
The Journal of Systems and Software 74 (2005) 55–64

www.elsevier.com/locate/jss
‘‘Computer, please, tell me what I have to do. . .’’: an approach
to agent-aided application composition

Marcelo R. Campo *, J. Andr�es D�ıaz Pace, Federico U. Trilnik

ISISTAN Research Institute, Faculty of Sciences, UNICEN University, Campus Universitario, Paraje Arroyo Seco, (B7001BBO) Tandil, Buenos Aires,

Argentina

CONICET, Avda. Rivadavia 1917, (C1033AAJ) City of Buenos Aires, Argentina

Received 16 October 2002; received in revised form 1 February 2003; accepted 2 May 2003

Available online 21 January 2004

Abstract

The process of starting to use any reuse technology is usually one of the most frustrating factors for novice users. For this reason,

tools able to reduce the learning curve are valuable to augment the potential of the technology to rapidly build new applications. In

this work, we present Hint, an environment for assisting the instantiation of Java applications based on software agents technology.

Hint is built around a software agent that has the knowledge about how to use a reusable asset and, using this knowledge, is able to

propose a sequence of programming activities that should be carried out in order to implement a new application satisfying the

functionality the user wants to implement. The most relevant contribution of this work is the use of planning techniques to guide the

execution of instantiation activities for a given technology.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

It is a well-known fact that the more powerful the

reuse technology the more knowledge is necessary to

rapidly start to use it to produce applications. This as-

pect represents one of the most limiting factors of any

reuse technology, but it is particularly crucial to object-

based ones (Bosch, 2000). For this reason, composition

tools are an invaluable complement. These tools can
vary from simple wizards for generating code skeletons

to complex graphical tools supporting the visual

composition of applications. This kind of tools can

dramatically improve the productivity in the case of

applications that naturally fit into the scope of the target

technology (Campo et al., 2002). However, when com-

plexity grows, despite components are derived from a

domain-specific framework, an integration framework
or they are implemented following some interface stan-
*Corresponding author. Tel.: +54-2293440363; fax: +54-

2293440362.

E-mail addresses: mcampo@exa.unicen.edu.ar (M.R. Campo),

adiaz@exa.unicen.edu.ar (J.A. D�ıaz Pace), ftrilnik@exa.unicen.edu.ar

(F.U. Trilnik).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2003.05.003
dard, some kind of coding is always necessary in order
to get a running application.

At this point a deeper knowledge of underlying design

details can be necessary in order to use, or even more,

adapt the behavior of existing components. Certainly,

good quality documentation is a key issue. Nevertheless,

none of the developed documentation techniques (De-

meyer et al., 2000; Johnson, 1992) can be completely

adapted to the different types of users, especially if con-
sidering the variations on knowledge and experience

these users usually have (Helm et al., 1990). On one side,

expert users may prefer to know about design details,

and be able to make their own decisions. Many times this

kind of users can adapt a framework (Fayad et al., 2000)

in unexpected ways. On the other side, and perhaps the

most important one, novice users may just want to be

aware of higher-level aspects. This kind of users should
be able to build an application without the need of

understanding overwhelming details of design rationale.

However, this is not always the case, producing a nega-

tive impact on the benefits that the technology can bring

to enhance software development.

We believe that the problem resides not in how to

provide a specific tool for a given technology, but in how

mail to: mcampo@exa.unicen.edu.ar

56 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64
to make the documentation an active source able to

guide a user in what should be done for building a

specific application. On the basis of this documentation,

a tool should take the principal requirements and design

decisions from the user, and then propose a number of

actions to follow in order to get a running application.
This process can be approximated by means of what we

have called the ‘‘Computer, please, tell me what I have

to do. . .’’ paradigm. The rest of the paper presents an in
depth description of this agent-based approach, orga-

nized as follows. Section 2 introduces the main concepts

of the mentioned paradigm. Section 3 outlines the

architecture of the Hint environment, illustrated with an

example of framework instantiation. Section 4 covers
the Smartbooks documentation method through which

the instantiation knowledge is described. Section 5

shortly explains the use of planning capabilities to

elaborate instantiation plans. Section 6 discusses pre-

liminary results and lessons learned. Finally, Section 7

rounds up the conclusions of the work.
2. The ‘‘Computer, please, tell me what I have to do. . .’’
paradigm

Certainly, a pursued ideal is to have a system that

(like in Star Trek) we could ask the computer to solve

any problem by simply asking: ‘‘Computer, please, solve

this problem. . .’’, and automatically obtain the result
without any further effort. For example, let’s suppose we
want to build a graphical editor for Pert-like charts and

there is a framework for building graphical editors

available. In the ideal situation we would ask the com-

puter to build a system that should satisfy the following

informal specification:

‘‘It should be possible to interactively create graphi-

cal objects representing events, and to relate these

events through precedence links. The events should

have visual representation for its attributes, and two

of the attributes will be edited through the graphical

interface. Besides, each attribute could be related

with other ones, both from the same or related

events’’.

The computer would interpret these requirements and
using the existing framework and components would

produce the required application. Unfortunately, com-

puter science is currently rather far of providing such a

system, particularly in domains such as software devel-

opment.

