, which are characteristics of the Sun

galaxy rotation. Here ρ is the medium density the nugget is passing through. The formula given above

is inspired by the physics of meteorites. The quark nugget density is approximately ρn ∼ 1018kg/m3.

This formula allows to analyze if the nuclearity passing through the earth will accumulate at the crust
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or if it will pass through the earth. Besides, a nuclearity that pass through the air or water deposit

part of its energy in terms of visible light. The authors of [87] calculate the fraction of the dissipated

energy in terms of visible light, by assuming that the light is emitted as a black body radiation from

an expanding cylindrical shock wave. In this terms, they derive a formula for the luminosity of these

objects and discuss possible detection mechanisms based on these formulas.

This picture changes when the nugget entering into the earth has a magnetic field B turned on.

A first attempt for studying their energy deposition is to consider some known formulas for magnetic

objects such as monopoles, which in principle may be also applied to a magnetized nugget [88].

However, it may be convenient to generalize the results obtained in [20] since they take into account

that the nugget is surrounded by a plasma when it enters in the troposphere. In this approach, the

physics of a magnetized nugget is as follows. When the nugget enters into the 20 km region covered by

the troposphere, it finds a neutral medium. There is oxygen and nitrogen in this region. The oxygen

binding energy is around 8 KeV. The Zeeman term that arises from the interaction of these atoms

and the nugget magnetic field is given by Lz ∼ µbB with µb ∼ 93.10−25J T−1 the Bohr magneton. It

is seen by passing to natural units that Lz ∼ 6.10−5eV T−1B. Therefore the Zeeman energy will have

a numerical value close to the keV scale when B ∼ 107±1T. By taking into account that the magnetic

field depends on the radius by a law of the form B ∼ r−3 in the model introduced in [16] and by taking

into account that at the surface B ∼ 1011±1 T, one may assume that, inside a radius r ∼ (10−102)rn,

there is enough Zeeman energy for ionizing oxygen and hydrogen. Thus, in this region, the surrounding

medium is approximately an ionized plasma. Assume that the nugget has a velocity v, which is not

relativistic. In the system in which the bubble is at rest there is an incoming plasma with a speed −v.
The particles tend to make a round trajectory, of Larmor type, when approaching the region where

the magnetic field is strong, the plasma pressure does not allows this to fully happen. Thus, there is a

surface formed in which the plasma pressure equals the magnetic pressure. The plasma ram pressure

is Pr ∼ ρv2 up to a model dependent constant which is not far from unity. The magnetic pressure is

Pm ∼ B2/µ0. By taking into account the dependence B = B0r
3
n/r

3 is considered, then the condition

Pm = Pr shows that the plasma particles are allowed to approach the nugget up to a radius

re ∼
(
B2

0r
2
0

µ0ρpv2

) 1
6

. (3.20)

The cross section then can be approximated in natural units by [20]

Qn ∼ πr2e ∼
(
B2

0r
2
0

ρpv2

) 1
3

. (3.21)

In other words, this cross section is simply the two dimensional area of a disc of radius re, which is

enhanced due to the magnetic field.

At this point, the calculations given above are the ones already presented in [20]. These calculations

assume that the nugget electric field is zero. However, as discussed in previous sections, in presence

of an axion domain wall surrounding the object plus a magnetic field, an induced electric field En is
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induced. Thus, one needs to evaluate the effect of the electric field in those formulas. Our estimation is

that the formula (3.21) is not significantly changed, and the reasoning goes as follows. The plasma may

be considered a fairly good conductor, and it will try to expel somehow this electric field by forming

a charged surface, a shield, which distorts the value of re. There are two electric field contributions,

the nugget original field En and one the induced plasma Ep. This electric field repels charges of one

sign and attracts the others. On the other hand there is a tendency of the plasma to screen the

electric field, as the plasma is a good conductor. It is not clear if the presence of the electric field

deforms considerably the magnetic surface r = re found above or not. However, some estimation can

be made. Consider the new surface r = r′e, the border to which the charges are allowed to approach

the electrified and magnetized nugget. If this surface is though as the boundary of a conductor, the

force on a surface element with area ∆S is F = σEc∆S where Ec is the surface electric field. The

electric field of an ideal conductor is normal to the surface and Ec ∼ σ/ǫ0 with σ the surface charge

density. Thus, the resulting force can be expressed as F = ǫ0E
2
c∆S, from where it follows the pressure

