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Semiempirical Model for Adsorption of Polyatomics
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Multisite-occupancy adsorption is described by using a new formalism based on the occupation balance approximation
(Roma F.; Ramirez-Pastor, A. J.; Riccardo, JJLChem. Phy2001 114, 10932). In this framework, the adsorption
isotherm is characterized by a correction funct@rwhich relates to the conditional probability of finding thh
empty site to a lattice with — 1 already vacant sites. A simple semiempirical adsorption isotherm is proposed by
approximatingC as a combination of the correction functions corresponding to exact 1-D calculations and the
GuggenheimDiMarzio approximation, with adequate weights. Results are compared with corresponding ones from

Monte Carlo simulations.

1. Introduction

More recently, two new theories to describe adsorption with

The adsorption of gases on solid surfaces has been active]yrnultiSite occupancy have been introduced. In the ﬁrSt, Ramirez-
investigated since the beginning of the past century. However, Pastor et at'~*3 presented a model to study the adsorption of
the theoretical description of equilibrium and dynamical properties linearadsorbates on homogeneous surfaces. The model, hereafter
of polyatomic species adsorbed on 2-D substrates still representglenoted EA, is based on exact forms of the thermodynamic

a major challenge in surface sciericé.The inherent difficulty
common to processes involving the adsorptiokofers (particles

functions of linear adsorbates in one dimension and its
generalization to higher dimensions. In the second, which is

that occupy more than one lattice site) is to calculate the called the fractional statistical theory of the adsorption of
configurational entropic contributions to the thermodynamic Polyatomics (FSTA), the configuration of the molecule in the
potentials properly, which means the degeneracy of the energyadsorbed state s incorporated as amodel parartfétae theory

spectrum Compatib|e with given number of partic|es and In ref 14 is based on a generalization of the formalism of quantum

adsorption sites.
A good starting point for further investigation is an analysis
of the results obtained fdr-mers adsorbed on homogeneous

fractional statistics, proposed by Hald&n¥ as an extended
form of the Pauli exclusion principle. FSTA has been proposed
to extend quantum fractional statistics so as to describe a broad

surfaces. An early seminal contribution to this subject was the Set of classical systems, such as the adsorption of polyatomics

well-known Flory-Huggins approximation (FH), due indepen-
dently to Flory and to Huggin$,which is a direct generalization
of the Bragg-Williams approximation in the lattice model of
binary liquids in two dimensionsModified forms of the Flory-

at the gas-solid interface.

In ref 13, FH and EA, along with two analytical approaches
to study dimer adsorption on 2-D lattices (occupation balance
approximation and virial expansion), were tested in comparison

Huggins approxima’[ion have been also proposed_ A Compre_With Monte Carlo simulations in the parti(_:ular Can-(G* 2. !n
hensive discussion on this subject is included in the book by Desgeneral, the agreement between theoretical and simulation data

Cloizeaux and Jannirikand ref 8. It is worth mentioning that,

is good, with the occupation balance approximation being the

in the framework of the lattice gas approach, the adsorption of mostaccurate inallgeometries (honeycomb, square, and triangular
pure linear molecules is isomorphous to po|ymer mixture Iattlces). However, the classical theories fail to reproduce

adsorption (linear polymermonatomic solvent). Guggenheim

adsorption results for higher values &f and it becomes

soon proposed another method to calculate the combinatory termgxceedingly difficult to generalize the occupation balance

in the canonical partition functioh.Later, in a valuable
contribution, DiMarzio obtained the Guggenheim factor for a
model of rigid rod molecule¥ We call this theory the
Guggenheim-DiMarzio’s approximation (GD).

* Corresponding author. E-mail: antorami@unsl.edu.ar. Phoh&4-
2652-436151. Fax:+54-2652-430224.

T Present address: Centro ‘At@o Bariloche, 8400 San Carlos de
Bariloche, Ro Negro, Argentina.