Despite this reality, we can approximate this ideal by

using a paradigm in which the computer tells us what

steps we should carry out in order to get an implemen-
tation using a given reuse technology. That is, given a set

of functional requirements for an application, we should
be able to ask the computer, ‘‘Computer, please, tell me

what I have to do to implement this functionality using

the existing software that you know how to use’’. In this

approach, instead of providing the computer with the

previous requirements, the computer shows the user the

different functionality that could be derived from an
existing reusable asset and the user can select the aspects

he/she judges related with the required functionality.

Next, using the knowledge about the existing assets, the

computer answers the list of programming activities that

should be carried out in order to implement such

application. These activities can vary from the advice of

which classes should be specialized, what methods

should be overridden, what component should be used,
what proxies should be implemented, what parameters

should be set with specific values, etc. Note that an

important aspect of the approach is the interaction with

the user, so that he/she can provide the tool with the

main design decisions to guide the generation of pro-

gramming activities.

Following this idea, we developed Hint, a Java tool

based on agent technology (Bradshaw, 1997) designed to
provide semi-automated support to the process of

application composition. Hint is based on the Smart-

books documentation method (Ortigosa et al., 2000),

which extends common documentation techniques with

instantiation schemes specifying how a piece of software

should be specialized or used to implement a given

functionality. Using least-commitment planning tech-

niques (Weld, 1994), the Hint agent is able to build an
implementation plan from the set of functionality that

the user selected from the possible functionality that the

documented reusable asset can provide. This plan con-

sists of the sequence of programming tasks to be

accomplished in order to produce a final application.

When the developer starts executing these tasks, the

agent observes the process and proceeds to modify the

instantiation plan whenever new information, not pre-
viously available, can be deduced from the developer’s

behavior. These features distinguish Hint from other

approaches in that developers, particularly novice ones,

can start the development with a guide of what steps they

have to carry out in order to build their applications.
3. The Hint environment

Hint represents the result of a three-year research

effort on the subject (Ortigosa et al., 2000), incorporat-

ing in its last release enhanced functionality to deal with

Java frameworks and components, CORBA adaptation

and aspect-oriented development (Kiczales et al., 1997).

In the current version it comprises four main compo-

nents: Documentation Tool, Rule Generator, Functional-
ity Collector, and the Hint agent, which is in turn

composed by three components: Planner, Task Manager

M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64 57
and Consistency Manager. All these components are

implemented in Java. Fig. 1 shows these components

and their interactions. A short description of each

module is included below.

• Documentation Tool: It is mainly used by the designer

to write the documentation of the reusable assets.

This documentation must define the instantiation

schemes that describe how to use the assets to derive

different functionality. Besides, it is used by the appli-

cation developer when creating new components or
adding functionality to existing ones.

• Rule Generator: This component takes the documen-

tation of instantiation schemes as input, and then

generates a rule-based representation to be used by

the Hint agent in the generation of the instantiation

plan.

• Functionality Collector: This module helps the user to

describe the functionality required for the application
currently being developed. With this purpose, it uses

the information provided through the instantiation

schemes in terms of functionality that can be derived.

• Hint Agent: The agent is composed by three main

functional components, namely: Planner, Task Man-

ager and Consistency Manager.

� Planner: The planner component represents the

core component of the Hint environment. Based
Fig. 1. Main components of
on the requirement information and the schemes,

it produces a partial plan for creating the applica-

tion. The plan is generated using a specially devel-

oped planning algorithm, called PHint, which is an

adaptation of the UCPOP algorithm (Weld, 1994)

to support partial and incremental planning.
� Task Manager: It controls the activity of the appli-

cation developer. It manages the list of pending

tasks and informs the Consistency Manager when

a task is finished, so it can check if consistency

rules should be applied. Additionally, it is respon-

sible for enabling the reuse of executed tasks if the

instantiation plan is regenerated.

� Consistency Manager: Its work is much related
with the Task Manager. The Consistency Manager

has the responsibility of verifying if some user ac-

tions produce a software configuration inconsis-

tent with the design description. In such a case, it

creates the tasks the user should execute to return

to a consistent configuration, and then passes these

tasks to the Task Manager.

In order to make simpler the understanding of the

approach, the next subsection introduces an example of

framework instantiation for aspect-based applications

using Hint with the Aspect-Moderator framework

(AMF) (Constantinides et al., 2000).
the Hint architecture.

Fig. 2. Functionality items suggested by the Hint Functionality Col-

lector.

58 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64
3.1. An instantiation example

Let’s take a simple workflow model for documents.

The functionality required for this example can be

informally described as follows:

‘‘The application is a workflow model for documents

with users playing different roles (e.g., manager, nor-

mal user or auditor) accessing these documents. Each

role has set its own permissions to operate on these

documents. A manager can read, write or check doc-

uments; a common user is only allowed to read or

write some documents; and an auditor can read or

check other documents. These capabilities require

the application to consider authentication and log-

ging issues. Besides, all these activities can take place

simultaneously on the same document so that some

concurrency protocols are also needed.’’

For this workflow case-study, we have identified the

aspects given in Table 1.

