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Multisite-occupancy adsorption is described by using a new formalism based on the occupation balance approximation
(Romá, F.; Ramirez-Pastor, A. J.; Riccardo, J. L.J. Chem. Phys.2001, 114, 10932). In this framework, the adsorption
isotherm is characterized by a correction functionC̃, which relates to the conditional probability of finding theith
empty site to a lattice withi - 1 already vacant sites. A simple semiempirical adsorption isotherm is proposed by
approximatingC̃ as a combination of the correction functions corresponding to exact 1-D calculations and the
Guggenheim-DiMarzio approximation, with adequate weights. Results are compared with corresponding ones from
Monte Carlo simulations.

1. Introduction
The adsorption of gases on solid surfaces has been actively

investigated since the beginning of the past century. However,
the theoretical description of equilibrium and dynamical properties
of polyatomic species adsorbed on 2-D substrates still represents
a major challenge in surface science.1-4 The inherent difficulty
common to processes involving the adsorption ofk-mers (particles
that occupy more than one lattice site) is to calculate the
configurational entropic contributions to the thermodynamic
potentials properly, which means the degeneracy of the energy
spectrum compatible with given number of particles and
adsorption sites.

A good starting point for further investigation is an analysis
of the results obtained fork-mers adsorbed on homogeneous
surfaces. An early seminal contribution to this subject was the
well-known Flory-Huggins approximation (FH), due indepen-
dently to Flory5 and to Huggins,6 which is a direct generalization
of the Bragg-Williams approximation in the lattice model of
binary liquids in two dimensions.1 Modified forms of the Flory-
Huggins approximation have been also proposed. A compre-
hensive discussion on this subject is included in the book by Des
Cloizeaux and Jannink7 and ref 8. It is worth mentioning that,
in the framework of the lattice gas approach, the adsorption of
pure linear molecules is isomorphous to polymer mixture
adsorption (linear polymer-monatomic solvent). Guggenheim
soon proposed another method to calculate the combinatory term
in the canonical partition function.9 Later, in a valuable
contribution, DiMarzio obtained the Guggenheim factor for a
model of rigid rod molecules.10 We call this theory the
Guggenheim-DiMarzio’s approximation (GD).

More recently, two new theories to describe adsorption with
multisite occupancy have been introduced. In the first, Ramirez-
Pastor et al.11-13 presented a model to study the adsorption of
linear adsorbates on homogeneous surfaces. The model, hereafter
denoted EA, is based on exact forms of the thermodynamic
functions of linear adsorbates in one dimension and its
generalization to higher dimensions. In the second, which is
called the fractional statistical theory of the adsorption of
polyatomics (FSTA), the configuration of the molecule in the
adsorbed state is incorporated as a model parameter.14The theory
in ref 14 is based on a generalization of the formalism of quantum
fractional statistics, proposed by Haldane15,16 as an extended
form of the Pauli exclusion principle. FSTA has been proposed
to extend quantum fractional statistics so as to describe a broad
set of classical systems, such as the adsorption of polyatomics
at the gas-solid interface.

In ref 13, FH and EA, along with two analytical approaches
to study dimer adsorption on 2-D lattices (occupation balance
approximation and virial expansion), were tested in comparison
with Monte Carlo simulations in the particular case ofk ) 2. In
general, the agreement between theoretical and simulation data
is good, with the occupation balance approximation being the
mostaccurate inall geometries (honeycomb,square,and triangular
lattices). However, the classical theories fail to reproduce
adsorption results for higher values ofk, and it becomes
exceedingly difficult to generalize the occupation balance
approximation fork g 2. From an experimental point of view,
in many systems the molecules consist of a number of singlek
components or elementary units.17-22 Thus, linear molecules
such asCnH2(n+1) (n-alkanes) adsorbed onto solid surfaces should
be regarded in light of a multisite adsorption model that is capable
of consistently interpreting thermodynamic adsorption experi-
ments ranging from simple species to elaborate polyatomics with

* Corresponding author. E-mail: antorami@unsl.edu.ar. Phone:+54-
2652-436151. Fax:+54-2652-430224.

† Present address: Centro Ato´mico Bariloche, 8400 San Carlos de
Bariloche, Rı´o Negro, Argentina.

