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On the relevance of chaos for halo stars in the solar neighbourhood
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ABSTRACT
We show that diffusion due to chaotic mixing in the neighbourhood of the Sun may not
be as relevant as previously suggested in erasing phase space signatures of past Galactic
accretion events. For this purpose, we analyse solar neighbourhood-like volumes extracted
from cosmological simulations that naturally account for chaotic orbital behaviour induced
by the strongly triaxial and cuspy shape of the resulting dark matter haloes, among other
factors. In the approximation of an analytical static triaxial model, our results show that a
large fraction of stellar halo particles in such local volumes have chaos onset times (i.e. the
time-scale at which stars commonly associated with chaotic orbits will exhibit their chaotic
behaviour) significantly larger than a Hubble time. Furthermore, particles that do present a
chaotic behaviour within a Hubble time do not exhibit significant diffusion in phase space.
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1 IN T RO D U C T I O N

In galactic dynamics, the term chaos refers to the exponential diver-
gence of initially nearby orbits in phase space. In non-integrable sys-
tems, initially nearby stars in strong chaotic regions drift away from
each other very quickly, thus losing memory of their common origin
(e.g. Merritt & Valluri 1996; Contopoulos 2002; Efthymiopoulos,
Voglis & Kalapotharakos 2007, and references therein). Under-
standing whether this physical process plays a major role in shap-
ing the stellar phase space distribution of the solar neighbourhood
is of key importance, as it is within this distribution that we hope to
gain a significant insight into the formation history of the Galaxy
(Helmi & de Zeeuw 2000; Johnston et al. 2008; Gómez et al. 2010).

The characterization of the formation history of our own Galaxy
is a very ambitious undertaking by modern astronomy (Freeman &
Bland-Hawthorn 2002). Understanding how the Milky Way (MW)
evolved to become the galaxy we currently inhabit would allow
us not only to explore our origins, but also to understand galaxy
formation in a more general context (Helmi 2008). More precisely,
it can allow us to test the current paradigm of galaxy formation
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and evolution. This theory predicts that the present-day population
of galaxies grew in mass by merging with smaller companions. As
their potential wells grew deeper, galaxies continued to accrete gas
that cooled, collapsed into a disc, and gave rise to most of their
stellar component (White & Rees 1978). In addition to this in situ
population, every galaxy is predicted to have a minor fraction of
its stellar content associated with merger events (Searle & Zinn
1978). The tidal force that a satellite experiences as it orbits its host
may be strong enough to disrupt it significantly. As a result of this
interaction, initially spatially coherent and extended stellar streams
are formed (e.g. Ibata, Gilmore & Irwin 1994; Ibata et al. 2001;
Bullock & Johnston 2005; Belokurov et al. 2006, 2007; Cooper et al.
2010). These streams are thus fossil signatures of this formation
process and their identification is key to reconstructing the merger
history of our Galaxy.

Stellar streams associated with the most ancient accretion events
are expected to populate the inner Galactic regions, in particular
the solar neighbourhood (Helmi, White & Springel 2003; Gómez
et al. 2013). Unfortunately, dynamical times in these regions are
relatively short and streams tend to mix rapidly, losing their spatial
coherence (Helmi & White 1999; Helmi 2008). Even though galax-
ies are essentially collisionless (Binney & Tremaine 1987), and
thus streams become more clustered in velocity as they diffuse in
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configuration space, statistically significant phase space overdensi-
ties are needed to identify such streams in the solar neighbourhood.
Clearly, the longer it takes for a stream to diffuse in configuration
space, the larger the chances of identifying it in phase space. The
rate at which a stellar stream spatially dissolves depends not only
on the orbit of its progenitor satellite, but also on the properties of
the host galactic potential (Helmi & White 1999; Helmi 2008; Vo-
gelsberger et al. 2008). In a galactic potential where a stream is on a
regular orbit, its local density decreases in time as a power law, thus
relatively slowly. Yet the current paradigm of galaxy formation pre-
dicts strongly triaxial and cuspy dark matter (DM) haloes (see e.g.
Jing & Suto 2002; Allgood et al. 2006; Vera-Ciro et al. 2011). These
two characteristics are known to be a significant source of chaos in
a galactic potential (Schawrzschild 1993; Merritt & Fridman 1996;
Siopis & Kandrup 2000; Voglis, Kalapotharakos & Stravropoulos
2002; Kandrup & Siopis 2003; Kalapotharakos, Voglis & Contopou-
los 2004; Muzzio, Carpintero & Wachlin 2005). On a chaotic orbit,
the local stream density decreases at an exponential rate. Further-
more, chaotic orbits can significantly drift in the space of quantities
that are otherwise approximately conserved, such as angular mo-
mentum (e.g. Poveda, Allen & Schuster 1992; Schuster & Allen
1997; Valluri et al. 2013), thus hindering its identification at the
present day.

One of the main goals of ongoing and past astrometric, photo-
metric and spectroscopic missions is to map the stellar phase space
distribution in the solar neighbourhood. In addition to Gaia (Perry-
man et al. 2001; Lindegren et al. 2008), which will measure positions
and velocities of more than a thousand million stars, several other
projects have provided and will continue to provide complemen-
tary information (e.g. LAMOST, Zhao et al. 2006; Zwitter et al.
2008; HERMES, Wylie-de Boer & Freeman 2010; APOGEE, Ma-
jewski et al. 2010; Gilmore et al. 2012; DESI, Levi et al. 2013;
Takada et al. 2014). A meaningful interpretation of the degree of
substructure found in the solar neighbourhood requires a deep un-
derstanding of the role that chaotic mixing plays in shaping the
underlying substructure’s phase space distribution.

Since the identification and characterization of chaotic orbits is
a fundamental step towards this goal, efficient and accurate tools
for this purpose are essential. A seminal contribution to the field of
chaos detection was made by Lyapunov (1892)1 when he introduced
the idea behind the so-called Lyapunov characteristic exponents
(LCEs). LCEs are theoretical quantities that provide a measure
of the rate of local exponential divergence of two initially nearby
orbits in phase space. Thus, the LCEs are a very convenient way
to distinguish between chaotic and regular motion and, particularly,
to characterize chaos. Of particular importance is the largest LCE
(lLCE), which is the LCE in the direction for which these two orbits
diverge most rapidly. Theoretically, the characterization of an orbit
according to its lLCE is done based on its asymptotic behaviour
at infinity. The Lyapunov indicator (LI), on the other hand, refers
to the finite-time version of the lLCE. A numerical value of the LI
very close to zero indicates regular behaviour whereas any positive
value indicates chaotic motion. The inverse of the LI provides a
measure of the time-scale for the manifestation of the exponential
divergence. In practice, numerical finite-time techniques based on
the concept of local exponential divergence like the LI (see e.g.
Benettin et al. 1980; Skokos 2010) are commonly considered to be
chaos indicators.

1 English translations: (i) 1966, Stability of Motion, Academic Press, New
York & London, (ii) 1992, The General Problem of the Stability of Motion
(A.T. Fuller trans.), Taylor & Francis, London.

Nowadays, there are many chaos indicators in the literature that
were developed based on the idea of the LCEs. Among the most
used and tested indicators we find the fast Lyapunov indicator
(FLI; Froeschlé, Gonczi & Lega 1997; Froeschlé & Lega 2000;
Lega & Froeschlé 2001; Guzzo, Lega & Froeschlé 2002; Lega,
Guzzo & Froeschlé 2010). The reliability shown by the FLI in pre-
vious works (e.g. Maffione, Giordano & Cincotta 2011a; Maffione
et al. 2011b; Darriba et al. 2012; Maffione et al. 2013) makes this
chaos indicator an ideal tool to characterize the role of chaos in
solar neighbourhood-like volumes.

In this work, we will take advantage of a variant of the FLI,
the so-called orthogonal fast Lyapunov indicator (OFLI; Fouchard
et al. 2002) to evaluate the importance of chaos and chaotic mixing
in shaping the phase space distribution of halo stars in the solar
neighbourhood.

The paper is organized as follows: we describe the models and the
techniques in Section 2 and include a short but comprehensive char-
acterization of the behaviours of the OFLI in Section 3. In Section 4
we present our results on the actual impact of chaos in erasing local
signatures of accretion events on the stellar halo phase space and
revise the widespread assumption that chaos must inevitably lead
to diffusion. We discuss and summarize our results in Section 5.
Finally, in Appendices A and B, we include a brief introduction to
the concept of local exponential divergence, the definition of the LI
and a more formal description of the phenomenon of stickiness and
sticky orbits.

2 M E T H O D O L O G Y

In this section, we introduce the simulations and numerical tools
used to characterize the chaotic nature of the stellar halo phase space
distribution enclosed within solar neighbourhood-like volumes.

2.1 Simulations

We use five high-resolution, fully cosmological N-body simulations
of the formation of MW-like DM haloes carried out using the par-
allel Tree-PM code GADGET-3 (an upgraded version of GADGET-2;
Springel 2005) by the Aquarius Project (Springel et al. 2008a,b).
Each halo was first identified within a large cosmological periodic
box of side 100 h−1 Mpc (Boylan-Kolchin et al. 2009) and then
re-simulated using a multimass particle zoom-in technique. These
DM-only simulations were performed using the following cosmo-
logical parameters: matter (dark and baryon) density, "m = 0.25;
dark energy density, "# = 0.75; normalization of the power matter
spectrum, σ 8 = 0.9; scalar spectral index, ns = 1; and Hubble con-
stant, H0 = 100 h km s−1 Mpc−1 = 73 km s−1 Mpc−1, consistent
with Wilkinson Microwave Anisotropy Probe 1- and 5-year con-
straints (Spergel et al. 2003; Komatsu et al. 2009). The DM haloes
for the Aquarius Project were selected to have masses ∼1012 M⊙,
comparable to the MW, and to be relatively isolated at z = 0.
They were identified using a Friends-of-Friends (Davis et al. 1985)
algorithm and self-bound subhaloes were identified with SUBFIND

(Springel et al. 2001). Each MW-like DM halo was re-simulated at
a series of progressively higher resolutions. The experiments pre-
sented in this work are based on the simulations with the second
highest resolution available, and their main properties are presented
in Table 1. For a more detailed description of the simulations, we
refer the reader to Springel et al. (2008a,b).

