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Bouligand-Severi tangents in MV-algebras

Manuela Busaniche and Daniele Mundici

Abstract. In their recent seminal paper published in the Annals of Pure
and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly
semisimple if all principal quotients of A are semisimple. All boolean
algebras are strongly semisimple, and so are all finitely presented MV-
algebras. We show that for any 1-generator MV-algebra, semisimplicity
is equivalent to strong semisimplicity. Further, a semisimple 2-generator
MV-algebra A is strongly semisimple iff its maximal spectral space p(A) C
[0, 1]2 does not have any rational Bouligand-Severi tangents at its rational
points. In general, when A is finitely generated and p(A) C [0,1]" has
a Bouligand-Severi tangent then A is not strongly semisimple. An MV-
algebra A is strongly semisimple iff so is every two-generator subalgebra
of A.

1. Introduction

We refer to [4] and [8] for background on MV-algebras. Following Dubuc and
Poveda [5], we say that an MV-algebra A is strongly semisimple if for every princi-
pal ideal I of A the quotient A/T is semisimple. Since {0} is a principal ideal of A,
every strongly semisimple MV-algebra is semisimple. The definition of “logically
complete” MV-algebras in [1] is a variant of this notion, where one further as-
sumes I # {0}. The paper [7] is devoted to the frame-theoretic variant of strongly
semisimple MV-algebras, called “Yosida frame”. All these papers, along with the
results of the present paper, show that strong semisimplicity is a very interesting
purely algebraic counterpart of the simplicial, topological, and differential struc-
ture of MV-algebras. Further, from the logical viewpoint, 4.3 in [9] shows that
strongly semisimple MV-algebras coincide with Lindenbaum algebras of theories
O in infinite-valued Lukasiewicz logic having the following property: for any for-
mula v, the set of syntactic consequences of © U {¢)} coincides with the set of
(Bolzano-Tarski) semantic consequences of © U {1 }.

Mathematics Subject Classification (2010): Primary 06D35; Secondary 49J53, 47H04, 47N10,
49J52, 54C60 .

Keywords: MV-algebra, strongly semisimple, Bouligand-Severi tangent, Lukasiewicz logic, syn-
tactic and semantic consequence, Yosida frame, semisimple, logically complete MV-algebra.



2 M. BUSANICHE AND D.MUNDICI

From a classical result by Hay [6] and Wjcicki [14] (also see 4.6.7 in [4] and 1.6
in [8]), it follows that every finitely presented MV-algebra is strongly semisimple.
Trivially, all hyperarchimedean MV-algebras, whence in particular all boolean al-
gebras, are strongly semisimple, and so are all simple and all finite MV-algebras,
(see 3.5 and 3.6.5 in [4]).

For any real-valued function g we will write Zg = g=1(0) for its zeroset.

Our paper is devoted to n-generator strongly semisimple MV-algebras. When
n = 1 strong semisimplicity is equivalent to semisimplicity (Theorem 5.1). To
deal with the general case, we first recall that the free n-generator MV-algebra is
the MV-algebra M([0,1]™) of all McNaughton functions f: [0,1]" — [0, 1], with
pointwise operations of negation -z = 1 — x and truncated addition x & y =
min(1,x +y). See 9.1.5 in [4].

For any nonempty closed set X C [0,1]"™ we let M(X) denote the MV-algebra
of restrictions to X of the functions in M ([0, 1]™), in symbols,

MX) ={f1X [ f e M([0,1]")}.

By 3.6.7 in [4], M(X) is a semisimple MV-algebra—actually, up to isomorphism,
M(X) is the most general possible n-generator semisimple MV-algebra A: to see
this, pick generators {a1,...,a,} of A. Let m;: [0,1]" — [0, 1] be the projection
functions in the free MV-algebra M([0,1]") for i = 1,...,n. Then the assignment
that maps m; — a; for each ¢ = 1,...,n, uniquely extends to a homomorphism
Na: M([0,1]") — A of the free n-generator MV-algebra onto A. Let b, = ker(n,)
be the kernel of this homomorphism and

(1.1) Zo=(W2f | €ha}
the intersection of the zerosets of the McNaughton functions in bh,. Then
(1.2) A= M(Z,).