(2) Hill, T. L. AnIntroduction to Statistical Thermodynamiésldison-Wesley
Publishing Company: Reading, MA, 1960.

(2) Clark, A.The Theory of Adsorption and Catalysfscademic Press: New
York, 1970.

(3) Steele, W. AThe Interaction of Gases with Solid Surfacegrgamon
Press: New York, 1974.

(4) Rudzirski, W.; Everett, D. H.Adsorption of Gases on Heterogeneous
Surfaces Academic Press: London, 1992.

(5) Flory, P. JJ. Chem. Phys1942 10, 51. Flory, P. JPrinciples of Polymers
Chemistry Cornell University Press: Ithaca, NY, 1953.

(6) Huggins, M. L.J. Phys. Chenil 942 46, 151. Huggins, M. LAnn. N.Y.
Acad. Sci.1942 41, 151. Huggins, M. LJ. Am. Chem. So0d.942 64, 1712.

(7) Des Cloizeaux, J.; Jannink, Bolymers in Solution: Their Modelling and
Structure Clarendon Press: Oxford, U.K., 1990.

(8) Gujrati, P. D.; Chhajer, MJ. Chem. Phys1997 106, 5599.

(9) Guggenheim, E. AProc. R. Soc. Londoh944 A183 203.

(10) DiMarzio, E. A.J. Chem. Physl1961 35, 658.

10.1021/1a053030u CCC: $33.50

approximation fok > 2. From an experimental point of view,

in many systems the molecules consist of a number of single
components or elementary unifs?? Thus, linear molecules
such a€,H,n+1) (n-alkanes) adsorbed onto solid surfaces should
be regarded in light of a multisite adsorption model that is capable
of consistently interpreting thermodynamic adsorption experi-
ments ranging from simple species to elaborate polyatomics with
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k = 2. This work represents an effort in this direction. For this
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interpreted as follows. The term between parentheses corresponds

purpose, a simple semiempirical adsorption model for polyatomics to the total number df-uples on the surface. Thekeiples can
(SE) is presented. SE is obtained by combining exact 1-D be separated into three groups: fliples (occupied b-mers),

calculations and the GuggenheirDiMarzio approximation. In
addition, Monte Carlo (MC) simulations in the grand canonical

emptyk-uples (available for adsorption), and frustrakedples
(partially occupied or occupied by segments belonging to different

ensemble are performed to test the validity of the theoretical adsorbed-mers). Then, an additional factor must be incorporated
model. The new theoretical scheme allows us to obtain an thattakes into account the probability of having an enkgatple.
approximation that is significantly better than the other existing We suppose that this factor can be written as a produdt of
approaches and provides a simple model from which experimentsfunctions @;'s), with P; being the conditional probability of

may be reinterpreted.

finding thei-th empty site in the lattice with— 1 already vacant

The article is organized as follows: the theoretical scheme is sites. (The sites are assumed to be arranged in a likagle.)
presented in section 2. In section 3, analytical results are comparedn the particular case af= 1,

with Monte Carlo simulations. Finally, general conclusions are

given in section 4.

2. Theory

Here, we address the general case of adsorbates assumed %

be linear molecules containirigidentical units k-mers), with

each one occupying a lattice site. Small adsorbates with spherica

symmetry would correspond to the monomer linkit 1). The

distance betwedrmer units is assumed to be equal to the lattice

constant; hence exactlk sites are occupied bylkamer when
adsorbed. The surface is represented as an arrsly-ofL x L

adsorptive sites in a square, honeycomb, or triangular lattice

arrangement, where denotes the linear size of the array.
To describe a system & k-mers adsorbed ohl sites at a
given temperaturg, let us introduce the occupation variable
which can take the values= 0 or 1 if sitei is empty or occupied
by ak-mer unit, respectively. Thiemers retain their structure

upon adsorption, desorption, and diffusion. The Hamiltonian of

the system is given by

H=(U~ 036 (1)

whereU is the adsorption energy okamer unit kUp being the
total adsorption energy okamer) andk is the chemical potential.