To model the formation and present-day properties of their galac-
tic stellar haloes, these simulations were post-processed with a
semi-analytic model of galaxy formation (Cooper et al. 2010). This
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Table 1. Main properties of the five Aquarius haloes at z = 0 from Springel et al. (2008a).
The first column labels the simulation. From left to right, the columns give the virial radius
of the DM halo, r200; the virial mass, M200; the number of particles within r200, N200;
the particle mass, mp; the concentration parameter, cNFW; the intermediate-to-major, b/a
and the minor-to-major, c/a, principal axial ratios computed using DM particles located
within 6–12 kpc; the total stellar halo mass, M∗ (our stellar halo mass also includes the
mass assigned to the bulge component in Cooper et al. 2010) and the half-light radius
from Cooper et al. (2010), r1/2. Masses are in M⊙, distances in kpc and velocities in
km s−1.

Name r200 M200 N200 mp cNFW b/a c/a M∗ r1/2
(1012) (106) (103) (108)

Aq-A2 245.88 1.842 135 13.7 16.19 0.65 0.53 3.8 20
Aq-B2 187.7 0.8194 127 6.4 9.72 0.46 0.39 5.6 2.3
Aq-C2 242.82 1.774 127 14.0 15.21 0.55 0.46 3.9 53
Aq-D2 242.85 1.774 127 14.0 9.37 0.67 0.58 11.1 26
Aq-E2 212.28 1.185 124 9.6 8.26 0.67 0.46 18.5 1.0

semi-analytic model consists of a set of coupled differential equa-
tions describing the evolution of baryons and derives the mass ac-
cretion histories and phase space information of halo stars from the
underlying N-body DM-only simulations. Processes such as star
formation, AGN feedback, stellar winds and chemical enrichment
are introduced in the model through differential equations that are
controlled via a set of adjustable input parameters. The parameters
were set to simultaneously match a range of observable quanti-
ties such as the galaxy luminosity functions in multiple wavebands
(Baugh et al. 2005; Bower et al. 2006; Font et al. 2008).

The approach followed by Cooper et al. (2010) uses the technique
known as particle tagging. The idea behind this technique is to
assume that the most strongly bound DM particles in progenitor
satellites can be used to trace the phase space distribution of their
stars. At every timestep, the 1 per cent most bound DM particles
were selected to trace any newly formed stellar population in each
galaxy in the simulation. This fraction was set such that properties
of the satellite population at z = 0 are consistent with those observed
for the MW and M31 satellites. As a result of this procedure, each
tagged particle has a different final stellar mass associated with it.
From now on, we will refer to the tagged particles as stellar particles.
The main properties of the resulting stellar haloes are summarized
in Table 1. Note that our stellar halo masses (M∗) also include the
mass assigned to the bulge component in Cooper et al. (2010); see
Gómez et al. (2013, hereinafter G13) and references therein for
further details.

Cooper et al. (2010) showed that particle tagging methods applied
to simulations with sufficient resolution can be used to generate
MW-like stellar haloes that reproduce various observables regarding
the structure and characteristics of the Galactic stellar halo and
its satellite population. Furthermore, as shown by G13, for most
simulated stellar haloes, the measured velocity ellipsoids at 8 kpc
are in good agreement with the estimate for the local Galactic stellar
halo2 (Chiba & Beers 2000). None the less, it should be kept in mind
that the dynamical evolution of the baryonic components of galaxies
in these simulations is much simplified. As previously discussed in
G13, this likely has an effect on, e.g., the efficiency of satellite
mass-loss due to tidal stripping, or the satellite’s internal structural
changes due to adiabatic contraction, and possibly even on its final

2 The velocity ellipsoids at 8 kpc from the galactic centre were measured
along the direction of the major axis of the DM halo to increase the particle
resolution.

radial distribution (Libeskind et al. 2010; Romano-Diaz et al. 2011;
Schewtschenko & Macciò 2011; Geen, Slyz & Devriendt 2013).
Recently, Bailin et al. (2014) compared the stellar haloes formed
in fully smoothed particle hydrodynamics (SPH) simulations of
galaxy formation with DM-only simulations of the same initial
conditions. They found that the resulting stellar haloes have different
concentrations and internal structure due to the different kinematics
that DM particles show with respect to their SPH counterparts.
However, in the particle tagging scheme used by Bailin et al. (2014),
only one tagging operation is performed per satellite, at the time
of its infall to the main halo, whereas Cooper et al. (2010) tag
stars continuously, as they are formed. The Cooper et al. (2010)
approach permits stars to diffuse in phase space within their parent
satellite before its disruption, and thereby reproduces SPH results
more closely than the tagging scheme tested by Bailin et al. (2014,
Le Bret et al. 2015).

2.2 The galactic potential

The computation of chaos indicators (hereinafter CIs) to study the
dynamics of our MW-like stellar haloes requires the integration of
the equations of motion coupled with the first variational equations.
The latter are used to track in time the evolution of the separation be-
tween initially nearby orbits in phase space (see Appendix A). Due
to the very high resolution of our N-body simulations, using frozen
representations of the underlying galactic potential (see for instance
Valluri et al. 2013) becomes computationally expensive. Methods
to approximate the underlying potential based on series expansions
can be extremely accurate (e.g. Clutton-Brock 1973; Hernquist &
Ostriker 1992; Weinberg 1999; Kalapotharakos, Efthymiopoulos &
Voglis 2008; Lowing et al. 2011; Vasiliev 2013; Meiron et al. 2014).
However, a very large number of expansion terms are needed in or-
der to justify this approach. For instance, in Lowing et al. (2011), the
authors used a halo expansion method to accurately fit the potential
of the halo Aq-A2. Their analysis showed that a force accuracy of
less than 1 per cent can be achieved using a series expansion that
includes all moments up to n, l = 20. The resulting potential con-
tains 8000 terms, rendering the derivation of the first variational
equations unfeasible. Instead, we chose to approximate each galac-
tic potential with a suitable analytic model. Note that in this work
we are dealing with pure DM simulations. Thus, the dynamics of
the stellar particles are governed by the potential of the DM halo.

It is important to mention that, in this work, the N-body simu-
lations are mainly used to extract the parameters of the underlying
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triaxial potentials and to sample the phase space distribution of solar
neighbourhood-like volumes (see Section 2.3). In other words, our
purpose is not to accurately characterize the impact of chaos in the
Aquarius haloes themselves, but to obtain reasonable descriptions
of these numerically simulated DM haloes to reflect in our results
the expected stochasticity due to the morphological properties of
this galactic component.

As shown by Valluri et al. (2012), taking initial conditions from
a self-consistent model and evolving them in a slightly different
potential should increase the fraction of chaotic orbits in the sample.
Thus, our results are likely to overestimate the role of chaotic mixing
in the systems under study.

In Navarro, Frenk & White (1996, 1997), the authors introduced
a spherical density profile that provides a reasonable fit to the mass
distribution of DM haloes of galaxies in a very wide range of mass
and redshift. However, it is now known that in a # cold dark mat-
ter cosmology DM haloes are not spherical as assumed by this
potential. Instead, these are expected to be strongly triaxial and,
furthermore, their shape is expected to vary as a function of galac-
tocentric distance (see e.g. Allgood et al. 2006; Vera-Ciro et al.
2011). Introducing into our analysis the triaxiality of the galactic
potential is of key importance, as this is one of the main sources
of chaotic behaviour together with the cuspy profile (Voglis et al.
2002; Kandrup & Siopis 2003; Kalapotharakos et al. 2004; Muzzio
et al. 2005).

Vogelsberger et al. (2008) presented a triaxial extension of this
profile that takes into account triaxiality and radial variation in
shape. The associated potential, %TRI, can be described by

%TRI = −A

rp
ln

(
1 + rp

rs

)
, (1)

where A is a constant defined as

A = G M200

ln (1 + cNFW) − cNFW/ (1 + cNFW)
,

with G the gravitational constant, M200 the virial mass of the DM
halo and cNFW the concentration parameter; rs = r200/cNFW is a scale
radius with r200 the virial radius. The triaxiality of this potential is
introduced through rp,

rp = (rs + r)re

rs + re
,

where r is the usual galactocentric distance and re an ellipsoidal
radius defined as

re =
√( x

a

)2
+

( y

b

)2
+

( z

c

)2
.

The quantities b/a and c/a represent the intermediate-to-major and
the minor-to-major principal axial ratios and are defined such that
a2 + b2 + c2 = 3. In all simulations, the ratios and directions of the
principal axes were computed using DM particles located within
6–12 kpc. Their values are listed in Table 1.

Note that, in this approximation used to represent the underlying
potential of DM haloes, the potential shape changes from ellipsoidal
to near spherical at the scale radius, rs. Thus, for r ≪ rs, rp !
re and for r ≫ rs, rp ! r (Vogelsberger et al. 2008). We find
that, to the 10 per cent level, these approximated analytic potentials
can reproduce the true gravitational potentials within the relevant
distance range, i.e. r " 100 kpc. This is in agreement with the recent
results presented by Bonaca et al. (2014), using the Via Lactea II
simulation (Diemand et. al 2008).

The potential %TRI admits, for rp < rs the power series expansion

%TRI = −A

rs

∞∑

n=1

(−1)n+1

n

(
rp

rs

)n−1

, (2)

so it is analytic everywhere, and the condition rp < rs implies that
r, re < rs.

Under the above assumption, rp/rs could be approximated, up to
r2

e /r2
s , by

rp

rs
≈ re

rs

(
1 + r

rs

) (
1 − re

rs

)
.

In spherical coordinates (r, ϑ , ϕ), introducing the parameters

ε1 = 1
8

(
a2

b2
− 1

)
, ε2 = 1

4

(
a2

c2
− 1

)
,

retaining terms up to rp/rs in equation (2) and neglecting a constant
term, the potential takes the form

%TRI(r,ϑ, ϕ) ≈ %0(r) + %1(r) {(ε2 − ε1) cos 2ϑ

− ε1 cos 2ϕ + ε1

2
cos 2(ϑ + ϕ) + ε1

2
cos 2(ϑ − ϕ)}, (3)

where

%0(r) = Ar

2ar2
s

(
1 + r

rs

) (
1 − r

ars

)
+ (ε1 + ε2)%1(r),

%1(r) = Ar2

2ar2
s

(
1 + r

rs

) (
1
r

− 2
ars

)
.