A point x € R™ is said to be rational if so are all its coordinates. By a
rational vector we mean a nonzero vector w € R™ such that the line Rw C R"
contains at least two rational points. An MV-algebra A is strongly semisimple iff
so is every two-generator subalgebra of A (Proposition 4.1). A 2-generator MV-
algebra A = M(X), with nonempty closed X C [0, 1]2, is strongly semisimple iff
X has no rational outgoing Bouligand-Severi tangent vector at any of its rational
points, [2, 12, 10]. See Theorem 3.1. As proved in Theorem 2.3, for any closed
X C [0,1]™, having such a tangent is a sufficient condition for M(X) not to be
strongly semisimple.

Notation: Following p.33 in [4] or p.21 in [8], for k € N, k. g stands for k-fold
pointwise truncated addition of g.

2. Strong semisimplicity and Bouligand-Severi tangents

Severi (see §53, p.59 and p.392 of [11], as well as §1, p.99 of [12]) and independently,
Bouligand (p.32 in [2]) called a half-line H C R™ tangent to a set X C R™ at an
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accumulation point z of X if for all €,d > 0 there is y € X other than x such that
[ly — z|| < ¢, and the angle between H and the half-line through y originating at
xis < 9.

Here as usual, ||v|| is the length of the vector v € R™.

On §2, p.100 and §4, p.102 of [12] Severi noted that for any accumulation point
x of a closed set X there is a half-line H tangent to X at x.

Today (see, e.g., p.16 in [3], or p.1376 in [10]), Bouligand-Severi tangents are
routinely introduced as follows:

Definition 2.1. Let z be an element of a closed subset X of R™, and u a unit
vector in R™. We then say that u is a Bouligand-Severi tangent (unit) vector to X

at z if X contains a sequence zg, Z1, ... of elements, all different from x, such that
lim z; =2 and lim (z; — z)/||x; — z|| = w.
1—00 71— 00

Observe that x is an accumulation point of X. We further say that u is outgoing
if for some A > 0 the segment conv(x, x + Au) intersects X only at z.

Already Severi noted that his definition of tangent half-line H = = + Rxou is
equivalent to Definition 2.1. More precisely:

Proposition 2.2. (§5, p.103 of [12]). For any nonempty closed subset X of R",
point x € X, and unit vector u € R™ the following conditions are equivalent:

(i) For all €,6 > 0, the cone coney s with aper x, axis parallel to u, vertex
angle 26 and height € contains infinitely many points of X.

(i) u is a Bouligand-Severi tangent vector to X at x.

When n = 1, coney 4 5 is the segment conv(z, z+eu). When n = 2, coney y e 5
is the isosceles triangle conv(z, a, b) with vertex z, basis conv(a, b), height equal to
¢ (and parallel to u), and vertex angle axb = 20.

The next two results provide geometric necessary and sufficient conditions on X
for the semisimple MV-algebra M(X) to be strongly semisimple. These conditions
are stated in terms of the non-existence of Bouligand-Severi tangent vectors having
certain rationality properties.

Theorem 2.3. Let X be a nonempty closed set in [0,1]". Suppose X has a
Bouligand-Severi rational outgoing tangent vector u at some rational point x € X.
Then M(X) is not strongly semisimple.

Proof. Since u is outgoing, let A > 0 satisfy X N conv(x,x + Au) = {}. Without
loss of generality 4+ Au € Q™. By Definition 2.1, our hypothesis yields a sequence
w1, Wa, . .. of distinct points of X, all distinct from x, accumulating at x, at strictly
decreasing distances from z, in such a way that the sequence of unit vectors u;
given by (w; — x)/||w; — x|| tends to u as i tends to co. Let y = = + Au. Since
X Nconv(z,y) = {x}, no point w; lies on the segment conv(z,y), and we can
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further assume that the sequence of angles w;xy is strictly decreasing and tends
to zero as 7 tends to co.