Hereafter, we propose an approximation of the adsorption iso-

therm for noninteracting line&mers on a regular lattice based

on semiempirical arguments, which leads to very accurate results.

The mean number of particles in the adlaylend the chemical
potential: are related through the following general relationship
in the grand canonical ensemble

- .[aInE(M, 1)
N= l[ o " (2)
wherel = exp[B(u-kUp)] (beings = 1/kgT andUo the Boltzmann
constant) anc is the grand partition function. By solving for
A71in eq 2, we find that

1_1:1[8 In=EM, 4] _ R(M,i) 3)

N A M N

In the last equation, which is called occupation balaiééthe
mean number of states available to a particl®ksites at (i.e.,
R(M, 1)) can be written as

k
R= (ZM) P
2

(4)

with y being the connectivity of the lattice. Equation 4 can be

(23) RomiaF.; Ramirez-Pastor, A. J.; Riccardo JJLChem. Phy£001, 114,
10932.

P,=1-0 (5)
wheref = KN/, is the surface coverage. Equation 5 represents
n exact result.

Now, let us consider the simplest approximation within this
cheme, namelyy; = P; for all i. Then, from eqs 35, we may

rite

_R_ykM
="=4"Tp
N 2 kN

vk —0)

-1
A ! 20

(6)
Equation 6 reduces to the FH isotherm of noninteracting linear
k-mers adsorbed flat on homogeneous surfaces (Appendix 1).
This is a simple example out of a wide variety of multisite adsorp-
tion models that the proposed formalism allows us to deal with.

In general, thePy’s can be written as

Pi=01-06) (7

where a correction facto€;, has been included (whe@ = 1
andC; — 1 asf — 0). From eqs 47, we obtain

y X %
R= 5|v|(1 -0)c = 5|v|(1 —G)C 1t

(8)

and

C= (|jci)“’<k‘ K 9

with C being the average correction function, which is calculated
as the geometrical mean of thgs. Then, from eqs 3 and 8, the
general form of the adsorption isotherm can be obtained:

_yk@— o)t

-1
A 20

(10)
or

Bl — kUp) = '”(g) —kn@=0- In(%) - 1)In(i:l)

It is interesting to compare eq 11 with corresponding ones
obtained from the main theories of the adsorption of polyatomics.
For this purpose, four theoretical isotherms to stldmer
adsorption on homogeneous lattices have been compiled in
Appendix 2: (i) the well-known Flory Huggins approximatioh®
as discussed in Appendix 1; (ii) an extension to 2-D of the exact
adsorption isotherm obtained in 1D3(iii) the Guggenheim-
DiMarzio’s approximatior?19 and (iv) a fractional statistical
thermodynamic theory of the adsorption of polyatomics, which
is based on the formalism of Haldane statistttd
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As can be observed, FH, EA, and GD already have the structure
of eq 11. In the case of FSTA, an identical structure can be
obtained after simple algebraic operations. From this new
perspective, the differences between the theoretical models arise

from the distinct strategies of approximati@gThese arguments

can be better understood with an example: EA and GD provide
the exact solution for the 1-D case. Then, the comparison between

eq 11 and the adsorption isotherm from EA (or GD wjith=
2) allows us to obtain

k—1
0@

Cl=1- =2) (12)

The result in eq 12 is exact. Moreover, it can be demonstrated

thatC, = C for all i.10

Once the equations are written as in Appendix 2, it is clear
that the differences between EA and GD can be associated onl
with the average correction functid® In addition, as will be
shown in Figures 35, GD fits the numerical data at low coverage

very well whereas EA behaves excellently at high coverage.