This approximation will be used in Section 4.2 when discussing
diffusion.

2.3 Cosmological motivated initial conditions

To investigate the efficiency of chaotic mixing on halo stars in the
vicinity of the Sun, we first need to model their distribution in
phase space. Rather than stochastically sampling the phase space
distribution associated with the potential presented in Section 2.2,
equation (1), we select from each halo the stellar particles within
spheres centred at 8 kpc from the corresponding galactic centre.
Following Gómez et al. (2010), we choose for the spheres a radius
of 2.5 kpc. This radius approximately corresponds to the distance
within which the astrometric satellite Gaia will be able to measure
with high accuracy positions and velocities of an extremely large
number of stars. As the final configuration of the five host DM
haloes is strongly triaxial, we have rotated each halo to its set of
principal axes and placed the corresponding local spheres along the
direction of the major axis. This allows a direct comparison between
the different haloes. As shown by G13, varying azimuthally the
location of our spheres results in local stellar densities that are, in
general, an order of magnitude smaller than the observed value in
the solar neighbourhood. Furthermore, the differences in number of
resolved stellar streams within spheres located at different azimuthal
angles mainly reflect changes in the local stellar density. Thus, we
do not expect our particular choice of location for these spheres to
affect significantly our results concerning the dynamical nature of
solar neighbourhood-like volumes. Finally, we will only consider
stellar particles that originally were members of accreted satellite
galaxies. Any stellar particle associated with in situ star formation
is disregarded.
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Figure 1. Examples of regular orbits (left-hand panels), sticky orbits (middle panels) and chaotic orbits (right-hand panels) in the triaxial extension of the
NFW model, for different time intervals. The fact that different volumes are occupied by the orbits in different time intervals (see the middle and right-hand
panels) is an indication of chaotic behaviour.

2.4 Chaos indicator: the orthogonal fast Lyapunov indicator

Now that the model and the volumes of interest have been intro-
duced, the main goal of this section is to present briefly the preferred
CI used in the analysis: the OFLI (Fouchard et al. 2002), a particular
variant of the FLI.3

Given an N-dimensional Hamiltonian H. If we follow the time
evolution of a unit deviation vector ŵ(t) for a given solution of
the equations of motion γ (t), initially chosen normal to the energy
surface (i.e. in the direction of ∇H; see Barrio 2016), take its
orthogonal component to the flow at time t, ŵ(t)⊥ ∈ R, and retain
the largest value between an initial time t0 and a stopping time tf,
we can define the OFLI as

OFLIγ (tf ) = sup
t0<t<tf

[
ŵ(t)⊥

]

for the orbit γ . The OFLIγ tends to infinity as time increases for
both non-periodic regular and chaotic orbits. The growth of OFLIγ

is exponential with time if γ is a chaotic orbit. The OFLI grows
linearly with time for resonant and non-resonant regular orbits (on
a logarithmic scale), with different rates, and oscillates around a
constant value for periodic orbits (for further details, we refer the
reader to Froeschlé et al. 1997; Froeschlé & Lega 2000; Lega &
Froeschlé 2001; Fouchard et al. 2002; Guzzo et al. 2002; Barrio
2016).

In what follows, we integrate the orbits and compute the CIs using
the LP-VICODE program. LP-VICODE is a fully operational code which
efficiently calculates a suite of 10 CIs in any number of dimensions

3 Even though we adopt the OFLI as our primary CI, this study is supported
by similar results based on other CIs, such as the LI (a short introduction to
the basic idea behind CIs and a definition of the most popular CI, the LI, are
given in Appendix A), the MEGNO (Cincotta & Simó 2000; Cincotta, Gior-
dano & Simó 2003; Goździewski, Konacki & Wolszczan 2005; Compére,
Lemaı̂tre & Delsate 2011), the GALI (Skokos, Bountis & Antonopoulos
2007, 2008; Manos & Athanassoula 2011; Manos, Skokos & Antonopoulos
2012) and the RLI (Sándor, Érdi & Efthymiopoulos 2000; Sándor et al.
2004, 2007; Széll et al. 2004). Thus, the orbital classification obtained with
the approximate galactic potential described in Section 2.2 is very robust.
However, for the sake of brevity, the results based on these other CIs are not
presented in this work.

(see Carpintero, Maffione & Darriba 2014). The hardware we used
for these experiments was an Intel Core i5 with four cores, CPU at
2.67 GHz and 3 GB of RAM. The version of the gcc gfortran
compiler was 4.8.2.

3 BU I L D I N G U P A BA S I C U N D E R S TA N D I N G

CIs are used by dynamicists to identify and characterize the inter-
play between regular and chaotic components of diverse dynamical
systems. For instance, CIs are a popular means of quantifying the
impact of chaos on the dynamical evolution of self-consistent stel-
lar systems, using non-evolving analytic models of the underlying
potential (Kalapotharakos & Voglis 2005; Manos & Athanassoula
2011; Zorzi & Muzzio 2012). These CIs, such as the OFLI, pro-
vide a reliable and straightforward way to estimate the chaos onset
times of orbital sets, i.e. the time-scale at which stars commonly
associated with chaotic orbits will effectively reveal their chaotic
behaviour. In the following experiment, we apply the OFLI to a
regular orbit, a sticky orbit and a chaotic orbit in order to show what
should be expected from the indicator in each case.

Sticky orbits are, for the purpose of this paper, chaotic orbits
that behave regularly on time-scales comparable to a Hubble time.
In what follows, we classify an orbit as sticky if it exhibits chaotic
behaviour only on time-scales larger than 10 Gyr. For a more formal
definition of sticky orbits, please see Appendix B.

In Fig. 1, we present typical examples of regular orbits, sticky
orbits and chaotic orbits in a triaxial extension of the NFW (Navarro,
Frenk & White) potential (equation 1) with the parameters of the
DM halo Aq-A2 (Table 1). The (rounded) initial conditions for these
orbits are presented in Table 2. We integrate simultaneously the
equations of motion (equation A1) and the first variational equations
(equation A2). The regular and sticky orbits are integrated for a
rather long integration time of 1000 Gyr, while the chaotic orbit
is integrated over only 10 Gyr, as this time-scale is enough to
characterize its behaviour. The timestep used for the regular and
sticky orbits is 1 Myr, and 0.01 Myr for the chaotic orbit. The
(rounded) binding energies (E) of the three orbits are included in
Table 2. The integrator conserves energy to an accuracy of one part
in 10−12 or less for all the experiments throughout the paper.
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Table 2. Initial conditions and binding energies for our examples of regular, sticky and chaotic orbits.
Distances are in kpc, velocities in km s−1 and binding energies in km2 s−2.

Type of orbit x y z vx vy vz E

Regular 8.219 − 0.652 − 2.203 −5.795 × 10−3 102.95 −4.745 −217 691.706
Sticky 5.865 0.263 − 0.346 239.350 333.547 57.208 −152 469.329
Chaotic 5.731 0.531 0.443 6.029 −0.366 23.691 −238 489.404

Figure 2. Time evolution of the OFLI for the three orbits introduced in
Fig. 1. Notice the logarithmic scale on both axes. The exponential growth
of the indicator for chaotic motion is clearly observed for the chaotic and
sticky orbits.

In Fig. 1, we show only the first and last intervals of 50 and
110 Gyr for the regular and the sticky orbits, respectively, to illus-
trate the different behaviours that characterize these types of orbit in
configuration space. The behaviour of the chaotic orbit is presented
for two consecutive 5 Gyr intervals.

From Fig. 1, it is clear that the regular orbit has a very similar
shape in the two different time intervals, even though these are sepa-
rated by 900 Gyr. Much more significant differences are apparent in
the trajectories of the sticky orbit sampled at widely separated time
intervals (0–110 Gyr for the middle-top panel and 890–1000 Gyr
for the middle-bottom panel). This illustrates the chaotic nature of
the sticky orbit. Nevertheless, it takes the orbit more than 8 Hubble
times (roughly 110 Gyr) to exhibit its true nature. In the rightmost
panels, we show a chaotic orbit for two consecutive 5 Gyr intervals.
Even in these much shorter intervals, the evolution in the trajectory
is evident.

In Fig. 2, we present the characteristic behaviour of the OFLI for
the three types of orbit shown in Fig. 1. In this case, all three orbits
have been integrated using a timestep of 1 Myr. Notice the linear
evolution of the indicator for regular orbits and the exponential
growth corresponding to sticky and chaotic orbits. As expected
from our previous discussion, for the sticky orbit, it takes the OFLI
∼100 Gyr to start growing exponentially, time at which the chaotic
behaviour of this particle is revealed. Instead, for the chaotic orbit,
it only takes the OFLI a few Gyr to start showing an exponential
growth.

4 TH E AC T UA L R E L E VA N C E O F C H AO S :
S O L A R N E I G H B O U R H O O D - L I K E VO L U M E S

In order to characterize the impact of chaotic mixing on the phase
space distribution of the solar neighbourhood, in this section we

examine two central points: (i) the distribution of chaos onset times
for stellar particles within solar neighbourhood-like volumes and
(ii) the rate of diffusion due to chaotic mixing, a mechanism that
can lead to large variations of the integrals of motion. Our goal is
to explore whether chaotic mixing can be strong enough to erase
signatures of merger events in the neighbourhood of the Sun.

To tackle (i), we select particles from the five Aquarius stellar
haloes in solar neighbourhood-like volumes (see Section 2.3). We
then quantify the fraction of particles on regular, sticky and chaotic
orbits. We do this by means of the OFLI, which allows us to estimate
efficiently the distribution of chaos onset times and so identify the
characteristic time-scales over which chaotic mixing becomes rele-
vant. To address (ii), we measure the diffusion of pseudo-integrals of
motion for large ensembles of test particles that are initially nearby
in phase space.