P = ǫ0E
2. By extrapolating this picture to the present situation, one may consider a pressure given

by P = ǫ0E
2 with E = En + Ep, with both the induced plasma electric field Ep. It may be fairly

reasonable to assume that both fields are of the same order on the sought surface r = r′e. As shown

in previous subsections, the electric nugget field is given by

E2
n = g2aγγa

2B2.

By taking into account that gaγγ = cα/fpπ and that a = faθ with θ an angular variable, it follows

that

E2
n =

c2θ2B2

π2(137)2
.

The constant c is not far from unity and the angular variable θ can take values between 0 ≤ θ < 2πN

with N an integer, it is seen that the electric pressure Pe ∼ ǫ0E
2 is less or of the same order of

magnitude than the magnetic one Pm ∼ B2 for controlled values of N . Thus, it is likely that the

region determined by (3.20) is not significantly deformed, but the charge distribution is modified in

order to screen the nugget electric field. Therefore, it may be considered that the formula (3.21)

applies even for this type of electrified and magnetized nuggets.

It should be remarked that the formula (3.21) is obtained purely by a classical considerations. It

is true if the quantum corrections described in previous section do not alter the order of magnitude

of re. In the following, we assume that this is the case.

There are observables consequences of the cross section (3.21), which follows from reference [20].

This can be briefly described as follows. The formula (3.21) allows to calculate the energy loss of a

nugget of mass M and a given velocity of the order of 250km/s through the atmosphere and three

meters of material with density ρ ∼ 1120kg/m3. This simulation is presented in [20] and it is found

that the mass range for nuggets is such that they may to penetrate the atmosphere and deposit

103 − 106J/length. For instance, this curve shows that nuggets with masses between 0.1− 1kg deposit

00.3−50MJ/m. This energy deposition is enough to form a shock wave in water which decays fast into
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an acoustic pulse. The pressure of this pulse can be monitored by three or more time synchronized

sensors, which may determine the impact point by interpolation. From this information, one may

deduce the energy deposition and, by use of the curves found in [20], obtain the mass of the nugget. In

order to decrease the risk of obtaining a false positive, it is desirable to use three sensors in coincidence.

The measurements requires to understand the energy deposition on water to pressure pulses. For

simulations of this, one may use the CTH shock physics code [92] and the SESAME equation of state

in water [93]. Some of these simulation are presented in [20]. A good location for detection is the

Great Salt Lake in USA, since its salinity does not allow animal life which may contaminate acoustic

pulses. There are further technical problems to be solved. The incident flux as a function of the mass

is not known, as the quark nuggets are assumed to have a continuum mass distribution. Under the

assumption that the events by mass unity varies inversely with the mass, the authors of [20] used a

250 hour sensor which collected events at a rate 300/year, thus obtaining a graphic of the quantity of

events by mass unity. Their results suggest that detectability is possible. In addition, the conversion

of the deposited energy into acoustic energy and the attenuation of the of the acoustic pressure at

the detectors as a function of the distance point should also be characterized, for the Great Salt Lake

enviromment. The authors of [20] have studied the effects of the minerals of the lake in the attenuation

of higher frequencies of the acoustic pulse and have found that the conversion into acoustic energy

has some similarities with TNT explosions. These preliminary experiments were performed by C55

hydrophones, and further details can be found in the original reference.

The result given above is interesting, since it opens the possibility that these axion nuggets may be

found in near future experiments. However, as discussed below, these electrified and magnetized axion

quark nuggets may generate some high energy rays that are not observed due to their interaction with

electron gases in the Milky Way. In this sense, the fact that the electric field is larger than the critical

one Ec may give an explanation of this absence, since this field may have decayed before the actual

universe.