(1) Hill, T. L. An Introduction to Statistical Thermodynamics; Addison-Wesley
Publishing Company: Reading, MA, 1960.

(2) Clark, A.The Theory of Adsorption and Catalysis; Academic Press: New
York, 1970.

(3) Steele, W. A.The Interaction of Gases with Solid Surfaces; Pergamon
Press: New York, 1974.
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k g 2. This work represents an effort in this direction. For this
purpose, a simple semiempirical adsorption model for polyatomics
(SE) is presented. SE is obtained by combining exact 1-D
calculations and the Guggenheim-DiMarzio approximation. In
addition, Monte Carlo (MC) simulations in the grand canonical
ensemble are performed to test the validity of the theoretical
model. The new theoretical scheme allows us to obtain an
approximation that is significantly better than the other existing
approaches and provides a simple model from which experiments
may be reinterpreted.

The article is organized as follows: the theoretical scheme is
presented in section 2. In section 3, analytical results are compared
with Monte Carlo simulations. Finally, general conclusions are
given in section 4.

2. Theory

Here, we address the general case of adsorbates assumed to
be linear molecules containingk identical units (k-mers), with
each one occupying a lattice site. Small adsorbates with spherical
symmetry would correspond to the monomer limit (k ) 1). The
distance betweenk-mer units is assumed to be equal to the lattice
constanta; hence exactlyk sites are occupied by ak-mer when
adsorbed. The surface is represented as an array ofM ) L × L
adsorptive sites in a square, honeycomb, or triangular lattice
arrangement, whereL denotes the linear size of the array.

To describe a system ofN k-mers adsorbed onM sites at a
given temperatureT, let us introduce the occupation variableci,
which can take the valuesci ) 0 or 1 if sitei is empty or occupied
by ak-mer unit, respectively. Thek-mers retain their structure
upon adsorption, desorption, and diffusion. The Hamiltonian of
the system is given by

whereU0 is the adsorption energy of ak-mer unit (kU0 being the
total adsorption energy of ak-mer) andµ is the chemical potential.

Hereafter, we propose an approximation of the adsorption iso-
therm for noninteracting lineark-mers on a regular lattice based
on semiempirical arguments, which leads to very accurate results.

The mean number of particles in the adlayerNh and the chemical
potentialµ are related through the following general relationship
in the grand canonical ensemble

whereλ ) exp[â(µ-kU0)] (beingâ ) 1/kBTandU0 the Boltzmann
constant) and¥ is the grand partition function. By solving for
λ-1 in eq 2, we find that

In the last equation, which is called occupation balance,13,23the
mean number of states available to a particle onM sites atλ (i.e.,
R(M, λ)) can be written as

with γ being the connectivity of the lattice. Equation 4 can be

interpreted as follows. The term between parentheses corresponds
to the total number ofk-uples on the surface. Thesek-uples can
be separated into three groups: fullk-uples (occupied byk-mers),
emptyk-uples (available for adsorption), and frustratedk-uples
(partially occupied or occupied by segments belonging to different
adsorbedk-mers). Then, an additional factor must be incorporated
that takes into account the probability of having an emptyk-uple.
We suppose that this factor can be written as a product ofk
functions (Pi’s), with Pi being the conditional probability of
finding thei-th empty site in the lattice withi - 1 already vacant
sites. (Thei sites are assumed to be arranged in a lineark-uple.)
In the particular case ofi ) 1,

whereθ ) kN/M is the surface coverage. Equation 5 represents
an exact result.

Now, let us consider the simplest approximation within this
scheme, namely,Pi ) P1 for all i. Then, from eqs 3-5, we may
write

Equation 6 reduces to the FH isotherm of noninteracting linear
k-mers adsorbed flat on homogeneous surfaces (Appendix 1).
This is a simple example out of a wide variety of multisite adsorp-
tion models that the proposed formalism allows us to deal with.