4.1 The importance of time-scales

First we look for a relationship between the expected OFLI be-
haviours of different orbit types (described above) and more readily
interpreted measures of the local (stream) density. After this, we es-
timate chaos onset times to characterize the actual amount of chaos
manifested on physically meaningful time-scales.

4.1.1 The time evolution of the OFLI for initially nearby particles
in phase space

In the previous section, we have shown that our triaxial DM haloes
admit a wide range of different orbital behaviours. In particular,
we have shown an example of a very chaotic orbit with a chaos
onset time shorter than 5 Gyr. These orbits can potentially play an
important role in shaping the present-day phase space distribution
of our solar neighbourhood. As shown by Vogelsberger et al. (2008),
the local density in the neighbourhood of a particle moving on a
chaotic orbit decreases exponentially with time. As a result, stellar
streams moving on such orbits will experience a rapid phase space
mixing process which can erase signatures of their accretion history.
In contrast, the local density of a particle moving on a regular orbit
decreases as a power-law function of time, with exponent less than
or equal to 3 (a significantly lower rate; Helmi & White 1999;
Vogelsberger et al. 2008; Gómez et al. 2010). Hence, the probability
of finding streams on regular orbits in the solar neighbourhood may
be somewhat higher.

With these ideas in mind, G13 followed the time evolution of the
local density of accreted stellar particles that, at z = 0, were located
within different solar neighbourhood-like volumes. The goal was to
explore whether particles that appeared to be smoothly distributed
in phase space, and thus not associated with any resolved stellar
stream, were on chaotic orbits. If not, the lack of clustering in phase
space for these particles could be due to the limited numerical
resolution of the simulations. G13 fitted a power-law function to
the time evolution of the local density around each star particle and
determined the rate at which this local density decreases with time.
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Figure 3. Trajectories for both guiding particles (A and B) over different time intervals. The leftmost panel shows the trajectory of particle A from 0 to 10 Gyr
and the central panel its trajectory from 110 to 120 Gyr. The rightmost panel shows the trajectory of particle B from 0 to 10 Gyr. The orbit associated with
particle A has a chaos onset time larger than 110 Gyr. Thus, its shape only starts to change after that time. In case of particle B, the chaos onset time is shorter
than 10 Gyr.

Figure 4. Time evolution of the OFLI for both guiding particles (A and B) and their corresponding test particle ensembles (eA and eB). Guiding particles are
shown in cyan and test particles in black. Left-hand panel: OFLI for particle A and ensemble eA in the interval 0–10 Gyr. Middle panel: OFLI for particle A
and ensemble eA from 110 to 120 Gyr. Right-hand panel: OFLI for particle B and ensemble eB in the interval 0–10 Gyr. Notice the logarithmic scale. The
left-hand and middle panels show the typical behaviour of the phase space surrounding a sticky orbit: regular behaviour followed by exponential growth of the
OFLI at the chaos onset time. The right-hand panel shows a much more rapid onset of exponential growth due to the high degree of chaos in the phase space
neighbourhood of particle B.

They assumed that a power-law fit to the local density of stream
particles on a chaotic orbit should yield an exponent greater than
3. Unfortunately, due to the finite resolution of their simulations,
the local volumes used to track the time evolution of density in
G13 were rather large – namely spheres of radius equal to half
of the apocentre of the particle’s orbit. Such large volumes are not
problematic if the goal is to detect resolved stellar streams. However,
it is not clear that such fits reflect the true dynamical nature of the
underlying local stream densities.

In the following experiments, we explore the connection between
the OFLI and the time evolution of the local density of a stream.
We also explore the effects of the size of the local volume on the
characterization of the dynamical nature of a stream through the
time evolution of its local density.

Fig. 3 shows the trajectories of two specific stellar particles in
the Aq-A2 DM halo. These particles were chosen as clear examples
of sticky and chaotic orbits, and at z = 0 are found in a sphere of
radius 2.5 kpc located at 8 kpc from the centre of the halo at z = 0.
We refer to these stellar particles as guiding particles A and B; their
estimated chaos onset times are ∼113 and 5 Gyr, respectively. To
relate the OFLI to the time evolution of local density of streams,
we distribute an ensemble of 1000 massless test particles in a small
phase space volume around both guiding particles. These volumes
are defined by multivariate Gaussians in phase space with initial
dispersions σ x = 0.2 pc and σ v = 1 km s−1. Test particles are
initially distributed such that their maximum separation with respect
to the guiding particle is less than or equal to

√
3σx and

√
3σv,

respectively. As we show below, such small phase space volumes
are necessary to characterize accurately the dynamical behaviour of
the local density around our particles A and B.

The ensembles of test particles and their corresponding guiding
particles are then integrated in our triaxial NFW model (Aq-A2 DM
halo parameters as Table 1) for 10 Gyr, with a timestep of 1 Myr.
During the integration, the OFLI is computed for each particle (test
and guiding).

The left-hand and middle panels of Fig. 4 show the time evolution
of the OFLI for the guiding particle A and its associated ensemble
of test particles, eA. Guiding particles are depicted in cyan and
test particles in black. The time intervals shown in these panels are
the same as those in Fig. 3, i.e. 0–10 Gyr (left-hand panel) and
110–120 Gyr (middle panel). Note that separate ensembles of test
particles are sampled from the Gaussian kernel defined above at the
start of each interval shown.

In the left-hand panel of Fig. 4, we show that the OFLI for
particle A increases linearly with time over the first 10 Gyr of
evolution, indicative of a regular orbit as described in Section 3.
The indicator shows similar behaviour for all the test particles eA
over the same interval (black solid curves). This indicates that the
initial distribution of test particles accurately samples the phase
space volume of the guiding particle.

The middle panel of Fig. 4 shows results for another time interval,
from 110 to 120 Gyr, for the same guiding particle A. The expo-
nential growth of the OFLI in this interval (starting at ∼113 Gyr)
implies a chaotic orbit. As before, we find similar behaviour of
the OFLI for all the test particles in the corresponding ensemble,
including the onset time of exponential growth. Clearly, particle A
moves on a sticky orbit.

The right-hand panel of Fig. 4 shows the time evolution of the
OFLI for another guiding particle, B, with a chaotic orbit. Note
that the chaotic nature of this particle’s orbit becomes apparent on
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Figure 5. Time evolution of the OFLI for 1000 test particle initial conditions sampled around a guiding particle on a regular orbit. The radius of the initial
sphere is indicated. Notice the logarithmic scale. The bigger the sphere around the guiding particle, the more diverse the behaviours of the neighbouring
particles.

a much shorter time-scale, ∼5 Gyr. As in the second time interval
shown for particle A, the vast majority of test particles in ensemble
eB show rapid growth of the OFLI, reflecting the behaviour of their
guiding particle. However, we find a much larger spread in the rate
of the exponential growth in the case of particle B than in the case
of the sticky orbit of particle A.

We have demonstrated that test particles distributed within ini-
tially small phase space volumes around a guiding particle show
very similar behaviour of the OFLI. This indicates that the time
evolution of an ensemble of such particles can be used as an indi-
rect indicator of the nature of any guiding particle. As previously
described, this idea was exploited by G13 as a means of quanti-
fying the nature of stellar orbits within solar neighbourhood-like
volumes in the Aquarius simulations. However, the local stream
density around each stellar particle in G13 was computed by fol-
lowing the neighbouring stellar particles that, at the corresponding
stream’s formation time, were located within spheres of radii larger
than or equal to 4 kpc radius, much larger than the kernel size we
use in Fig. 4. We now explore whether the above result holds even
when larger local volumes are considered for the initial distribution
of test particles.

For this experiment, we consider a guiding stellar particle that is
moving on a regular orbit. In Fig. 5, we show the time evolution
of the OFLI for test particles initially distributed over configuration
space kernels of different sizes. In all cases, the particles were
distributed over the same Gaussian kernel in velocity space, with
σ v = 1 km s−1. The left-hand panel shows the results obtained for
σ x = 0.005 kpc. Within this relatively small sphere, the evolution
of the OFLI for most test particles still reflects the behaviour of the
guiding particle.

In the middle panel of Fig. 5, we use a configuration space kernel
with σ x = 0.1 kpc. Although the majority of test particles still show
a regular behaviour in this case, we start to find a significant fraction
that show a chaotic behaviour in the same integration period. The
right-hand panel shows results for σ x = 4 kpc. It is clear from
this panel that such an extended initial distribution of test particles
does not accurately reflect the dynamical behaviour of the guiding
particle. The results presented in G13 may overestimate the fraction
of chaotic orbits within each solar neighbourhood-like volume.

4.1.2 Connecting the OFLI to a measure of the local
stream density

We have shown that initially nearby particles in phase space show
similar time evolution of the OFLI, which implies a common dy-
namical behaviour. We will now explore whether the behaviour
of the OFLI accurately reflects the time evolution of local density

along a stream. For this purpose, we follow the evolution of the
local density around a sticky stellar particle and a chaotic stellar
particle for periods of 10 Gyr. We refer to these stellar particles
as guiding particles. Both guiding particles are located in a solar
neighbourhood-like sphere at z = 0. Estimates of the chaos onset
times for these guiding particles are ∼80 and 3 Gyr, respectively.
Note that the following results do not depend strongly on our spe-
cific choice of stellar particles.

As before, we distribute ensembles of test particles around each
guiding particle. The test particles are initially distributed as ex-
plained in Section 4.1.1, with σ x = 0.2 pc and σ v = 1 km s−1.
However, to accurately track the time evolution of the local density
around both guiding particles for periods of 10 Gyr, a larger number
of test particles, 104, is considered for each ensemble. Two different
time intervals, separated by several Hubble times (∼113 Gyr), are
considered. The integration timestep is 0.1 Myr. As expected from
their chaos onset times, during the first time interval the sticky orbit
behaves like a regular orbit while the chaotic orbit shows its true
nature. During the second time interval, the sticky orbit behaves like
a chaotic orbit. To estimate the local density at every timestep, we
count the number of test particles within a radius of 0.1 kpc around
the guiding particle, and also discard from further consideration
any particles beyond a radius of 2 kpc. The number of test particles
within the 0.1 kpc sphere is then normalized by the initial number
of test particles. We call this quantity the normalized number of
neighbouring particles: Ni. Here i = S, C refers to the normalized
densities associated with the sticky and chaotic orbits, respectively.