3.2 High energy ray generation

If there were electrified nuggets composing a large part of dark matter, then these nuggets would

interact with electron gases in the Milky Way galaxy. The density of these electron gases is ne ∼ 1 cm3.

These electrons, after colliding with the nuggets, will accelerate and acquire a energy eEm−1
a . A rough

estimation about the number of collision per unit time that a nugget experiences is

nc ∼ R2vene.

Due to the oscillations of the axion field, the electrons acquire an energy Ee ∼ eE/ma. These

acceleration mechanisms were discussed in other context for instance in [106]. This implies that when

a astronomical observation of 1 kpc3 is done, the number of nuggets would be

Nn ∼ ρd
mn

kpc3,
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where mn denotes the mass of the nugget and ρd denotes the local density of the dark matter ρd ≃
0.3GeV cm−3. The electrons are scattered by the collisions with the nuggets. The number N of the

electrons scattered per unit time in the area is given by

N =
R2veneρd

mn
kpc3.

These electrons possess the very high energy eE/ma when the electric field is the strong one discussed

in the present paper. For instance, when R is 10−9cm and ma = 10−3eV, then, the electron energy

eE/ma ∼ 104GeV and the number of the electrons N is 1020/s for baryon number NB = 1028. This

is for a velocity ve ∼ 100km/s. If such a huge number of the electrons with high energy 104GeV were

emitted in the area with the volume 1 kpc3, they would be already detected. Thus, it is likely that

these nuggets may exist today only in a non magnetized state or, if they are magnetic and electric,

their density should be considerably small than dark matter.

Therefore, if the nuggets reach a non electrified neither magnetized state, the detection of water

impacts discussed in the previous subsection become more involved, as the cross section becomes

considerably smaller. However, there are for now several searches of standard quark nuggets and it

may be interesting to see if they apply to the present case. An interesting possibility is the detection

at the Alpha Magnetic Spectrometer [94]-[97], which is sensitive to a wide range of mass and charge

for these objects. In fact, if these objects reach the non magnetized neither electrified state, they may

be similar to strangelets, which have been intensively searched at this spectrometer. However, there

is an important detail to be remarked. One assumption for detection for strangelets is that neutron

stars are strange stars. If this is so, when two neutron stars form a binare system which loss energy

due to gravitational radiation, they finally collide, and this results in a strangelet cosmic ray. The

galactic coalescence of our galaxy is approximately one even every 10.000 years. Simulations estimate

that the release of 10−10 solar masses per year. On the other hand, it is not clear if a considerable

axion wall quark nugget flux may be obtained from such binare collisions, as it is not clear if such

axion walls would develop. If the axion quark nuggets are assumed to be the main component of dark

matter, then the flux is given by [4]

dN

dAdt
= nv ∼ 1025

B

1

km2yr
.

This flux is below the sensitivity of the standard searches for dark matter, but is close to the flux of

cosmic rays above the GKZ bound. Thus, a further possibility is to consider air showers [98] that these

objects may generate. The shower that is generated by these objects have some similarities with the

ones produced by a single primary with ultra high energy. But it is precisely their subtle differences

which may play a significant role in detection. When an anti-nugget hit the atmosphere, the dominant

interaction is strong mediated matter anti-matter annihilation. The resulting shower will be mainly

composed by light mesons and their decay products. There are electrons and positrons produced,

which are unable to escape the nugget. However, the muons are able to escape, loose energy to the

atmosphere, generate fluorescence light before decay into electron products. This leads of a number of
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charged particles as a function of the height, which grown to a maximum particle and then decreasing

rapidly, and is very similar to the one produced by a single primary. However, due to the fact that the

nugget is not relativistic in comparison, the nugget shower fluorescence will elapse more time. The

reason is that the matter produced by the nugget is confined to a region few kilometers around the

object, and the combined system moves slowly. The time scales involving the lateral surface profile

are also larger. A further characteristic feature is that the lower velocity of the primary particles will

lead to a correlation between the arrival direction and the earths motion direction with respect to

the galaxy. This arrival direction is related to dark matter distribution and as such, does not have

any correlation with the galaxy objects. In addition, the muon spectroscopy may distinguish both

showers since the muon spectrum for the nuggets have a cutoff at energies of the order of the GeV

while for ultra high energy primaries this is not the case. Further characterization of these showers

can be found in [98].