In general, thePi’s can be written as

where a correction factor,Ci, has been included (whereC1 ) 1
andCi f 1 asθ f 0). From eqs 4-7, we obtain

and

with C̃being the average correction function, which is calculated
as the geometrical mean of theCi’s. Then, from eqs 3 and 8, the
general form of the adsorption isotherm can be obtained:

or

It is interesting to compare eq 11 with corresponding ones
obtained from the main theories of the adsorption of polyatomics.
For this purpose, four theoretical isotherms to studyk-mer
adsorption on homogeneous lattices have been compiled in
Appendix2: (i) thewell-knownFlory-Hugginsapproximation,5,6

as discussed in Appendix 1; (ii) an extension to 2-D of the exact
adsorption isotherm obtained in 1-D;11,13(iii) the Guggenheim-
DiMarzio’s approximation;9,10 and (iv) a fractional statistical
thermodynamic theory of the adsorption of polyatomics, which
is based on the formalism of Haldane statistics.14-16

(23) Romá, F.; Ramirez-Pastor, A. J.; Riccardo J. L.J. Chem. Phys.2001, 114,
10932.

P1 ) 1 - θ (5)

λ-1 ) R

Nh
) γk

2
M

kNh
P1

k )
γk(1 - θ)k

2θ
(6)

Pi ) (1 - θ)Ci (7)

R )
γ

2
M(1 - θ)k∏

i)2

k

Ci )
γ

2
M(1 - θ)kC̃k - 1 (8)

C̃ ) (∏
i)2

k

Ci)
(1/(k - 1)) (9)

λ-1 )
γk(1 - θ)kC̃k - 1

2θ
(10)

â(µ - kU0) ) ln(θk) - k ln(1 - θ) - ln(γ2) - (k - 1)ln C̃
(11)

H ) (U0 - µ)∑
i

ci (1)

Nh ) λ[∂ ln ¥(M, λ)
∂λ ]M

(2)

λ-1 ) 1

Nh[∂ ln ¥(M, λ)
∂λ ]M

)
R(M, λ)

Nh
(3)

R ) (γ

2
M)∏

i)1

k

Pi (4)

Semiempirical Model for Adsorption of Polyatomics Langmuir, Vol. 22, No. 7, 20063193



As can be observed, FH, EA, and GD already have the structure
of eq 11. In the case of FSTA, an identical structure can be
obtained after simple algebraic operations. From this new
perspective, the differences between the theoretical models arise
from the distinct strategies of approximatingC̃. These arguments
can be better understood with an example: EA and GD provide
the exact solution for the 1-D case. Then, the comparison between
eq 11 and the adsorption isotherm from EA (or GD withγ )
2) allows us to obtain

The result in eq 12 is exact. Moreover, it can be demonstrated
that Ci ) C̃ for all i.10

Once the equations are written as in Appendix 2, it is clear
that the differences between EA and GD can be associated only
with the average correction functionC̃. In addition, as will be
shown in Figures 3-5, GD fits the numerical data at low coverage
very well whereas EA behaves excellently at high coverage.
These findings, along with the structure proposed for the
adsorption isotherm (eq 11), allow us to build a new semiempirical
adsorption isotherm for polyatomics (SE):

The last equation can be interpreted as follows. The first line
includes three terms that are identical in both EA and GD. The
second and third lines represent a combination of the average
correction functions corresponding to GD and EA, with (1- θ)
and θ as weights, respectively. The behavior of SE will be
discussed in the next section, in comparison with MC simulation
results.

3. Results and Discussion

MC simulations are used to test the applicability of the new
theoretical proposition. The adsorption isotherms are simulated
through a grand canonical ensemble Monte Carlo (GCEMC)
method.24,25 The procedure is as follows. For a given value of
the temperatureTand chemical potentialµ, an initial configuration
with N k-mers adsorbed at random positions (onkN sites) is
generated. Then an adsorption-desorption process is started
where ak-uple of nearest-neighbor sites is chosen at random and
an attempt is made to change its occupancy state with the
probability given by the Metropolis26 rule

where∆H ) Hf - Hi is the difference between the Hamiltonians
of the final and initial states. A Monte Carlo step (MCS) is
achieved whenM k-uples of sites have been tested to change its
occupancy state. The equilibrium state can be well reproduced

after discarding the firstm′ ) 106 MCS. Then, averages are
taken overm ) 106 successive configurations.

The adsorption isotherm, or mean coverage as function of the
chemical potential [θ(µ)], is obtained as a simple average

where〈N〉 is the mean number of adsorbed particles and〈...〉
means the time average over the Monte Carlo simulation runs.