In the top panel of Fig. 6, we present, with dark grey dashed and
green solid lines, the time evolution of NS for both time intervals
(labelling the first 10 Gyr as interval 1 and the second 10 Gyr time
interval as number 2). In the same panel, we also present, with a
red solid line, the time evolution of NC for the first 10 Gyr time
interval. It is clear from this panel that the local density around
the sticky orbit decreases in time significantly more slowly when
the guiding particle’s orbit is approximately regular. Notice that, in
this regime, we are able to track the evolution of the local density
for the full 10 Gyr period of integration. Conversely, in the chaotic
regime, the number of neighbouring particles within 0.1 kpc, which
have never been further than 2 kpc, becomes insufficient to track
the local density after ∼6 Gyr. Notice that the sticky particle and
the chaotic particle show a similar evolution of their local densities
during the chaotic regime. The more rapid decay of NC reflects the
more chaotic nature of this orbit. In the bottom panel of Fig. 6, we
show that a power-law function describes well the time evolution of
the local density around the sticky particle during the first 10 Gyr
time interval; specifically NS ∝ t−1.35. Conversely, an exponential
relation is required to describe the time evolution of the local density
around the chaotic particle NC ∝ e−1.46t.
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Figure 6. Top panel: time evolution of the normalized number of neigh-
bouring particles for the sticky orbit, NS, over two non-consecutive 10 Gyr
time intervals. The first interval (labelled 1) is taken when the guiding par-
ticle moves on a regular orbit and the second interval (labelled 2) is taken
when the guiding particle moves on a chaotic orbit. We also show the time
evolution of the normalized number of neighbouring particles for the chaotic
orbit, NC, over the first time interval. Bottom panel: a power-law fit for NS
and an exponential fit for NC for the first interval only. Notice the logarith-
mic scale. The local density of stellar streams decreases with a power-law
function along a regular orbit and at an exponential rate along a chaotic
orbit.

This analysis demonstrates a very strong connection between
the evolution of local (stream) density around a given guiding
particle and the characterization of its orbit provided by the OFLI.
If the OFLI shows a linear growth, indicating regular behaviour,
then the local density is expected to decrease as a power law with

index less than or equal to 3. Likewise, an exponential growth of
the OFLI reflects an exponential decay of the corresponding local
density.

4.1.3 The distribution of chaos onset times within solar
neighbourhood-like volumes

In the previous section, we have shown that the OFLI is a powerful
tool to characterize the time evolution of the local (stream) den-
sity around any stellar particle in our simulations. We will now use
this indicator to quantify robustly the fraction of stellar particles
within solar neighbourhood-like volumes that are moving on regu-
lar, sticky and chaotic orbits. If chaotic orbits are common in a phase
space volume local to the Sun, then many phase space substructures
(arising for example from past accretion events) may have been
erased, due to the much shorter mixing time-scales associated with
such orbits.

In this experiment, we will consider five different solar
neighbourhood-like volumes, each extracted from a different Aquar-
ius stellar halo. In all cases, the spheres are centred at 8 kpc from
the galactic centre and have a radius of 2.5 kpc (see Section 2.3).
In order to compute the OFLI for each stellar particle within these
spheres, we integrate the equations of motion (equation A1) to-
gether with the first variational equations (equation A2), assuming
smooth triaxial NFW DM haloes (equation 1) with parameters as
given in Table 1. The timestep of integration is 1 Myr and the total
integration time is 1000 Gyr. We use such a long timespan (more
than 100 times the likely age of the MW) to identify very sticky
orbits reliably. Finally, we compute the distribution of estimated
chaos onset times to obtain the percentages of particles moving on
sticky and chaotic orbits.

As previously mentioned in Section 3, we consider as a sticky
orbit any orbit that has a chaos onset time larger than 10 Gyr (a
Hubble time, roughly speaking). This definition is arbitrary. How-
ever, it allow us to make a clear distinction between orbits that could
show some degree of chaotic mixing within a physically meaningful
time-scale and those for which chaos is completely irrelevant.

As described in Section 2.3, only accreted stellar particles are
analysed in these experiments. Table 3 lists the total number of
stellar particles considered in each stellar halo, N⋆. This number
is slightly different from the number of stellar particles quoted in
G13 (see their table 3). This is due to a small number of stellar
particles, N◦, that needed some numerical readjustments during the
integration – the computation of these particles was stopped in order
to keep the computing time of the integrator bounded.

The orbits of the particles selected for further study were then
classified according to the shape of their OFLI time evolution curve.
Individually inspecting each curve to estimate the chaos onset time

Table 3. Dynamical distributions of particles at z = 0 from the Aquarius Project. The first column labels the simulated DM haloes. From left
to right, the columns give the number of particles, N⋆; the number of particles whose computation was stopped, N◦; the number of particles on
regular orbits, N⋆

R; the number of particles on sticky orbits, N⋆
S; the number of particles on chaotic orbits, N⋆

C; the number of particles with values
of the Dyts ! Dymax

ts , N⋆
b , and the medians of Dyts for the sticky, µS

1/2, and the chaotic distributions, µC
1/2, in Gyr.

Name N⋆ N◦ N⋆
R N⋆

S N⋆
C N⋆

b µS
1/2 µC

1/2

Aq-A2 1388 12 437 (31.48 per cent) 644 (46.4 per cent) 307 (22.12 per cent) 1310 (94.38 per cent) 0.295 0.256
Aq-B2 10 385 355 3618 (34.84 per cent) 5069 (48.81 per cent) 1698 (16.35 per cent) 10 273 (98.92 per cent) 0.417 0.396
Aq-C2 2291 43 756 (31.62 per cent) 1015 (46.63 per cent) 520 (21.75 per cent) 2275 (99.3 per cent) 0.297 0.263
Aq-D2 3745 108 1087 (29.03 per cent) 2213 (59.09 per cent) 445 (11.88 per cent) 3679 (98.24 per cent) 0.518 0.409
Aq-E2 1877 80 589 (31.38 per cent) 888 (47.31 per cent) 400 (21.31 per cent) 1853 (98.72 per cent) 0.494 0.426
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Figure 7. Time evolution of the OFLI for the 1388 particles considered
in the Aquarius Project for the Aq-A2 DM halo and within an interval
of time long enough to identify very sticky orbits (1000 Gyr). The upper
limit used as a threshold for regular motion is depicted in solid blue. The
10 Gyr threshold is depicted with a vertical dashed blue line. Notice the
logarithmic scale. The three orbital components, i.e. the sticky, the regular
and the chaotic components, are clearly distinguished by using the OFLI
with both simple thresholds.

is unfeasible for large samples of orbits. We therefore introduce
a threshold OFLI value based on an upper limit for the typical
linear behaviour seen for regular orbits. This threshold evolves lin-
early with time and envelopes all the curves that present a linear
behaviour. In Fig. 7, we show an example of this procedure. The
different lines show the time evolution of the OFLI for 1388 parti-
cles located within the Aq-A2 solar neighbourhood-like sphere. The
threshold is indicated with a blue solid line. Every time the OFLI of
any given stellar particle crosses this threshold, the corresponding
particle is classified as either sticky or chaotic. We reject all thresh-
old crossings in the first Gyr of evolution, because this period can
be considered as a transient stage of the indicator. Chaotic orbits
are defined by threshold crossing within the first 10 Gyr of their
evolution. This 10 Gyr barrier is depicted in Fig. 7 by a vertical
dashed blue line. We denote the threshold crossing times of each
stellar particle by Tt

c (our estimation of the chaos onset time). The
different colour-coded curves in Fig. 7 show the results of this clas-
sification applied to halo Aq-A2. Similar results are found for the
other four haloes, which we do not show for the sake of brevity.
Note that, in a very small number of cases, the OFLI of an orbit
crosses the threshold early on, but later continues to evolve linearly
with time. As a consequence, the number of chaotic orbits found
within each volume may be slightly overestimated.

In Table 3, we summarize the result of this experiment. It is inter-
esting to see that, even in significantly triaxial and cuspy potentials,
a significant fraction of orbits are regular even after 1000 Gyr of
evolution. In all haloes, we find that ≈30 per cent of the stellar par-
ticles are moving on regular orbits. It is also striking to find that, in
all haloes, the fraction of stellar particles on sticky orbits is larger
than 45 per cent. As a consequence, we find that only "20 per cent
of orbits could be experiencing some degree of chaotic mixing,
regardless of the scale and shape of the halo.

Stellar particles living in the innermost regions of each stellar
halo are likely to be more bound and to have shorter dynamical
time-scales than those populating the outer galactic regions. It is
interesting to study whether the distribution of orbital dynamical
time-scales (hereinafter Dyts) plays an important role in separating

Figure 8. The threshold crossing time, Tt
c, as a function of the dynamical

time-scale, Dyts. The chaotic orbits are depicted in red, the sticky orbits
in green and the regular orbits in black throughout the paper. The vertical
dashed blue line is the threshold for Dymax

ts , i.e. 0.631 Gyr for the halo
Aq-A2. The distributions for both chaotic and sticky orbits are very similar.

sticky from chaotic orbits. If chaotic orbits are preferentially found
in the innermost galactic regions, then we may have been able to
identify them simply because their corresponding Dyts are small
enough to reveal their nature in short integration times. On the
other hand, for orbits probing the outer regions of the halo, with
larger values of Dyts, very long integration times could be required
for an accurate characterization. It is thus important to understand
whether or not our quantification of regular, sticky and chaotic orbits
is biased by differences in the relative distributions of their orbital
time-scales.