These findings, along with the structure proposed for the

adsorptionisotherm (eq 11), allow us to build a new semiempirical

adsorption isotherm for polyatomics (SE):

ﬁw—“@=m®—kma—@—m@

Jk—l@]
k vy

+a—mw—nﬂ1

k —
Sen]

+ 0k — 1)In[1
The last equation can be interpreted as follows. The first line
includes three terms that are identical in both EA and GD. The
second and third lines represent a combination of the averag
correction functions corresponding to GD and EA, with(B)
and 6 as weights, respectively. The behavior of SE will be
discussed in the next section, in comparison with MC simulation
results.

3. Results and Discussion

e

Romaet al.
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0.6 - i
6
0.4 -
—k=1
02 ——k=2; y=3 |
’ —a—k=2; y=4
—A— k=2, y=6
0.0 posnay ' . : : . .
-10 -5 5 10

Bu-2U,)

Figure 1. Comparison between the exact adsorption isotherm of

Ymonomers and the simulation adsorption isotherms of dimers on

honeycomb, square, and triangular lattices.

after discarding the firsthm = 10° MCS. Then, averages are
taken overm = 1(P successive configurations.

The adsorption isotherm, or mean coverage as function of the
chemical potential§(u)], is obtained as a simple average

kINDC

1 M
Ou)=—) G=— 15
() MZ i (15)
where [NOis the mean number of adsorbed particles ahdl
means the time average over the Monte Carlo simulation runs.

Computational simulations have been developed for honey-
comb, square, and triangularx L lattices, witht/, = 120, and
periodic boundary conditions. With this lattice size, we verified
that finite size effects are negligible.

We shall first discuss some basic characteristics of the
adsorption isotherms. For this purpose, Figure 1 shows a
comparison between the exact adsorption isotherm of monomers
and the simulation adsorption isotherms of dimers on honeycomb,
square, and triangular lattices. As can be observed, the symmetry
particle vacancy, which is valid for monatomic species, is broken
for k = 2. In addition, even though adsorption isotherms of
dimers look very similar for all connectivities, curves shift to
lower values off(u — 2Uo) asy is increased. In other words,

MC simulations are used to test the applicability of the new for a given value of(u — 2Uy), the equilibrium surface coverage
theoretical proposition. The adsorption isotherms are simulatedincreases agis increased. This behavior can be easily understood

through a grand canonical ensemble Monte Carlo (GCEMC)
method?425 The procedure is as follows. For a given value of
the temperatur€and chemical potential, an initial configuration
with N k-mers adsorbed at random positions (d¥ sites) is
generated. Then an adsorptiedesorption process is started

where &-uple of nearest-neighbor sites is chosen at random and
an attempt is made to change its occupancy state with the

probability given by the Metropol§ rule

el

whereAH = H; — H; is the difference between the Hamiltonians
of the final and initial states. A Monte Carlo step (MCS) is
achieved wheiM k-uples of sites have been tested to change its

(14)

occupancy state. The equilibrium state can be well reproduced

(24) Binder, K.Monte Carlo Methods in Statistical Physjd@®opics in Current
Physics; Springer: Berlin, 1978; Vol. 7.

(25) Nicholson, D.; Parsonage, N. Gomputer Simulation and the Statistical
Mechanics of AdsorptignPAcademic Press: London, 1982.

(26) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. W.;
Teller, E.J. Chem. Phys1953 21, 1087.

from the following equation

me=mﬁ5+ﬂw—k%)

which is valid for lineark-mers at low concentrations (eq 11).
The effect diminishes as the chemical potential is increased and,
consequently, the slope of the isotherms diminishey &s
increased.