Computational simulations have been developed for honey-
comb, square, and triangularL × L lattices, withL/k ) 120, and
periodic boundary conditions. With this lattice size, we verified
that finite size effects are negligible.

We shall first discuss some basic characteristics of the
adsorption isotherms. For this purpose, Figure 1 shows a
comparison between the exact adsorption isotherm of monomers
and the simulation adsorption isotherms of dimers on honeycomb,
square, and triangular lattices. As can be observed, the symmetry
particle vacancy, which is valid for monatomic species, is broken
for k g 2. In addition, even though adsorption isotherms of
dimers look very similar for all connectivities, curves shift to
lower values ofâ(µ - 2U0) asγ is increased. In other words,
for a given value ofâ(µ - 2U0), the equilibrium surface coverage
increases asγ is increased. This behavior can be easily understood
from the following equation

which is valid for lineark-mers at low concentrations (eq 11).
The effect diminishes as the chemical potential is increased and,
consequently, the slope of the isotherms diminishes asγ is
increased.

We now analyze the case corresponding to linear adsorbates
larger than dimers. The concept of lineark-mer is trivial for
square and triangular lattices (Figure 2a and b, respectively).
However, in a honeycomb lattice, the geometry does not allow
the existence of a linear array of monomers withk g 2. In this
case, we call a lineark-mer a chain of adjacent monomers with
the following sequence: once the first monomer is in place, the
second monomer occupies one of the three nearest-neighbor
positions with respect to the first monomer. The third monomer
occupies one of the two nearest-neighbor positions with respect
to the second monomer. Thei-esime monomer (fori g 4) occupies
one of the two nearest-neighbor positions with respect to the
preceding monomer, which maximizes the distance between the

(24) Binder, K.Monte Carlo Methods in Statistical Physics; Topics in Current
Physics; Springer: Berlin, 1978; Vol. 7.

(25) Nicholson, D.; Parsonage, N. G.Computer Simulation and the Statistical
Mechanics of Adsorption; Academic Press: London, 1982.

(26) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. W.;
Teller, E.J. Chem. Phys.1953, 21, 1087.
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Figure 1. Comparison between the exact adsorption isotherm of
monomers and the simulation adsorption isotherms of dimers on
honeycomb, square, and triangular lattices.
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first monomer and thei -esime monomer. This procedure allows
us to placek monomers on a honeycomb lattice without creating
an overlap. As an example, Figure 2c shows an available
configuration for a linear tetramer adsorbed on a honeycomb
lattice. Once the first, second, and third monomers were adsorbed
in positions denoted as a, b, and c, respectively, there exist two
possible positions for adsorbing the fourth monomer, d and e.
To maximize the distance between the position of first and fourth
monomers, site d is selected, and site e is discarded. Then, once
a site is chosen, there exist six equilibrium states available to a
singlek-mer (k g 2) on a honeycomb lattice at infinitely low
density. Consequently, the term between parentheses in eq 4,
which corresponds to the total number ofk-uples on the surface,
results in 3M (γ ) 6), as in the case of triangular lattices.

Under these considerations, an extensive work of simulation
has been carried out for linear adsorbates withk ranging between
2 and 10. As an example, Figures 3a, 4a, and 5a show the
comparison between simulation adsorption isotherms and the
corresponding ones obtained from theoretical approaches for
6-mers adsorbed on honeycomb, square, and triangular lattices,
respectively. In all cases, the agreement between simulation and
analytical data is very good for small values of coverage. However,
as the surface coverage is increased, the classical theories fail
to reproduce adsorption results.

The differences between simulation and theoretical results
can be expressed by the mean of the percentage reduced coverage,
which is defined as13

whereθsim (θappr) represents the coverage obtained by using MC

simulation (analytical approach). Each pair of values (θsim, θappr)
is obtained at fixedµ.