To explore this, we define a characteristic Dyts as the time for a
particle on a given orbit to undergo two changes of the sign of its
velocity component along the major axis of the stellar halo. In Fig. 8,
we present, for halo Aq-A2, the distribution of Dyts as a function
of the estimated chaos onset time, Tt

c. Regular, sticky and chaotic
orbits are depicted in black, green and red, respectively. As before,
this classification is based on their values of Tt

c. It is very clear from
this panel that chaotic and sticky orbits are not strongly segregated
in Dyts. Note that many sticky orbits with Tt

c ≥ 100 Gyr can be
found with values of Dyts as small as ∼0.2 Gyr. A similar result is
observed for regular orbits. Even though sticky orbits show a tail
towards large values of Dyts, the populations of chaotic and sticky
orbits seem to be characterized by similar distributions. This can be
seen from the medians of the two distributions, given in Table 3.
A vertical dashed blue line indicates the location of the chaotic
orbit with the highest value of Dyts: Dymax

ts , which is ≈0.631 Gyr
for halo Aq-A2. In Table 3, we present the fraction, N ⋆

b , of orbits
(of all classes) with values of Dyts less than the corresponding
Dymax

ts . In all haloes, N ⋆
b # 95 per cent. In addition, we find that

only ≈12 per cent of the sticky orbits are above this threshold in halo
Aq-A2. This number is reduced to "2 per cent for the other haloes.
This means that short orbital time-scales are not the dominant factor
that distinguishes between sticky and chaotic motion for stellar
halo particles in our solar neighbourhood-like volumes. Instead, the
results of this simple analysis demonstrate that the key distinction
is the dynamical properties of the surrounding phase space volume.

So far, we have shown that a small but non-negligible fraction
of orbits in solar neighbourhood-like volumes could indeed exhibit
chaotic mixing. In what follows, we will discuss the extent to which
such mixing can erase nearby signatures of early stellar accretion
on to the Galaxy, within physically relevant periods of time.
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4.2 Global dynamics and diffusion

4.2.1 Basic concepts

In this section, we discuss a mechanism that could lead to global
chaotic mixing. In terms of the orbits of stars, roughly speaking,
chaotic mixing means that all trajectories starting in a small neigh-
bourhood of a given point in phase space (or on an energy surface)
lose the memory of their initial conditions with time and eventu-
ally appear uncorrelated. For N-dimensional systems (N ≥ 3), since
KAM (Kolmogorov, Arnold & Moser) tori no longer divide the
energy surface (see Appendix B for a further description and refer-
ences), it has been conjectured that any orbit lying in a thin chaotic
layer around any resonance might visit the whole so-called Arnold
web (Arnold 1964; Chirikov 1979).

In his note, Arnold proved the existence of motion along the
stochastic layer of a given resonance in a rigorous way, for a rather
simple near-integrable Hamiltonian. He demonstrated that, for a
very small perturbation, it is possible to find a trajectory in the
vicinity of the separatrix of a particular resonance that connects two
points separated by an arbitrarily large distance, i.e. independent
of the size of the perturbation, on a very long time-scale. Arnold’s
proof rests on the existence of a chain of hyperbolic tori along
this resonance that may provide a path for the orbit – if these
tori are very close to each other, an orbit could transit over that
chain. Since every torus in the chain is labelled by an action value
or unperturbed integral, a large but finite variation of this action
could take place. This mechanism, which permits motion along the
resonance stochastic layer, is known (in the mathematical literature)
as the Arnold mechanism, while the term Arnold diffusion generally
refers (in the physical literature) to a global phase space instability
(for details see Giorgilli 1990; Lochak 1999; Cincotta 2002), that
is any (chaotic) orbit could visit the full Arnold web in a finite
time. The problem of how to extend the Arnold mechanism to a
generic Hamiltonian remains unsolved. One of the main difficulties
is related to the construction of such a chain of tori.

Regardless this severe limitation to understand Arnold diffusion
as a global instability, it is assumed (in the physical literature)
that Arnold diffusion does occur, and is responsible for chaotic
mixing (see for instance the discussion given in the last section of
Cincotta, Giordano & Perez 2006). For instance, assuming that in
the phase space of steady-state galaxies the chaotic component is
a well-connected region (through some type of diffusion), Merritt
(1999) extended the classical Jeans theorem, which was formulated
only for regular non-resonant orbits (Binney & Tremaine 1987),
to take into account chaotic motion. However, as we will show in
this section, chaotic diffusion does not play any significant role in
connecting the whole chaotic component.

In spite of the mathematical difficulties in dealing with this con-
jecture as a global property, a local formulation shows that chaos
needs to be considered in the limit when t → ∞ in order to ob-
serve any significant variation of the unperturbed integrals. This
suggests that (strict) Arnold diffusion is irrelevant in the real world4

(Chirikov & Vecheslavov 1993; Cincotta 2002).
In those real systems exhibiting a divided phase space, where the

chaotic component is relevant (i.e. has a positive non-negligible
measure), the time-scale for any diffusion (not Arnold diffu-

4 Further discussion about this instability and the connection between the
mathematical and physical approach can be found in Guzzo & Lega (2013)
and Cincotta et al. (2014).

sion) would be much shorter but still very long (see for instance
Chirikov & Vecheslavov 1997; Giordano & Cincotta 2004).

In the particular model considered here, we claim that chaotic
mixing is almost irrelevant on cosmological time-scales. Although
this is the aim of a forthcoming paper, we would like to show,
by simple arguments and computations, that the so-called chaotic
diffusion does not work for the model here consider.

4.2.2 Analytic description

We have already shown that %TRI can be approximated by equation
(3) (see Section 2.2), which for simplicity we recast as

%TRI ≈ %0(r) + %1(r)[µ1 cos 2ϕ + µ2 cos 2ϑ

+ µ3 cos 2(ϑ ± ϕ)],

where µs = ε2 − ε1, − ε1, ε1/2, and since ε1 and ε2 are assumed to
be small parameters, µs ≪ 1.

Therefore, the Hamiltonian takes the form

H( p, r) = H0( p, r,ϑ) + %̂1(r),

with

H0( p, r, θ ) = p2
r

2
+ p2

ϑ

2r2
+

p2
ϕ

2r2 sin2 ϑ
+ %0(r),

and

%̂1(r) = %1(r) [µ1 cos 2ϕ + µ2 cos 2ϑ + µ3 cos 2(ϑ ± ϕ)] ,

where

pr = ṙ , pϑ = r2ϑ̇, pϕ = r2ϕ̇ sin2 ϑ.

In fact, H0 is an integrable Hamiltonian being

H0 = E0, Lz = pϕ, L2 = p2
ϑ + p2

ϕ csc2 ϑ,

the three global unperturbed integrals, while %̂1 can be considered
as a small perturbation. The dependence of %̂1 on (ϑ , ϕ) leads to
variations of the angular momentum and its components. Indeed,

dLz

dt
= [Lz,H] = −∂%̂1

∂ϕ
,

dL2

dt
= [L2,H] = −2pϑ

∂%̂1

∂ϑ
− 2pϕ

sin2 ϑ

∂%̂1

∂ϕ
,

which are of order µs and therefore assumed to be small.
We are aware that the assumption µs ∼ ε1, ε2 ≪ 1 holds only

marginally for any of the DM halo models considered here. How-
ever, the approach described above provides an appropriate physical
insight into the problem.

4.2.3 Numerical experiments

In order to perform numerical experiments on a given constant
energy surface on the (L2, Lz) plane that mimics our solar neigh-
bourhood, we consider the triaxial extension of the NFW model
(equation 1) with parameters corresponding to the Aq-A2 DM halo.
Initial conditions for an ensemble of test particles are obtained as
follows.

First, we fix (x0, y0, z0) = (8, 0, 0) kpc (i.e. the position of
the Sun), and adopt the mean value of the energy distribution of
the stellar particles located within a 2.5 kpc sphere, ⟨E⟩ = E0 ≃
−204 449 km2 s−2. The remaining two phase space coordinates are
obtained by sampling a region of the (L2, Lz) plane with a regular
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Figure 9. Ranges in L2 (logarithmic scale) and Lz for the whole set of 1400
particles (grey) of the Aq-A2 DM halo. In black, the region of the plane to
be considered in the experiments.

grid. The region of the (L2, Lz) plane explored is determined such
that, in both dimensions, ≈80 per cent of the corresponding stellar
particles are enclosed. In Fig. 9, we show the selected region of the
(L2, Lz) plane in which global dynamics will be displayed. We also
include the corresponding stellar particles with their actual values
of (L2, Lz). We stress that, in the following experiments, the orbits
of the test particles are calculated using the equations of motion and
the first variational equations for the full triaxial NFW model.

A global dynamical portrait of the system after an integration
time of 10 Gyr is shown in the left-hand panel of Fig. 10, as a
contour plot of the OFLI for a grid of 450 × 450 (yielding a total
of 77 967 initial conditions). For this time-scale, almost the whole
region of angular momentum space appears regular. Only a small
number of invariant manifolds and narrow resonances are observed.
The invariant manifolds (separatrices) show up as arcs that separate
different orbital families (the large resonance domains) while the
small (or high-order) resonances arise as channels, the centres of
which correspond to a chain of stable 2 D resonant elliptic tori and
the margins of which are formed by a chain of 2D hyperbolic (or
unstable) tori. In any case, this figure shows that most of the phase
space seems to be populated by regular orbits.

Although the perturbation is not actually small enough for the
Aq-A2 halo model, namely ε1 ≈ 0.17, ε2 ≈ 0.63, chaos seems
to be almost irrelevant after 10 Gyr of evolution. The amount of
chaos observed in this experiment, as measured in Section 4.1.3, is
≃12.44 per cent. Consequently, no secular variation of the unper-

turbed integrals (L2, Lz) is expected, since diffusion can only occur
within a connected chaotic region of finite size. The main effect
of the perturbation is to generate new families of orbits that, on
time-scale, are regular box and tube orbits and subfamilies of the
latter.

To look for diffusive phenomena or chaotic mixing in this model,
we perform a second computation of the OFLI over a larger time-
scale of 250 Gyr. Although meaningless from a physical point of
view, this experiment serves to unveil chaotic motion that still ap-
pears regular at 10 Gyr, mainly as the result of sticky orbits. We
are also interested in the time-scale on which such diffusion takes
place.