We now analyze the case corresponding to linear adsorbates
larger than dimers. The concept of lindamer is trivial for
square and triangular lattices (Figure 2a and b, respectively).
However, in a honeycomb lattice, the geometry does not allow
the existence of a linear array of monomers vkith 2. In this
case, we call a linedemer a chain of adjacent monomers with
the following sequence: once the first monomer is in place, the
second monomer occupies one of the three nearest-neighbor
positions with respect to the first monomer. The third monomer
occupies one of the two nearest-neighbor positions with respect

(16)

to the second monomer. Thesime monomer (far= 4) occupies

one of the two nearest-neighbor positions with respect to the
preceding monomer, which maximizes the distance between the
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(2) SQUARE LATTICE

O T T T T
00 02 04 0 06 08 1.0

Figure 3. (a) Adsorption isotherms of 6-mers on a honeycomb
lattice. Symbols represent MC results, and lines correspond to
different approaches (inset). (b) Percentage reduced covaigge,

vs surface coverage. The symbols are the same as in part a.

1.0 T

0.8+

0 0.6

Figure 2. Linear tetramers adsorbed on (a) square, (b) triangular, 0.4+

and (c) honeycomb lattices. Full and empty circles represent tetramer 1

units and empty sites, respectively. 0'2'_

firstmonomer and the-esime monomer. This procedure allows 0'0_10

us to plac&k monomers on a honeycomb lattice without creating

an overlap. As an example, Figure 2c shows an available 40 . . . .
configuration for a linear tetramer adsorbed on a honeycomb

lattice. Once thefirst, second, and third monomers were adsorbed 304 ]
in positions denoted as a, b, and c, respectively, there exist two Ag(%)

possible positions for adsorbing the fourth monomer, d and e.
To maximize the distance between the position of firstand fourth
monomers, site d is selected, and site e is discarded. Then, once
a site is chosen, there exist six equilibrium states available to a

singlek-mer ( > 2) on a honeycomb lattice at infinitely low o 02 04 ol o5 10
density. Consequently, the term between parentheses in eq 4, ' ' e ’ ’
which corresponds to the total numbeikediples on the surface,  Figure 4. (a) Adsorption isotherms of 6-mers on a square lattice.
results in 3/ (y = 6), as in the case of triangular lattices. Symbols represent MC results, and lines correspond to different

Under these considerations, an extensive work of simulation @Pproaches (inset). (b) Percentage reduced coverag#), vs
has been carried out for linear adsorbates wiinging between surface coverage. The symbols are the same as in part a.
2 and 10. As an example, Figures 3a, 4a, and 5a show thesimuylation (analytical approach). Each pair of valus Oapp)
comparison between simulation adsorption isotherms and thejs gptained at fixel.
corresponding ones obtained from theoretical approaches for The dependence @,(%) on the surface coverage is shown
6-mers adsorbed on honeycomb, square, and triangular latticesin Figures 3b, 4b, and 5b for the different connectivities. The
respectively. In all cases, the agreement between simulation anchehavior of the analytical approaches can be explained as follows.
analytical data is very good for small values of coverage. However, pgTa (dashed line) provides a good approximation with a very
as the surface coverage is increased, the classical theories faisma| differences between simulated and theoretical results. FH
to reproqluce adsorption resullts. ) . (dash dot dot line) and GD (dash dot line) predict a smédller
The differences between simulation and theoretical results than the simulation data over the entire range of coverage. In the
can be expressed by the mean of the percentage reduced coveraggase of EA (dotted line), the disagreement turns out to be large

which is defined a$ for intermediate values, and a good approximation is recovered
for high coverage. With respect to the connectivity, EA and

A (%) = 100(03im_ eappr‘ 17) FSTA (FH and GD) become more accurate jaslecreases
Ogim u (increases). The behavior of GD and EA justifies the methodology

used to build the SE isotherm (solid line) in eq 13. This situation
wherefsim (Oapp) represents the coverage obtained by using MC is also reflected in Figures68, where the percentage reduced
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1.0

- T T kI: 3
Triangular Lattlcei‘ & 169 Triangular Lattice k=4
0.8 k=6 ' k=5
k=6
0.6 b 12 4 k=7
e 1 Jar k=8
044 iAo B o k=9
A (%) g k=10