The dependence of∆θ(%) on the surface coverage is shown
in Figures 3b, 4b, and 5b for the different connectivities. The
behavior of the analytical approaches can be explained as follows.
FSTA (dashed line) provides a good approximation with a very
small differences between simulated and theoretical results. FH
(dash dot dot line) and GD (dash dot line) predict a smallerθ
than the simulation data over the entire range of coverage. In the
case of EA (dotted line), the disagreement turns out to be large
for intermediateθ values, and a good approximation is recovered
for high coverage. With respect to the connectivity, EA and
FSTA (FH and GD) become more accurate asγ decreases
(increases). The behavior of GD and EA justifies the methodology
used to build the SE isotherm (solid line) in eq 13. This situation
is also reflected in Figures 6-8, where the percentage reduced

Figure 2. Linear tetramers adsorbed on (a) square, (b) triangular,
and (c) honeycomb lattices. Full and empty circles represent tetramer
units and empty sites, respectively.

∆θ(%) ) 100|θsim - θappr

θsim
|

µ
(17)

Figure 3. (a) Adsorption isotherms of 6-mers on a honeycomb
lattice. Symbols represent MC results, and lines correspond to
different approaches (inset). (b) Percentage reduced coverage,∆θ(%),
vs surface coverage. The symbols are the same as in part a.

Figure 4. (a) Adsorption isotherms of 6-mers on a square lattice.
Symbols represent MC results, and lines correspond to different
approaches (inset). (b) Percentage reduced coverage,∆θ(%), vs
surface coverage. The symbols are the same as in part a.
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coverage is plotted as a function of concentration for the SE
approximation and different values ofγ andk.

The results in Figures 6-8 can be much more easily rationalized
with the help of (1) the average of the absolute values of the
difference between simulation and analytical results,∆h θ, and (2)
the maximum value of the percentage reduced coverage,∆θ

max.
These quantities are shown in Figure 9. Several conclusions can
be drawn from the Figure: (i) in general, the theoretical isotherm

performs better for square lattices; (ii)∆h θ and ∆θ
max remain

practically constant fork ranging between 2 and 8; and (iii)∆h θ

and∆θ
max increase fork > 8. Finally, the values obtained for∆h θ,

which are lower than 6%, imply that SE is a very good
approximation for representing multisite occupancy adsorption,
at least for the sizes considered here.

4. Concluding Remarks

A new theoretical description of adsorption phenomena of
polyatomics based on the occupation balance approximation was
presented. The proposed formalism represents a general frame-
work that is capable of including the main theories treating
multisite occupancy adsorption as particular cases. Taking
advantage of its definition, a simple semiempirical adsorption
isotherm was obtained with contributions from two well-known
approaches: the Guggenheim-DiMarzio approximation and the
exact isotherm in 1-D and its extension to higher dimensions.
GD and EA are found to be good expressions for representing
the adsorption isotherms at low and high coverages, respectively.
From the comparison with Monte Carlo simulations in 2-D
lattices, appreciable differences can be seen for the different
approximations studied in this contribution, with SE being the
most accurate for all cases. Finally, it can be concluded that this

Figure 5. (a) Adsorption isotherms of 6-mers on a triangular lattice.
Symbols represent MC results, and lines correspond to different
approaches (inset). (b) Percentage reduced coverage,∆θ(%), vs
surface coverage. The symbols are the same as in part a.

Figure 6. Percentage reduced coverage vs concentration fork-mers
adsorbed on a honeycomb lattice and the SE approximation. Symbols
are indicated in the inset.

Figure 7. Percentage reduced coverage vs concentration fork-mers
adsorbed on a square lattice and the SE approximation. Symbols are
indicated in the inset.

Figure 8. Percentage reduced coverage vs concentration fork-mers
adsorbed on a triangular lattice and the SE approximation. Symbols
are indicated in the inset.

Figure 9. (a) Average maximum percentage reduced coverage
∆θ

max as a function ofk for different connectivities. (b) Average
percentage reduced coverage∆h θ as a function ofk for different
connectivities. The symbols are the same as in Figure 1.
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simple semiempirical model could be very useful in interpreting
experimental data of the adsorption of polyatomics. Work in this
sense is in progress.
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5. Appendix 1: Flory-Huggins’s Approximation for
Linear Adsorbates

The theory to be presented here, due to Flory5 and Huggins,6

is a generalization of the lattice-gas theory of binary solutions,1

but in this case, whereas a solvent molecule occupies only one
site in the lattice, the polymer molecule occupiesk sites.