Since both points z and y are rational, then by 2.10 in [8] for some g €
M([0,1]™) the zeroset

Zg={z€[0,1]" | g(z) = 0}
coincides with the segment conv(z,y). Thus,

9g()
O(u)

Let J be the ideal of M([0,1]") generated by g,
J={feM(0,1]") | f <k.gforsome k=0,1,2,...}.
Then for each f € J,

=0.

Of(x) _

O(u)
Since the directional derivatives of f at x are continuous, (meaning that the map
t— Of(x)/0t is continuous) it follows that

(2.1) I of(x)  Of(x) 0.

Sua() o)

Let ¢' = g1 X and

J={fleMX)| f'<k.g for some k=0,1,2,...}
be the ideal of M(X) generated by ¢'. A moment’s reflection shows that
(2.2) J={l|X]|leJ}

One inclusion is trivial. For the converse inclusion, if f [ X < (k.g) [ X then letting
l=fANk.gwegetl <k.g. SoleJandl|X = fX, whence f]X is extendible
to some [ € J.
For any f € M([0,1]™), the piecewise linearity of f ensures that for all large
i the value of the incremental ratio (f(w;) — f(x))/||w; — z|| coincides with the
directional derivative 0f(z)/0u; along the unit vector u; = (w; — z)/||w; — z||.
Thus in particular, if f]X = f' € J', from (2.1)-(2.2) it follows that
i 4w = ['(z)
Since z is rational, again by 2.10 in [8] there is j € M([0,1]™) with Zj = {«}.
For some w > 0 we have Jj(x)/9(u) = w, whence
i (W) = ')
imoe [w; — x|
Therefore, j' ¢ J'. Since ZgN X = {z}, recalling 4.19 in [8] we see that the only
maximal ideal of M(X) containing J' is the set of all functions in M(X) that
vanish at z. Thus, j' belongs to all maximal ideals of M(X) containing J'. By
3.6.6 in [4], M(X) is not strongly semisimple: specifically, j//.J’ is infinitesimal in
the principal quotient M(X)/J". O

=0.
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3. A partial converse of Theorem 2.3

Theorem 3.1. Let X C [0,1]™ be a nonempty closed set. Suppose the MV-algebra
M(X) is not strongly semisimple.

(i) Then X has a Bouligand-Severi tangent vector u at some point x € X sat-
isfying the following nonalignment condition: there is a sequence of distinct
w; € X, all distinct from x such that

w; — X

lim w; =z, lim u, w; ¢ conv(x,x + u) for all i.

i—00 i—00 ||'LU1 7:U||

(ii) In particular, if n = 2, then X has a Bouligand-Severi outgoing rational
tangent vector u at some rational point x € X.

Proof. (1) The hypothesis yields a function g € M([0,1]™), with its restriction
g =gl X € M(X), in such a way that the principal ideal J' of M(X) generated
by g',

J={l'e MX)|I'<k.g forsome k=1,2,...}
is strictly contained in the intersection I of all maximal ideals of M(X) containing
J’. Thus for some j € M([0,1]") letting j' = j [ X we have j' € I\ J'. By 3.6.6 in
[4] and 4.19 in (8],

(3.1) j'=0on Zg', ie, XNZj2OXNZg

and

(3.2) Ym=0,1,...3zm € X, j'(2m) >m.g'(zm).

There is a sequence of integers 0 < my < my < ... and a subsequence yg, Y1, . -

of {z;,za,...} such that y; # gy, for i # [ and

(3.3) VE=0,1,..., j'(y:) > ms«9g'(y2).

The compactness of X yields an accumulation point € X of the y,. Without loss
of generality (taking a subsequence, if necessary) we can further assume

(3.4) llyo — z|| > |ly1 — x|| > -+, whence lim y; = x.