0
0.0 0.2 0.4 0.6 0.8 1.0
Ny ] Z
N 1 Figure 8. Percentage reduced coverage vs concentratidarfeers
o adsorbed on a triangular lattice and the SE approximation. Symbols
Ae(/“ i N ] are indicated in the inset.
] 61 (a) ]
X . 4,0 . . A ]
Figure 5. (a) Adsorption isotherms of 6-mers on atriangular lattice. ¢ 3] .
Symbols represent MC results, and lines correspond to different 5] ]
approaches (inset). (b) Percentage reduced coversg®s), vs
surface coverage. The symbols are the same as in part a. 11 ]
0 T T T T T
' ' T ' 2 4 6 8 10
164 Honeycomb Lattice —a— k=3 ] k
k=4 20 T T T T T
k=5
e | 6] ]
k=7
i 121 ]
k=10 AR
0 o] ]
f 4_ b
0 ) . 0 T T T T T
00 02 04 06 08 1.0 24 e 810
_ 0 _ Figure 9. (a) Average maximum percentage reduced coverage
Figure 6. Percentage reduced coverage vs concentratidarfers A7 as a function ofk for different connectivities. (b) Average
adsorbed on a honeycomb lattice and the SE approximation. Symbolsyercentage reduced coveradg as a function ofk for different
are indicated in the inset. connectivities. The symbols are the same as in Figure 1.

16 Square Lattice - performs better for square lattices; ()9 and A7 remain
practically constant fok ranging between 2 and 8; and (iiky
124 " andAj*increase fok > 8. Finally, the values obtained foy,
A (%) k=5 which are lower than 6%, imply that SE is a very good
¢ g i:j approximation for representing multisite occupancy adsorption,
k=8 at least for the sizes considered here.
k=9
41 . 4. Concluding Remarks
od 3 A new theoretical description of adsorption phenomena of
0.0 02 0.4 0.6 08 1.0 polyatomics based on the occupation balance approximation was
V) presented. The proposed formalism represents a general frame-
Figure 7. Percentage reduced coverage vs concentratidarfeers work that is capable of including the main theories treating
adsorbed on a square lattice and the SE approximation. Symbols arénultisite occupancy adsorption as particular cases. Taking
indicated in the inset. advantage of its definition, a simple semiempirical adsorption

isotherm was obtained with contributions from two well-known

coverage is plotted as a function of concentration for the SE approaches: the GuggenheidiMarzio approximation and the
approximation and different values gfandk. exact isotherm in 1-D and its extension to higher dimensions.

The results in Figures-68 can be much more easily rationalized GD and EA are found to be good expressions for representing
with the help of (1) the average of the absolute values of the the adsorption isotherms atlow and high coverages, respectively.
difference between simulation and analytical resllts and (2) From the comparison with Monte Carlo simulations in 2-D
the maximum value of the percentage reduced covers&, lattices, appreciable differences can be seen for the different
These quantities are shown in Figure 9. Several conclusions carapproximations studied in this contribution, with SE being the
be drawn from the Figure: (i) in general, the theoretical isotherm most accurate for all cases. Finally, it can be concluded that this
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simple semiempirical model could be very useful ininterpreting In Q(N;, N,) = =N, In N, + N, — N; In N; + N, +
experimental data of the adsorption of polyatomics. Work in this (y — 1)
sense is in progress. MInM — M + Nyk — 1)|H[T] (22)
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CONICET (Argentina) under project PIP 02425 and the All of the results presented here can be straightforwardly
Universidad Nacional de San Luis (Argentina) under projects @Pplied to the correspondirkgmer adsorption problem, witk,