The differences between ultra high energy may play a very important role in future detection

experiments. These include the AUGER observatory [90] and the Telescope Array [99] which may

detect these showers by their fluorescence dectectors. The reference [100] is able to put flux limits that

may apply to strangelets, axion wall quark nuggets and other objects. The macro detector at Gran

Sasso may also be sensitive to these objects [102]. It is interesting to remark that the results presented

in [103] suggest that the quark nuggets are not excluded when their mass is somewhat larger than

m > 1022kg. The study of the constraints that follows from ancient mica exposure, of ages of the order

of 109 years, is also an interesting lead [101]. Another possibility is that these objects may be detected

by impact craters [104]. This craters should be compatible with energetic events without the presence

of meteorites. The group of authors [20] is searching for such events in County Donegal in Ireland, and

have analyzed several reported events in India or Nicaragua, but where unable to find unambiguous

results. However, further experiments may be performed and the crater may be distinguished from

usual meteorites by the absence of CUDO and meteorite materials.

4. Discussion

In the present work a ferromagnetic axionic quark nugget was considered. It was shown that the

internal magnetic field induces an electric field on the axionic wall which decays into electron positron

pairs if the magnetic field is above the critical value Bc = 1011 T, which close but below the range

given in [16]. The possible role of the inhomogeneities of the electric field was also taken into account,

but it was shown that the deviation from the standard Schwinger formula is small and the critical

value remains also unaltered. The fact that the critical value is below the value of [16] may be in

fact healthy. It may indicate not that the nugget is unstable, but that in fact the ferromagnetic state

does not take place. The calculation done contains several approximations, and to study the real

evolution of the nugget is for sure more complicated. But we conjecture that the ferromagnetic state

is not achieved when an axion wall is present. Consequently, the interaction of these nuggets with the
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electron gas in the Milky Way does not give a huge number of electrons with high energy contradicting

the observations. In other words, we suggest that ordinary nuggets may reach a ferromagnetic state,

but the ones with axionic walls evolve to a non ferromagnetic state of the form [1]-[15], due to the

influence of the axion wall during its the evolution.

On the other hand, the energy deposition on the earth due to these objects was studied. For

the electrified and magnetized state, this was investigated by generalizing the magnetopause model

considered in [20]. This model follows an analogy between the plasma surrounding the nugget and

the solar wind interacting with the magnetic field of the earth. In the present work, the effect of the

electric field was included and it was shown, by use of the modified Maxwell equations in presence of an

axion, that the electric field pressure on the plasma is less than the magnetic one. Consequently, the

cross section for a nugget interacting with a plasma is not considerably modified. A direct application

of the results given in [20] implies that these nuggets, even in the electrified and magnetized state, do

not violate the collision bounds for dark matter. However, as we conjectured that the electrified and

magnetized state do not take place, alternatives for non electrified neither magnetized nuggets were

also briefly discussed. Perhaps the study of air showers is promising, since the products of the decay

can be qualitatively different from a single primary with ultra high energy.
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A Electric field from a spherical domain wall with constant mag-

netic field

In the present paper, the role of inhomogeneities were estimated in terms of the Sauter field (2.14). We

have worked out some other possible forms of the electric field, but the results are more complicated

and do not change much the presented picture. We collect however in the present appendix some of

the formulas that we have obtained which do not correspond to the Sauter field.

The axion domain wall profile the reference [105] employs is given by

a(r) =
ARe

r
tanh γ(r −R0), (1.22)

a(r) = A tanh γ(r −R0 + δ). (1.23)

The formula (1.22) corresponds to the regime Rtrans > r > R0 and (1.23) to the regime r > Rtrans,

where the constants γ = 1/2ma y A = π/2fa have been introduced. The value Rtrans is given in [105].