1—00
By (3.3), for all ¢, j'(y;) > 0. Then by (3.1), g'(y:) > 0. For each i = 0,1,...,
letting the unit vector u; € R™ be defined by u; = (y; — x)/||y; — ||, we obtain a
sequence of (possibly repeated) unit vectors u; € R™. Since the boundary of the
unit ball in R™ is compact, some unit vector u € R™ satisfies

Ve > 0 there are infinitely many 4 such that ||u; — u|| < e.
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Some subsequence wg, wy, ... of the y; will satisfy the condition
(3.5) Ve, 6 > 0 there is k such that for all ¢ > k, w; € coneg e -

Correspondingly, the sequence wvg,vy,... given by v = (wg — z)/||wk — || will
satisfy
(3.6) lim v; = u.
11— 00
We have just proved that u is a Bouligand-Severi tangent to X at z.

To complete the proof of (i) we prepare:

Fact 1. ¢'(z) = 0.

Otherwise, from the continuity of g, for some real p > 0 and suitably small
€ > 0, we have the inequality g(z) > p for all z in the open ball B, . of radius €
centered at . By (3.5), By, contains infinitely many w;. There is a fixed integer
m > 0 such that 1 =m.g' > j' for all these w;, which contradicts (3.3).

Fact 2. j'(z) = 0.

This immediately follows from (3.1) and Fact 1.

Fact 3. dg(x)/0u = 0.

By way of contradiction, suppose dg(z)/du = 6 > 0. In view of the continuity
of the map ¢ — 9g(z)/0t, let § > 0 be such that dg(x)/0r > 0/2, for any unit
vector r such that 7u < 4. Since by Fact 2 j(xz) = 0 and both g and j are piecewise
linear, there is an € > 0 together with an integer k& > 0 such that k.g > j over the
cone C = conegq 5. By (3.5), C contains infinitely many w;, in contradiction

with (3.3).

To conclude the proof of the nonalignment condition in (i), it is sufficient to
settle the following;:

Fact 4. There is A > 0 such that for all large i the segment conv(x,x+Au) contains
no w.

For otherwise, from Fact 3, Jg(z)/0(u) = 0, whence the piecewise linearity of
g ensures that g vanishes on infinitely many w; of conv(x,z 4+ Au) arbitrarily near
2. Any such w; belongs to X, whence by (3.1), j(w;) = 0, in contradiction with
(3.3).

The proof of (i) is now complete.

(ii) Let H* be the two closed half-spaces of R? determined by the line passing
through = and = + u. By (3.5), infinitely many w; lie in the same closed half-
space, say, HT. Without loss of generality, HT N int([0,1]*) # 0. Let u be the
orthogonal vector to u such that  +u' € HT.
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Fact 5. For all small € > 0,

0g(x + eu)

S > 0.

By way of contradiction, assume dg(z + eu)/Out = 0. Since g is piecewise
linear, by Facts 1 and 3, for suitably small n,w > 0, the function g vanishes over
the triangle T = conv(z,x + nu,z + nu + wul). By (3.5), T contains infinitely
many w;. By (3.1), g(w;) = j(w;) = 0 against (3.3).

Fact 6. ]
9j(z)

ou > 0.

Otherwise, 0j(z)/0u = 0. Fact 5 yields a fixed integer h such that, on a suitably
small triangle of the form T = conv(z, z + eu, x + eu + wu'), we have h.g > j. By
(3.5), T contains infinitely many w;, again contradicting (3.3).

We now prove a strong form of Fact 4, showing that u is an outgoing tangent
vector:

Fact 7. For some A > 0 the segment conv(x,x + Au) intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many
points of X N conv(z,x + Au) converging to x. By (3.1), j' vanishes on all these
points. Since j is piecewise linear, 9j(z)/0u = 0, against Fact 6.

By a rational line in R™ we mean a line passing through at least two distinct
rational points.

Fact 8. z is a rational point, and u is a rational vector.

As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the
other hand, Facts 3 and 5 show that the line passing through = and = + u is
rational and different from L. Thus z is rational, whence so is the vector wu.

We conclude that X has w as a Bouligand-Severi outgoing rational tangent
vector at the rational point . O

Figure 1 is a sketch of the functions g and j in the foregoing proof.