328501 and 322000. = N (number ofk-mers) andN; = M — kN (number of empty
sites). Then, by rewriting2(N;, Ny) in terms of9 = M, and
5. Appendix 1: Flory—Huggins’s Approximation for by usingBu = —(d In %/aN)Tm, We get
Linear Adsorbates
The theory to be presented here, due to Flaryd Huggins, expB(u — kUy)] = 0 (23)
is a generalization of the lattice-gas theory of binary solutfons, k(y — 1)k_ - 49)k

but in this case, whereas a solvent molecule occupies only one

site in the lattice, the p0|ymer molecule occupiesites_ The last equation is the classical adsorption isotherm in the
We calculate first the numbe®(Ny, N,) of possible con-  framework of the Flory-Huggins approximation, which was

figurations ofN, polymers and\; molecules of a monatomic ~ developed for flexible polymers. In the following, we will

solvent on a lattice wittM sites and connectivity. Q(Ny, No) introduce appropriate modifications into the formalism to obtain

is just equa| to the number of ways of arrangmg po|ymer the adsorption isotherm Corresponding to linkaners. In this
molecules oM sites, and after we place the polymer molecules €ase,

in the originally empty lattice, there is only one way to place the 11

solvent molecules (i.e., we simply fill up all of the remaining W, = Z(M — ki)k(—) (lineark-mers)  (24)
unoccupied sites). Imagine that we label the polymer molecules 2 M

from 1 toN, and introduce them one at a time, in order, into the
lattice. Letw; be the number of ways of putting thi polymer
molecule into the lattice with — 1 molecules already there
(assumed to be arranged in an average, random distribution)
Then the approximation t&(N;, Np) that we use is

where two modifications have been included with respect to eq
19: (i) the number of possible locations for the third and
successive units is (1 f;) instead ofy(1 — f;), as was considered
for flexible k-mers, and (ii) a factot/, is inserted because we
have treated the extremes of famers as distinguishable, whereas

Np they are actually indistinguishable. Under these considerations,
Q(N;, N,) = —[]w, (18) the dliasired Flory Huggins adsorption isotherm of lineamers

L= results:

The factor N2!)~! is inserted because we have treated the _ 20
molecules as distinguishable in the product, whereas they are explBu — kUg)] = ky(1— e)k
actually indistinguishable. ¥

Next, we derive an expression favii1. With i polymer The validity of the last equation is restricted to the rakge

mo!ecules all’eady in the |attice, the fraction of filled Sitefi is 2. Note that eq 25 does not reproduce the Langmuir isotherm for
= Ki/y;. The first unit of thei + 1-th molecule can be placed in  monomers.

any one of thevl — ki vacant sites. The first unit hasnearest

(25)

neighbor sites, of which(1 — f;) are empty (random distribution 6. Appendix 2: Main Theoretical Adsorption
assumed). Therefore, the number of possible locations for the Isotherms of Linear k-mers Adsorbed on Regular
second unit ig’(1 — ). Similarly, the third unit can go in(— Lattices at Monolayer
1)(1 — f) different places. At this point, we make the

. B . _ _ 9
approximation that units 4, 5,.k,also each havey(— 1)(1 Blu — kU = In(E) —KIn(L— ) — |n(§) (k= 2) FHe

fi) possibilities, though this is not quite correct. Multiplying all

of these factors together, we have far, 0
s 1 ﬁ(u—kuo)zln(u)—kln(l—e)— .
W, =M—ki)y(y —1)" “1—-1) (V) k- 1)0 EA
Inl< +(k—1)|n[l— ]
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We approximate the sum by an integral aFH: Flory—Huggins's approximation. (See refs 5 and 6 and
N 1 Appendix 1.) PEA: Exact isotherm in 1-D and extension to higher
~ N2 ki)l — T dimensions. (See refs 11 and 13)GD: GuggenheimDiMarzio’s
Z -~ ﬁ) In(M — ki) di kjr‘ul In u du approximation. (See refs 9 and 109FSTA: fractional statistics

thermodynamic theory of adsorption of polyatomics. (See refsiB4)
1 The expression in the Table correspond to the simplest approximation
= E(M INM—=M—=N;InN; +Ny) (21) within FSTA, namely,g = Y, = ¥/,. (See eq 2 in ref 14.)

From eqgs 1821, we find LA053030U