For simplicity, assume that the magnetic field inside a nugget has a constant value and direction. In

spherical coordinates, such magnetic field is given by

B = B(cos θ r̂ − sin θ θ̂). (1.24)
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Given a magnetic field and an axion wall, an electric field E is induced. The Poisson equation for the

potential V such that ∇V = −E that arises from the term ∇(aB) in (2.4) is expressed in the form

∆V = gABRe

[
cos θ

r2

(
tanh γ(r −R0) + γrsech2γ(R0 − x)

)
− cot θ

r2
tanh γ(r −R0)

]
, (1.25)

∆V = gAB

[
cos θ

r2

(
2r tanh γ(r −R0 + δ) + γr2sech2γ(R0 − δ − x)

)
− cot θ

r
tanh γ(r −R0 + δ)

]
, (1.26)

the first expression corresponds to Rtrans > r > R0 and the second r > Rtrans. We can solve both

equations using the Green function method, but due to the fact that the effective charge is complicated

multipole expansion is required. Due to the azimuthal symmetry, the Green function becomes

G(x, x′) = 4π

∞∑

l=0

1

2l + 1

rl<

r′l+1
>

Y +
l,0(θ

′)Yl,0(θ), (1.27)

where r> and r< denotes the biggest and smallest respectively between r and r′. One of the boundary

conditions is that the potential goes to zero at infinity.

The monopole therm is zero for both equations. In this section, the dipole case is worked out

explicitly, the correction terms for the general case are given in the next one. In the region R0 < r <

Rtrans the solution is of the form

V = gABπ cos θ

[
Q1

r2
+ r(Q2 +Q3)

]
, (1.28)

where Q1, Q2 y Q3 denotes integrals that come from the moments of the field given by

Q1 = Re

∫ r

R0

[(
2

3
− π

2

)
x tanh γ(x−R0) + γx2sech2γ(R0 − x)

]
dx, (1.29)

Q2 = Re

∫ Rtrans

r

[(
2

3
− π

2

)
tanh γ(x−R0)

x2
+
γsech2γ(R0 − x)

x

]
dx, (1.30)

Q3 =

∫ R

Rtrans

[(
4

3
− π

2

)
tanh γ(x−R0 + δ)

x
+

2γ

3
sech2γ(x−R0 + δ)

]
dx. (1.31)

In the region Rtrans < r < R the resulting potential is

V = gABπ cos θ

(
Q4 +Q5

r2
+ rQ6

)
, (1.32)

In this case the integrals Q4, Q5 y Q6 are described by

Q4 = Re

∫ Rtrans

R0

[(
2

3
− π

2

)
x tanh γ(x−R0) +

2γ

3
x2sech2γ(x−R0)

]
dx, (1.33)

Q5 =

∫ r

Rtrans

[(
4

3
− π

2

)
x2 tanh γ(x−R0 + δ) +

2γ

3
x3sech2γ(x−R0 + δ)

]
dx, (1.34)

Q6 =

∫ R

r

[(
4

3
− π

2

)
tanh γ(x−R0 + δ)

x
+

2γ

3
sech2γ(x−R0 + δ)

]
dx. (1.35)
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The integrals described in each solution can’t be solved by analytic means in general. Therefore, some

reasonable approximations are needed for solving them. For the first integral (1.29), one may use the

expansion

tanh(x− b) ∼ 1− 2e−2(x−b),

and that, for γ(Rtrans −R0) << 1

sech2a(x− b) = 1− a2(x− b).

By use of this, it is obtained that

Q1 =
Re

γ2

[
2

3
− π

2

][
e2(R0γ−xγ)

(
xγ + 1/2

)
+

(xγ)2

2

]∣∣∣
r

R0

+
Re

18

[
(γx)3

(
4γ − 3γx+ 4

)]∣∣∣
r

R0

. (1.36)

For the second equation we are gonna use the Laurent series of the hyperbolic tangent and truncate

the series to get
tanh(x− b)

x2
=

− tanh(b)

x2
+

sech2b

x
,

and, like the first equation, we are gonna use sech2(x− b) ∼ sech2b, both approximations apply in the

regime a(Rtrans −R0) << 1. With these approximations, it is found

Q2 = Rea
[2
3
− π

2

]
[
tanh(γR0)

1

γx
+ sech2(R0γ) log(γx)

]∣∣∣∣∣

Rtrans

r

+

[
2γ

3
Re log(x)sech

2(bγ)

]∣∣∣∣∣

Rtrans

r

.