Recalling Theorem 2.3 we now obtain:

Corollary 3.2. Let X C [0,1]? be a nonempty closed set. Then M(X) is not
strongly semisimple iff X has a Bouligand-Severi outgoing rational tangent vector
u at some rational point T € X.
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7 X+U

Figure 1: A Bouligand-Severi outgoing tangent vector u to X at x, and two functions g and
j. The restriction g[X generates a principal ideal J’' of M(X). The restriction j[X does not
belong to J’, but belongs to the only maximal ideal I’ of M(X) containing J’, namely the set
of all functions in M(X) vanishing at z. So the principal quotient M(X)/J’ is not semisimple.

Examples. The above corollary provides many examples of two-generator strongly
semisimple MV-algebras:

(i)

Let x € [0,1] be irrational. Let W be the arc of parabola {(z,y) € [0,1]* |
y = kw?}. Then M(W) is strongly semisimple—for want of rational points
in W. One can similarly construct two-generator strongly semisimple MV-
algebras of the form M(V), by letting V be a closed subset of [0, 1] without
rational points, or else, without outgoing rational tangents.

Following [13], let Q@ C [0, 1]2 be a polyhedron in [0, 1]2, i.e., a finite union
of m-simplexes (m = 0,1,2) in [0,1]°. Then Q does not have any outgoing
Bouligand-Severi tangent, whence M(Q) is strongly semisimple.

(Generalizing (ii)). Let A be a two-generator subalgebra of a semisimple
tensor product (see §9.4 in [8]) of the form [0,1] ® D, where D is a finitely
presented MV-algebra. Using Lemma 3.6 and Theorem 6.3 in [8], one sees
that A is isomorphic to an MV-algebra of the form M(Q) for some polyhe-
dron @ C [0, 1]2 . Thus A is strongly semisimple.

4. The general case

The central role of finitely generated, and especially of 2-generator strongly semi-
simple MV-algebras among all strongly semisimple MV-algebras, is shown by the
following result:
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Proposition 4.1. For any MV-algebra A the following conditions are equivalent:

(i) A is strongly semisimple;

(i) A is the direct limit of a direct system S = {A;, ¢i;} of finitely generated
strongly semisimple algebras A;, where all the homomorphisms ¢;;: A; — A,
are embeddings;

(i4i) Each 2-generator subalgebra of A is strongly semisimple.

Proof. Recall that an MV-algebra is semisimple iff it has no infinitesimals. For any
MV-algebras C, D and embedding ¢: C — D, letting for any y € C, (y)c denote
the ideal generated by y in C, we first make the following elementary observations:

(I) For each ¢ € C, the map ¢: C/{c)c — D/{¢(c))p defined by z/{c)c
o(x)/{$(c))p is an embedding. This immediately follows by observing that

¢({c)e) = (#(c))p N ¢(C).
(IT) ¢ € C is an infinitesimal of C' iff ¢(c) is an infinitesimal of D.

(IIT) If D is strongly semisimple then so is C. As a matter of fact, for any c € C,
the map ¢: C/{c)c — D/{¢(c))p of (I) is an embedding. By hypothesis,
D/{¢(c))p is semisimple, whence so is C'/{c)c by (II).

We are now ready to prove the proposition:

(i)=(ii). Let A = {A; C A | A, is a finitely generated subalgebra of A}, and
let ¢;;: A; = A; be the inclusion map whenever A; C A;. Then A together the
homomorphisms ¢;; is a direct system of MV-algebras, having A as its direct limit.
By (III), each A; is strongly semisimple.

(ii)=(i). Let S = {A;, ¢;;} be a directed system of strongly semisimple MV-
algebras, indexed by the directed partially ordered set I, where each ¢;; is an
embedding of A; into A;. Let A be the direct limit of S with the telescopic
maps @00 A; — A. Each ¢, is an embedding. Suppose that A is not strongly
semisimple, (absurdum hypothesis), and let g € A be such that A/(g)a is not
semisimple. Then there is an element e € A such that e/(g) 4 is an infinitesimal of
A/(g)a. Since the partial order of the index set I is directed, for some i € I there
are g;,e; € A; with ¢ieo(g;) = g and ¢in0(e;) = e. The map ¢joo: Ai/(gi)a, —
A/{g)a of (I) is an embedding. By (II), e;/(g;) 4, is an infinitesimal element of
A;/{gi)a,, against the hypothesis that A; is strongly semisimple.