We calculate first the numberΩ(N1, N2) of possible con-
figurations ofN2 polymers andN1 molecules of a monatomic
solvent on a lattice withM sites and connectivityγ. Ω(N1, N2)
is just equal to the number of ways of arrangingN2 polymer
molecules onM sites, and after we place the polymer molecules
in the originally empty lattice, there is only one way to place the
solvent molecules (i.e., we simply fill up all of the remaining
unoccupied sites). Imagine that we label the polymer molecules
from 1 toN2 and introduce them one at a time, in order, into the
lattice. Letwi be the number of ways of putting theith polymer
molecule into the lattice withi - 1 molecules already there
(assumed to be arranged in an average, random distribution).
Then the approximation toΩ(N1, N2) that we use is

The factor (N2!)-1 is inserted because we have treated the
molecules as distinguishable in the product, whereas they are
actually indistinguishable.

Next, we derive an expression forwi+1. With i polymer
molecules already in the lattice, the fraction of filled sites isfi
) ki/M. The first unit of thei + 1-th molecule can be placed in
any one of theM - ki vacant sites. The first unit hasγ nearest
neighbor sites, of whichγ(1- fi) are empty (random distribution
assumed). Therefore, the number of possible locations for the
second unit isγ(1 - fi). Similarly, the third unit can go in (γ -
1)(1 - fi) different places. At this point, we make the
approximation that units 4, 5,...,k also each have (γ - 1)(1 -
fi) possibilities, though this is not quite correct. Multiplying all
of these factors together, we have forwi+1

where we replacedγ by γ - 1 as a further approximation.
Now we will need

We approximate the sum by an integral

From eqs 18-21, we find

All of the results presented here can be straightforwardly
applied to the correspondingk-mer adsorption problem, withN2

≡ N (number ofk-mers) andN1 ≡ M - kN (number of empty
sites). Then, by rewritingΩ(N1, N2) in terms ofθ ≡ kN/M and
by usingâµ ) -(∂ ln Ω/∂N)T,M, we get

The last equation is the classical adsorption isotherm in the
framework of the Flory-Huggins approximation, which was
developed for flexible polymers. In the following, we will
introduce appropriate modifications into the formalism to obtain
the adsorption isotherm corresponding to lineark-mers. In this
case,

where two modifications have been included with respect to eq
19: (i) the number of possible locations for the third and
successive units is (1- fi) instead ofγ(1- fi), as was considered
for flexible k-mers, and (ii) a factor1/2 is inserted because we
have treated the extremes of thek-mers as distinguishable, whereas
they are actually indistinguishable. Under these considerations,
the desired Flory-Huggins adsorption isotherm of lineark-mers
results:

The validity of the last equation is restricted to the rangek g
2. Note that eq 25 does not reproduce the Langmuir isotherm for
monomers.1

6. Appendix 2: Main Theoretical Adsorption
Isotherms of Linear k-mers Adsorbed on Regular

Lattices at Monolayer

LA053030U
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∏
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exp[â(µ - kU0)] ) 2θ
kγ(1 - θ)k

(25)

â(µ - kU0) ) ln(θk) - k ln(1 - θ) - ln(γ2) (k g 2) FHa

â(µ - kU0) ) ln(θ
k) - k ln(1 - θ) -

ln(γ
2) + (k - 1)ln[1 -

(k - 1)θ
k ]

EAb

â(µ - kU0) ) ln(θ
k) - k ln(1 - θ) -

ln(γ
2) + (k - 1)ln[1 -

(k - 1)
k

2θ
γ ]

GDc

â(µ - kU0) ) ln(θ
k) - kγ

2
ln(1 - θ) -

ln(γ
2) + (kγ

2
- 1)ln[1 - θ

(kγ - 2)
kγ ]

FSTAd

a FH: Flory-Huggins’s approximation. (See refs 5 and 6 and
Appendix 1.) b EA: Exact isotherm in 1-D and extension to higher
dimensions. (See refs 11 and 13.)c GD: Guggenheim-DiMarzio’s
approximation. (See refs 9 and 10.)d FSTA: fractional statistics
thermodynamic theory of adsorption of polyatomics. (See refs 14-16.)
The expression in the Table correspond to the simplest approximation
within FSTA, namely,g ) 1/a ) kγ/2. (See eq 2 in ref 14.)
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