(1.37)

For the third integral, one may take into account that tanh(x − b)/x ≃ 1/x, for a sufficiently large

nugget radius, γR > 1. A direct integration leads to

Q3 =
[4
3
− π

2

][
log(γx)

]∣∣∣
Rtrans

R
+ (2/3)

[
tanh γ(x−R0 + δ)

]∣∣∣
R

Rtrans

. (1.38)

The next integral, can be solved using the same tricks we used for the first one, the result is

Q4 =
Re

γ2

[
2

3
− π

2

][
e2γ(R0−x)

(
xγ + 1/2

)
+

(xγ)2

2

]∣∣∣
RTrans

R0

− Re

18a2

[
(γx)3

(
(3γx− 4γR0 − 4

)]∣∣∣
RTrans

R0

.

(1.39)

The fifth one may be found by the approximation tanh(x− b) ∼ 1− 2e−2(x−b), and by the expansion

sech2(x− b) = 4e2(b−x)(1− e2(b−x)). Both approximations lead to the expression

Q5 =
1

6γ3

(
4

3
− π

2

)[
e2(γ

(
R0+δ−x)

)(
6(γx)2+6γx+3

)
+2x3

]∣∣∣∣
r

Rtrans

+
e2γ(R0+δ−2x)

24γ3

[
e2γ(R0+δ)

(
32(γx)3+24(γx)2+12(γx)+3

)
+8e2γx

(
4(γx)3+6(γx)2+6(γx)+3

]∣∣∣∣
r

Rtrans

(1.40)

The last one can be integrated using the same trick as the ones used in the third one. The result of

this procedure yields

Q6 =

(
4

3
− π

2

)[
log(γx)

]∣∣∣∣
Rtrans

r

+
2

3
tanh

(
γ(x−R0 + δ)

)∣∣∣∣
R

rtrans

. (1.41)
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1.1 Higher order corrections

Having the functional form of the potential for the dipolar case is not the end of the story, due to

the fact that there are gonna be higher order correction due to the fact that cot θ can be expanded in

an infinite series of Legendre functions. The solution of the potential in the regime r > Rtrans at all

orders is given by

V (r, θ) = 8π2ABg

∞∑

l=0

Y 0
l (θ)

2l + 1

{∫ π

0
Y 0
l sin θ cos θdθ

[
1

rl+1

∫ r

Rtrans

[
2xl+1 tanh γ(x−R0 + δ)

+γxl+2sech2γ(R0 − δ − x)
]
dx+

1

rl+1

∫ Rtrans

R0

Reffx
l+2

[
tanh γ(x−R0)

x2
+
γsech2(R0 − x)

x

]
dx

+rl
∫ R

r
[2x−l tanh γ(x−R0 + δ) + γx−lsech2γ(R0 − δ − x)]dx

]

−
∫ π

0
Y 0
l sin θ cos θdθ

[
1

rl+1

∫ Rtrans

R0

Reffx
l tanh γ(x−R0)dx

+
1

rl+1

∫ r

Rtrans

xl+1 tanh γ(x−R0)dx+ rl
∫ R

r
x−l tanh γ(x−R0 + δ)dx

]}
. (1.42)

This expansion includes the terms for the dipolar case found in the previous section, plus higher orders.

First, let notice that the dipolar order is important due to the fact that cos θ is proportional to Y 0
1

and will be orthogonal to the rest of the spherical harmonics. Second, let’s also notice that cot θ goes

to ∞ at 0 and to −∞ at π, thus infinite terms in the expansion are needed.