In the right-hand panel of Fig. 10, we show an OFLI contour
plot for a grid of 300 × 300 (34 670 initial conditions). This reveals
some hyperbolic structures, shown in red. The true Arnold web is
mostly unveiled – it covers a considerable domain in phase space.
Indeed, the fraction of chaos observed in this experiment amounts
to the ≃43.37 per cent of the orbits considered. Since a connected
chaotic region of noticeable size exists, some secular variation of
the unperturbed integrals (L2, Lz) would be expected, giving rise
to fast diffusion (as we discuss below). For this longer time-scale,
the invariant manifold separating box from tube orbits in the more
regular part of phase space (labelled as separatrix) is more clearly
outlined. In addition, the high-order resonant structure on the right,
which appeared as channels crossed by several narrower resonances
on the plot for 10 Gyr, now shows up as an entangled assemblage
of unstable manifolds, leading to strongly unstable or chaotic dy-
namics (red component in the right-hand panel of Fig. 10).

The long-term diffusion of the unperturbed integrals of this sys-
tem is determined by the topology of all its resonances (the right-
hand panel of Fig. 10) which have been detected efficiently by our
application of the OFLI. To gain insight into how this diffusion
operates, and to illustrate the roam of the unperturbed integrals,
we have traced several orbits with initial conditions embedded in
different stochastic domains in the (L2, Lz) plane. The wandering
of the unperturbed integrals has been followed over 250 Gyr for
ensembles of 90 000 initial conditions sampled uniformly in boxes
of size ∼10−6. The centres of these boxes (listed in Table 4) are
identified as the most chaotic regions by the OFLI. These ensem-
bles are indicated by small green rectangles in the following figures.
The equations of motion were integrated with a timestep of 1 Myr.
Each crossing of an orbit through a spherical shell of radius 0.1 kpc
around the Sun is depicted as a black dot in the OFLI contour plot
for the 250 Gyr interval.

Figure 10. OFLI contour plots for 10 (left-hand panel) and 250 (right-hand panel) Gyr for the Aq-A2 halo model for (x0, y0, z0) = (8, 0, 0), E0 ≃
−204 449 km2 s−2. The solid black lines in the colour bars indicate the values of the threshold taken to distinguish regular from chaotic motion. Then, warm
colours indicate chaotic motion while cool colours represent regular motion. The Arnold web is mostly unveiled and, as we can see from the warm colours of
the right-hand panel, it covers a considerable domain in phase space.
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Table 4. Ensembles of 90 000 initial con-
ditions sampled uniformly in a box of size
∼10−6, the centre of which (given in the ta-
ble) has been identified as corresponding to a
chaotic orbit (recall that in the figures display-
ing the evolution of the unperturbed integrals,
L2 is given on a logarithmic scale).

Ensemble log10(L2) Lz

(i) 5.045 275
(ii) 6.165 1000
(iii) 6.145 25
(iv) 6.405 25

Figure 11. Long-term diffusion over 250 Gyr for ensemble (i) of initial
conditions (depicted in green) overplotted on the Arnold web. Diffusion
proceeds along the stochastic layer separating box from tube orbits.

Figure 12. Long-term diffusion over 250 Gyr for ensemble (ii) of initial
conditions (depicted in green) overplotted on the Arnold web. The unper-
turbed integrals remain confined to a rather small domain; hence, diffusion
turns out to be mostly inefficient.

Fig. 11 shows the time evolution of ensemble (i). Diffusion pro-
ceeds along the stochastic layer separating box from tube orbits.
Recall that, even in the nearly completely regular scenario (for an
almost vanishing perturbation, i.e. µs → 0), the orbits will remain
in an exponentially narrow chaotic domain around the separatrix, at
least for very large times.

Meanwhile, when the evolution of ensemble (ii) is considered
(Fig. 12), we recognize that the jump in pseudo-integrals between
the two thin parallel curves corresponds to the borders of a reso-
nance. In this case, the unperturbed integrals remain confined to a
rather small domain, so that diffusion turns out to be inefficient for
a rather large interval.

We stress that the diffusion we observe has some geometrical
resemblance to the theoretical conjecture of Arnold, according to
which diffusion proceeds through phase space along the chaotic
layers of the full resonance web. However, it is clear that Arnold’s
mechanism is not the way to understand this diffusion, since not
only it is impossible to find any path for the orbits, but also the
perturbation is not small enough (µs " 1). Thus, the confined vari-
ation of L2 and Lz we find should be interpreted in terms of another
regime, the well-known overlap of resonances. Even though fast
diffusion can occur in this scenario, clearly this is not the case here.

To illustrate how diffusion progresses, Fig. 13 shows snapshots
corresponding to 50 (left-hand panel) and 70 Gyr (right-hand panel)
for a third ensemble. We notice that diffusion advances along the
outermost edge of the separatrix discriminating box from tube or-
bits, near the bottom of the figure, and climbs to slip over the left
part of the web’s upper border. When a larger time interval is con-
sidered, the points are seen to spread out to cover the full width of
both resonances as shown in Fig. 14 for 120 (left-hand panel) and
250 Gyr (right-hand panel).

Meanwhile, for ensemble (iv) after 30 Gyr (Fig. 15, left-hand
panel), the unperturbed integrals wander over the small chaotic sea
at the bottom-right corner of the web, where an intricate overlap of
resonances is observed. For a larger time-scale (70 Gyr, right-hand
panel), the roaming of (L2, Lz) is confined to a domain of nearly the
same extent (naturally more populated).

Fig. 16 also illustrates that the orbits with initial conditions in
ensemble (iv) sweep a bounded fraction of prime integral space
after 120 (left-hand panel) and 250 Gyr (right-hand panel). How-
ever, the chaotic component is far from being fully connected, even
for this large time-scale, since some chaotic domains still remain
unexplored.

From all these experiments, we clearly see that in this Hamil-
tonian representation of the Aq-A2 DM halo, diffusion or chaotic
mixing is completely irrelevant on any realistic time-scale.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The phase space distribution of halo stars in the neighbourhood
of the Sun potentially holds an invaluable source of information
about the assembly history of the MW. Stellar streams are the most
direct signals of Galactic accretion and their identification in the
solar neighbourhood is of fundamental importance to the study of
Galactic dynamics. Our capability to detect these stellar streams
might be threatened by local chaotic mixing processes that can
smooth out the phase space distribution function on a very short
time-scale (Section 1). In this work, we have explored whether
chaotic mixing can play an important role in shaping the phase
space distribution of orbits local to the present position of the Sun.
Our results reinforce the idea that this process is very inefficient
within a physically meaningful time-scale, even within the solar
neighbourhood.

The degree of substructure in the solar neighbourhood’s phase
space distribution depends on several factors. First, dynamical time-
scales in the inner regions of the Galaxy are relatively short. In gen-
eral, stellar streams within this region are expected to be spatially
well mixed (Gould 2003). In addition, due (at least) to the triaxial
and cuspy nature of the underlying gravitational potential, a frac-
tion of local streams could be evolving on chaotic orbits. Chaos,
in the Lyapunov sense, indicates exponential divergence of initially
nearby orbits in phase space. Stream stars with chaotic orbits would
experience very rapid mixing, with local spatial densities decreas-
ing at an exponential rate such that their detection at the present day
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Figure 13. Diffusion over 50 Gyr (left-hand panel) and 70 Gyr (right-hand panel) for ensemble (iii) of initial conditions (depicted in green) overplotted on the
Arnold web as in the previous figures. Diffusion advances along the outermost edge of the separatrix discriminating box from tube orbits.

Figure 14. Long-term diffusion over 120 Gyr (left-hand panel) and 250 Gyr (right-hand panel) for ensemble (iii) of initial conditions (depicted in green)
overplotted on the Arnold web as in the previous figures. Diffusion spreads out to cover the full width of the resonances.

Figure 15. Diffusion over 30 Gyr (left-hand panel) and 70 Gyr (right-hand panel) for ensemble (iv) of initial conditions (depicted in green) overplotted on the
Arnold web as in the previous figures. The unperturbed integrals wander over the small chaotic sea.

would be unlikely. Furthermore, regions filled with chaotic orbits
can foster chaotic diffusion, which erases the ‘dynamical memory’
imprinted in phase space and effectively produces a smooth distri-
bution function (Section 4.2.1).

We have shown that, even though all of these processes are un-
doubtedly active in the solar neighbourhood, they do not necessarily
imply a significantly smooth phase space distribution function. One
of the key factors in this discussion is the relevant time-scale of the
system, which serves as an upper bound for the actual time available
to develop chaos. In particular, the (DM halo) potential in the inner
20 kpc of the Galaxy is not expected to have evolved significantly
within the last ∼8 Gyr (z = 1; see Wang et al. 2011; Buist & Helmi

2014). The efficiency of chaos should be evaluated with regard to
this timeframe.

To characterize the true impact of chaos in shaping local stellar
halo phase space structure, we used fully cosmological N-body
simulations of the formation of MW-like DM haloes, coupled with
a semi-analytic model of galaxy formation (Section 2.1), to sample
the phase space distribution of solar neighbourhood-like volumes
(Section 2.3). We modelled the DM halo potential with a triaxial
extension of the well-known NFW density profile (Section 2.2) and
used it to integrate the equations of motion, coupled with the first
variational equations, to compute the OFLI (Section 2.4). This CI
allowed us to robustly characterize the dynamical nature of stellar
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Figure 16. Long-term diffusion over 120 Gyr (left-hand panel) and 250 Gyr (right-hand panel) for ensemble (iv) of initial conditions (depicted in green)
overplotted on the Arnold web as in the previous figures. Diffusion sweeps a bounded fraction of the prime integral space; however, the chaotic component is
far from being fully connected.

particles. Orbits were classified into three different components:
regular, sticky and chaotic. An important difference between these
three families is the rate at which the local (stream) density around
a given particle decreases as a function of time. While for regular
orbits the local density decreases as a power law, for chaotic orbits
it does so at an exponential rate. In between we find the so-called
sticky orbits. Sticky orbits behave as regular for a given period of
time, after which their behaviour becomes chaotic.