(i)=(iii). Immediate from (IIT).

(iii)=(i). If A is not strongly semisimple there are elements g,e € A such that
e/(g) 4 is an infinitesimal in A/(g)4. Let B C A be the subalgebra of A generated
by g and e. By (I)-(II) e/(g) 5 is an infinitesimal element of B/{g)p, and B is not
strongly semisimple. O
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5. Coda: one-generator MV-algebras

The following result is an easy consequence of Theorem 3.1. We include the ele-
mentary proof because it provides a technique to deal with strong semisimplicity
independently of Bouligand-Severi tangents.

Theorem 5.1. Every one-generator semisimple MV-algebra A is strongly semi-
simple.

Proof. As in (1.1)-(1.2), let X C [0,1] be a nonempty closed set such that A =
M(X). For some g € M([0,1]) let J be the principal ideal of M(]0, 1]) generated
by g, and J' be the principal ideal of M(X) generated by ¢' = g[ X.

The short argument immediately following (2.2) shows that J' = {I{[ X | € J}.
For every f € M([0,1]), letting f' = f]X we must prove: if f' belongs to all
maximal ideals of M(X) to which ¢' belongs, then f' belongs to J'. By 3.6.6 in
[4] and 4.19 in [8], this amounts to proving

(5.1) if f=0on ZgN X then f1X € J'.

Let A be a triangulation of [0,1] such that f and g are linear over every simplex
of A. The existence of A follows from the piecewise linearity of f and g, [13]. In
view of the compactness of X and [0, 1], it is sufficient to settle the following

Claim. Suppose f € M([0,1]) vanishes over Zg N X. Then for all x € X there is
an open neighbourhood N, 3 z in [0, 1] together with an integer m, > 0 such that
Mg g > fon Ny NX.

We proceed by cases:

Case 1: g(x) > 0. Then for some integer r and open neighbourhood A, > x we
have g > 1/r over N. Letting m, = r we have 1 = m, .g > f over N, whence a
fortiori, my . g > f over Ny N X.

Case 2: g(z) = 0. Since f vanishes over Zg N X, then f(xr) = 0. Let T be a
1-simplex of A such that x € T. Let T, be the smallest face of T containing z.

Subcase 2.1: T, =T. Then x € int(T). Since g is linear over T then g vanishes over
T. By our hypotheses on f and A, f vanishes over T, whence and 0 =g > f =0
on T. Letting N, = int(T) and m, = 1, we get m, .g > f over N, whence a
fortiori, the inequality holds over A, N X.

Subcase 2.2: T, = {z}. Then T = conv(zx,y) for some y # x. Without loss of
generality, y > x. We will exhibit a right open neighbourhood R, > z and an
integer r, > 0 such that r, .g > f on R, N X. The same argument yields a left
neighbourhood £, > x and an integer [, > 0 such that [, .¢g > f on £, N X. One
then takes A, = R, U L, and m, = max(r,,l;).

Subsubcase 2.2.1: If both g and f vanish at y, then they vanish over T' (because
they are linear over T'). Upon defining R, = int(T) U {z} and r, = 1 we get
ry g > [ over R,, whence in particular, over R, N X.
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Subsubcase 2.2.2: If both g and f are > 0 at y then for all suitably large m we
have m.g > f on T because f(x) =0 and both f and g are linear on T'. Letting
r5 the smallest such m and R, = int(T) U {z} we have the desired inequality over
R. and a fortiori over R, N X.

Subsubcase 2.2.3: g(y) =0, f(y) > 0. By our hypotheses on A, g is linear over T'
and hence g = 0 over T'. It follows that XNT = {z}: for otherwise, our assumption
ZfNX 2 ZgnN X together with the linearity of f over T' would imply f(y) =0,
against our current hypothesis. Letting R, = int(T) U {«} and 7, = 1 we have
reag > fover R, NX. O
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