The higher order corrections, when the approximation tanh(x− b) = 1− 2e−2(x−b) was taken into

account, are given by

∆V (r, θ) = −8π2ABg

∞∑

l=2

Y 0
l (θ)

2l + 1

∫ π

0

(
Y 0
l tanh θ′ cos θ′

)
dθ′

{
1

γl+2rl+1

[
e2γ(R0−δ)2−l−1Γ(l+2, 2x)+

xl+2

l + 2

]∣∣∣∣∣

γR

γr

+ γl−1rl

[
e2γ(R0−δ)2lΓ(1− l, 2x)− x1−l

l − 1

]∣∣∣∣∣

Rγ

rγ

}
. (1.43)

Here Γ(a, b) denotes the incomplete gamma function. The corrections for the other region R0 < r <

Rtrans are similar to the ones here and we will not discuss here the functional form here.

1.2 Schwinger effect for the non ferromagnetic axion quark nugget

After finding approximate expression for the electric field induced due to the axion nugget, the next

step is to discuss the decay due to Schwinger effect. The following discussion relies particularly on the

work [69], and it will be applied to a dipole type of electric field outside the nugget and a constant

field inside. For simplicity, scalar field production will be considered. The Klein-Gordon equation for

a pure electric field, by taking into account that A0 = V and Ai = 0 reads as follows

[∂µ∂
µ +m2 − 2iqA0∂0 − q2A0A0]Φ = 0. (1.44)
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In the following, a reduced one dimensional problem in one direction will be considered. This reduction

is valid if the three dimensional electric fields E(x, y, z) and the potential V (x, y, z) are such that the

tunneling length a = z+ − z− to be defined below is smaller than the variation δx⊥ of the potential V

the xy plane. In other words, a−1 > V −1∂x⊥
V .

Taking only the radial tunneling has two implications. First the angular part of the potential is

discarded and only a radial part V (r) is taken into account. In this situation, the ansatz employed in

the literature [69] is the following one

Φ = eiǫt
ψl(r)

r
Ω(θ)eimϕ. (1.45)

In the previous section, some approximated expressions for the electric potential of the nugget were

found. It is difficult to obtain results with these expressions. For simplickty the potential to be

employed is a dipole type one which, in one dimension, reads as follows

V (z) =

{
V0z z < R

V0
R3

z2
z > R

(1.46)

By inserting (1.45) into (1.45), it is obtained that

[∂2z + P 2
⊥ +m2c2 − 1

c2
[ǫ− qV (z)]2]φp⊥,ǫ(z) = 0. (1.47)

This equation in one dimension can be solved by the WKB method. The transmission probability is

Wwkb(p⊥, ǫ) = e
−2
~

∫ z+
z−

√

p2
⊥
+m2c2− 1

c
[ǫ−qV (z)]2dz

. (1.48)

Notice that the exponential factor is the momentum along the z direction, and this quantity goes to

zero at the turning points. This equation can be expressed as follows

Wwkb(p⊥, ǫ) = e
−2Ec
E0

[1+
(cp⊥)2

m2c4
]

[
E0
~Ec

m2
ec

4

m2
ec

4+p2
⊥

c2

∫ z+
z−

√

p2
⊥
+m2c2− 1

c
[ǫ−qV (z)]2dz

]

(1.49)

It is convenient to denote the exponent of the last expression as

G(p⊥, ǫ) =
E0

~Ec

m2
ec

4

m2
ec

4 + p2⊥c
2

∫ z+

z−

√
p2⊥ +m2c2 − 1

c2
[ǫ− qV (z)]2dz (1.50)

In the general case, it is difficult to make to calculate G explicitly. However from (1.48) and (1.49) it

is seen that the critical field Ec =
m2

ec
3

e~ is proportional to ~
−1, so the most important contribution of

p⊥ is when p⊥
√
~. Then the integral can be approximated as

G(p⊥.ǫ) = G(0, ǫ) +Gδ(0, ǫ)δ + ..

with the dimensionless variable δ = (cp⊥)2

m2
ec

4 . In the present case, as the potential is split, the function

G is decomposed as G = G1 +G2 with

G1(p⊥, ǫ) =
E0

~Ec

m2
ec

4

m2
ec

4 + p2⊥c
2

∫ R

z−

√
p2⊥ +m2c2 − 1

c2
[ǫ− qV0z]2dz, (1.51)
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G2(p⊥, ǫ) =
E0