In all solar neighbourhood-like volumes analysed, we find that,
even within these strongly triaxial potentials, only "20 per cent of
the stellar particles reveal their chaotic nature within a Hubble time.
We find that ∼30 per cent of orbits can be characterized as regular.
For the remaining ∼50 per cent, namely ‘sticky’ orbits, it takes in
general much longer than 10 Gyr to reveal their chaotic behaviour.
The fraction of sticky orbits is particularly important because, for
halo stars moving on such orbits, chaotic mixing may not have
enough time to operate even though the orbits themselves have an
intrinsically chaotic nature. It is important to mention that, in all
cases, we have considered a simplified representation of the un-
derlying galactic potentials. To explore whether this approximation
could affect our results, orbits of the stellar particles associated with
the Aq-A2 local volume were integrated on potentials with axial ra-
tios extracted from the remaining four DM haloes. In all cases, we
kept the virial mass and concentration parameters fixed to those as-
sociated with halo Aq-A2. If our results would be highly sensitive
to the shape of the potential, this change to the triaxiality should
significantly increase the fraction of chaotic orbits. In all cases, we
find that the fraction of orbits presenting chaotic behaviour within
10 Gyr is "30 per cent. The obtained fractions are very similar to
the one obtained with the axial ratio extracted self-consistently from
the DM halo Aq-A2. This indicates that, as long as the main sources
of chaos are included in the model (i.e. central cusp, triaxial shape
and its radial dependence), slight variations of the galactic potential
should not dramatically alter the global dynamics of the system.

Our results indicate that chaotic mixing, although non-negligible
(see e.g. Price-Whelan et al. 2015), is not a significant factor in eras-
ing local signatures of accretion events. This is in agreement with
the results of G13, who quantified the number of stellar streams
in the same solar neighbourhood-like volumes considered in this
work. Their results suggest that the strongest limitation on quanti-
fying substructure is mass resolution, rather than diffusion due to
chaotic mixing. They found that, in the best resolved local volumes,
the number of identifiable streams ranges from ≈300 to 600, in very
good agreement with previous analytic predictions (Helmi & White
1999; Helmi et al. 2003). It is important to note that the orbital

classification presented in G13 most likely overestimates the frac-
tion of stellar particles moving on chaotic orbits. As a consequence
of the high but still finite particle resolution of these simulations,
G13 were forced to track the time evolution of local (stream) den-
sities within relatively large spheres (R # 4 kpc). As shown in this
work, such large spheres are likely to encompass stellar particles
that exhibit very different dynamical behaviours, and hence do not
faithfully represent the time evolution of their corresponding local
densities.

Despite the optimistic view described above, some relevant
caveats of the present work must be discussed and addressed in
follow-up work. First of all, the galactic potentials considered in this
work are associated only with the underlying distribution of DM.
In a more realistic model, this potential should also account for the
mass distributions of the Galactic disc, bulge and a supermassive
central black hole (e.g. Siopis & Kandrup 2000; Kandrup & Siopis
2003; Valluri et al. 2010, 2012). Note, however, that previous stud-
ies including multicomponent galactic potentials have successfully
identified large amounts of substructure in solar neighbourhood-
like volumes (e.g. Helmi & de Zeeuw 2000; Gómez et al. 2010;
Sharma & Bland-Hawthorn 2011). Additionally, studies based on
stellar haloes obtained from fully cosmological hydrodynamical
simulations find an overall fraction of chaotic orbits that, in all
cases, is "20 per cent, in agreement with our results (Valluri et al.
2010, 2013). We have also considered static potentials that are not
allowed to evolve as a function of time. While an evolving poten-
tial could enhance the efficiency of diffusion in phase space (see
for instance Peñarrubia 2013), previous attempts to characterize
the degree of substructure in local volumes, taking into account
the variation of the Galactic potential in a cosmological context,
have suggested that this effect may not be significant after all. As
previously discussed, at least within its inner regions, the Galactic
potential is not expected to have evolved significantly during the
last ∼8 Gyr. We will further explore the validity of the assump-
tions adopted in this work in a follow-up study (Cincotta et al., in
preparation).
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MNRAS, 419, 1951
Valluri M., Debattista V. P., Stinson G. S., Bailin J., Quinn T. R., Couchman

H. M. P., Wadsley J., 2013, ApJ, 767, 93
Vasiliev E., 2013, MNRAS, 434, 3174
Vera-Ciro C. A., Sales L. V., Helmi A., Frenk C. S., Navarro J. F., Springel

V., Vogelsberger M., White S. D. M., 2011, MNRAS, 416, 1377
Vogelsberger M., White S., Helmi A., Springel V., 2008, MNRAS, 385,

236
Voglis N., Kalapotharakos C., Stravropoulos I., 2002, MNRAS, 337,

619
Wang J. et al., 2011, MNRAS, 413, 1373
Weinberg M. D., 1999, AJ, 117, 629
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
Wylie-de Boer E., Freeman K., 2010, in Bruzual G., Charlot S., eds, Proc.

IAU Symp. 262, Stellar Populations – Planning for the Next Decade.
Cambridge Univ. Press, Cambridge, p. 448

Zhao G., Chen Y., Shi J., Liang Y., Hou J., Chen L., Zhang H., Li A., 2006,
Chin. J. Astron. Astrophys., 6, 265

Zorzi A. F., Muzzio J. C., 2012, MNRAS, 423, 1955
Zwitter T. et al., 2008, AJ, 136, 421

A P P E N D I X A : E X P O N E N T I A L D I V E R G E N C E
A N D VA R I AT I O NA L C I S

The CIs, which are based on the time evolution of the deviation
or tangent vector to the flux describing a given dynamical system,
measure the rate of divergence of two initially close solutions. In
order to quantify the rate of divergence of such two nearby orbits,
let us consider a Hamiltonian system defined on a differentiable
manifold, the energy surface in the present case.

If we denote byH( p, q) the Hamiltonian with p, q ∈ RN , the en-
ergy surface is thus defined by Mh = {x : H( p, q) = h}. Further,
on introducing the notation

x = ( p, q) ∈ Mh, f (x) = (−∂H/∂q, ∂H/∂ p) ∈ Mh,

the equations of motion can be recast as

ẋ = f (x), (A1)

so that the first variational equations take the form

ẇ = ∂ f
∂x

w, (A2)

where w is the deviation vector and ∂ f /∂x denotes the Jacobian
matrix of f . Let γ (t) (an orbit) denote a solution of equation (A1)
for the initial condition x0 ∈ Mh. Introducing some norm in Mh,
∥ · ∥, we denote

δγ (t) = ∥w(t)∥
∥w0∥

,

which characterizes the Hamiltonian flow in a small neighbourhood
of γ (t). Therefore, the mean local rate at which nearby orbits to γ (t)
diverge is given by the lLCE, defined as

lLCEγ = lim
t→∞

1
t

ln δγ (t) ≡ lim
t→∞

1
t

∫ ∞

0

δ̇γ

δγ
dt . (A3)

The lLCE allows us to determine whether an orbit is regular or
chaotic (that is, stable or unstable in the Lyapunov sense). Indeed,
only when the δ(t) increases exponentially fast with time, the lLCE
would be different from zero. The inverse of the lLCE, the Lyapunov
time, provides the time-scale for the manifestation of the local
instability (that is to say the time needed for two nearby orbits to
diverge by a factor of one e-folding). Whether lLCEγ is null or
positive, γ is said to be regular or chaotic, respectively.

The numerical value of the lLCE for a large but finite time T
is the so-called LI, which is the most widely used technique of
chaos detection. Clearly, the LI is a finite-time approximation of
lLCEγ given by equation (A3). Therefore, a given orbit will be
classified as either regular or chaotic whether LI converges to zero
or to a positive value, respectively. The inverse of the LI is the
finite-time approximation to the above-defined Lyapunov time (a
detailed discussion on the theory and numerical computation of the
LCEs and, particularly of the lLCE, can be found in the extensive
review of Skokos 2010).

APPENDI X B: STI CKY ORBI TS

Since sticky orbits are important in the present study, we briefly re-
cap their typical behaviour. The phenomenon of stickiness is clearly
seen in near-integrable Hamiltonian systems with low-to-moderate
perturbations. In this direction, the KAM theory (for a non-rigorous
approach see for instance, Chirikov 1979; Lichtenberg & Lieber-
man 1983) ensures that most of the original tori associated with the
integrable system survive in the presence of a sufficiently small per-
turbation. These are the irrational tori, those that satisfy the so-called
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Diophantine condition. Meanwhile, tori close to a resonance con-
dition are destroyed, leading to unstable chaotic motion. In systems
with two degrees of freedom, the two-dimensional invariant tori
divide the energy surface (of dimension 3). For systems of higher
dimensionality, the scenario is much more complicated, since, for
instance, the KAM tori no longer divide the energy surface and
the stickiness phenomenon, although still present, requires further
explanation. Therefore, chaotic orbits cannot enter a (resonant) sta-
bility domain due to the presence of an invariant curve that acts
as a barrier for chaotic motion and so remains confined to a finite-
width stochastic layer around the island. By slightly increasing the
perturbation strength, invariant curves can be broken down and the
barriers become only quasi-barriers to chaotic motion. This is due to
the intricate structure of the former invariant curves (Aubry 1983;
MacKay, Meiss & Percival 1984), an infinite set of unconnected
infinitesimal parts of the earlier curve, strictly speaking a cantor
set or cantori (see also Tsiganis, Anastasiadis & Varvoglis 2000,

for a qualitative description). Therefore, chaotic orbits starting in a
large chaotic domain could in general avoid the cantori. Meanwhile,
a chaotic orbit with initial conditions close enough to the cantori
might cross the quasi-barriers of the cantorus and stick to the sta-
bility island associated with the resonant orbit. Hence, that chaotic
orbit would mimic a regular one in the island. Such a chaotic orbit is
called ‘sticky–chaotic’ or simply ‘sticky’. In general, sticky orbits
are trapped within thin chaotic layers and might visit the neighbour-
hood of different stability islands for a rather long time before they
escape (through the cantori) into the chaotic sea (in the context of
Poincaré surfaces of section). A sticky orbit therefore looks like a
regular orbit for a rather long time, until its chaotic nature is clearly
exposed – in other words, its chaos onset time is relatively large.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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