~Ec

m2
ec

4

m2
ec

4 + p2⊥c
2

∫ z+

R

√
p2⊥ +m2c2 − 1

c2
[ǫ− qV0

R3

z2
]2dz. (1.52)

In the last expressions, the points z+ and z− denote the turning points, defined by the condition

E+(pz = 0, p⊥, z+) = E−(pz = 0, p⊥, z−) = ǫ. Both point share the same energy. Equivalently, they

are given by

V (z±) = ∓
√
c2p2⊥ +m2c4 + ǫ. (1.53)

The only problem we can face with this is the fact that z+ is squared in the potential, but we can use

the fact that z+ > R > 0 in order to obtain

z− =

√
c2p2⊥ +m2

ec
4 + ǫ

qV0
, (1.54)

z+ =

√
V0R3q

ǫ−
√
p2c2 +m2

ec
4
. (1.55)

The expressions (1.51) and (1.52) can be integrated to the lowest order δ = 0, the result is

G1 =
E0

~Ec

m2
ec

4

m2
ec

4 + p2⊥c
2

qv0
c

[
1

8

(
4c+ d2

)
tan−1

( d− 2z

2
√
c+ z(d− z)

))
− 1

4

(
d− 2z

)√
c+ z

(
d− z

)
]∣∣∣∣∣

R

z−

.

(1.56)

In (1.56) the variables c =
p2
⊥
c2+m2

ec
4−ǫ2

(qv0)2
and d = 2ǫ

qv0
were introduced. The second contribution is

G2 = − E0

~Ec

m2
ec

4

m2
ec

4 + p2⊥c
2

qv0R
3

c

{
z

√
a+

bz2 − 1

z4

[
i
√
2z
√

4a+ b2

√
−
√
4a+ b2 + 2az2 + b

b−
√
4a+ b2

×

√√
4a+ b2 + 2az2 + b

b+
√
4a+ b2

F

[
i sinh−1

(√
2

√
a

b+
√
b2 + 4a

z

)∣∣∣
b+

√
b2 + 4a

b−
√
b2 + 4a

]
− iz

(√
4a+ b2 − b

)

×

√
−2

√
4a+ b2 + 4az2 + 2b

b−
√
4a+ b2

√√
4a+ b2 + 2az2 + b

b+
√
4a+ b2

×E
[
i sinh−1

(√
2

√
a

b+
√
b2 + 4a

z

)∣∣∣
b+

√
b2 + 4a

b−
√
b2 + 4a

]
+ 2

√
a√

4a+ b2 + b

(
az4 + bz2 − 1

)]}

×
{

1

2
√

a√
4a+b2+b

(
az4 + bz2 − 1

)

}∣∣∣∣∣

z+

R

(1.57)

Here a = pbot
2c2+m2

ec
4−ǫ2

(qv0R3)2
and b = 2ǫ

qv0R3 . In these terms the event density in four space is given by

d4Nwkb

dtdxdydz
= Ds

q2E0E(z)

8π3G0

(
0, E(z)

)e−π(Ec/E0)G(0,E(z), (1.58)

with Ds the spin degeneration.

The formula (1.58) takes into account only an electric field. But these methods can be generalized

when a magnetic field is present, if one assumes for simplicity that the magnetic field is constant [69].

24



The magnetic field in a magnetic nugget is gonna be parallel to the electric field. The resulting event

density is given by

d4Nwkb

dtdxdydz
= Dsf0,1/2

(
BG0(0, E(z))

E0

)
q2E0E(z)

8π2G0

(
0, E(z)

)e−π(Ec/E0)G(0,E(z)). (1.59)

Here the function

f(x) =

{
πx

sinh(πx) σ = 0

2 cosh(πgx2 ) πx
sinh(πx) σ = 1/2

(1.60)

has been introduced. The limit B → 0 the formula (1.58) is recovered.
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