With these requirements in mind, we want to imple-
ment an application using the aspect facilities provided

by the AMF framework. This case-study was actually

implemented using the Smartweaver environment (Diaz

Pace et al., 2002), an extension of the Smartbooks

method to deal with aspect-oriented development.

When running the Hint’s Functionality Collector, it

starts presenting the user the initial available function-

ality, based on the instantiation knowledge previously
provided by the designer. First, only high-level func-

tionality is presented to the user. As some items are

selected, other options including further information

may be displayed so he/she can refine previous selec-

tions. Fig. 2 shows a sample of specific functionality

items relevant to any aspect-oriented development. For

example, if we want to specify the cross-cutting of a

given aspect with document instances, there is a number
of alternatives to choose, namely: a before advice, an

after advice or a before/after advice.

On the basis of the requirements collected by the

Functionality Collector, the tool internally generates a

set of goals to express these requirements and the
Table 1

List of some programming tasks supported by Smartbooks

Aspect Description

Concurrency It mainly deals with synchronization and scheduling is

readings or writings coming from different user session

mechanisms to determine who is the next reader/write

Authorization It refers to security policies regarding document hand

contents

Logging It is in charge of keeping track of activity on the docu

occurred in the system. Typically, any unsuccessful au

user actions from that point on
planning agent responds accordingly with an instantia-

tion (Ortigosa and Campo, 2000). The instantiation plan

is suggested to the user by the Task Manager, in terms

of waiting tasks (representing design decisions) and a list

of pending tasks (representing instantiation actions).

As an example of this guidance, let’s consider some of

the activities derived from the definition a new aspect. In
the AMF, this functionality involves the definition of an

AspectFactory class. Hence, the planner asks the user to

provide the name for this class. If the class already ex-

ists, the planner may initially check for a sub-classing

relationship, and then present a task for selecting what

methods are to be overwritten in the corresponding

subclass. In addition, a task for creating the target

subclass may be generated during this process. Fig. 3
shows some of the tasks presented by the Task Manager

interface, as a result of the selected functionality. In

general, through this interface, the user can see both

executed and pending tasks. He can also navigate the

documentation associated with a given task, select a

given task to be executed, undo or cancel tasks.

Besides, other tasks called documentation tasks are

generated every time the user creates a new class or
method and the associated functionality can not be de-

duced from the instantiation process. These tasks will

guide the user on the documentation of the component

(the description of its functionality). This information
sues, by controlling the access to a given document of many potential

s. It should consider mechanisms to lock/unlock documents and

r when a document is available (unlocked)

ling, so that only authorized users can access to certain document

ments after some abnormal situation involving security issues has

thorization should dynamically activate the logging aspect to register

Fig. 3. A class-refinement task proposed by the Task Manager.

M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64 59
will enable the reuse of such a component on future

developments, if the implemented functionality is re-

quired again. Nevertheless, the user can remove or reject

any task without executing it.

At last, the application is shaped through several

interactions of the user with the Task Manager. The

execution of the tasks suggested by Hint generates a
code skeleton of the main classes and methods, which

the user can later fill in with more specific implementa-

tion details. Fig. 4 shows a class diagram for the

workflow application, created using Hint.
4. Defining the instantiation knowledge

As we mentioned before, the core knowledge of Hint

is based on the information provided by the designer

through the Smartbooks documentation method (Or-

tigosa et al., 2000). Smartbooks considers the instantia-

tion of an application from reusable assets as an activity

based on a well-defined amount of basic instantiation

tasks, for example: class specialization or method

overwriting, among others. The method prescribes that
the designer should describe the functionality provided

by the reusable asset, how this functionality is imple-

mented by different framework components, and pro-

vide rules to somehow constraint the way the software

should be specialized. This special documentation con-

stitutes what is called instantiation schemes.

Instantiation schemes can be graphically specified

using a UML (Object Modeling Group, 2001) extension
called Tasks and Object-Oriented Notation (TOON), to

express design structures and instantiation activities

associated with them. All these rules are directly asso-
ciated with the concept of tasks, as programming

activities to be carried out by the developer in order to

use or specialize a given set of components to implement

a specific function. The execution of these tasks will

effectively end up with the code implementing the de-

sired functionality, which in some cases can be auto-

matically generated or, in the general case, will produce
a template to be filled in by the programmer.

Instantiation schemes can be divided into two cate-

gories:

• Specific schemes: These schemes are written by the

designer and describe instantiation knowledge partic-

ular of a specific reusable asset.

• Generic schemes: These schemes, on the other hand,

describe knowledge common to the instantiation pro-
cess, and they are used as building blocks to express

specific schemes. Constraints about class specializa-

tion or component usage are typical examples of these

schemes, but also, design patterns (Gamma et al.,

1995) can be expressed as reusable schemes.

Fig. 5 shows a simple example of an instantiation

scheme for the AMF, described using TOON. The white

squares represent classes and the black ones represent
instantiation tasks. The text on the upper left corner

states the functionality described by the scheme. In the

example, the scheme specifies that in order to have a

functional proxy for a component, the proxy class

should implement the FunctionalProxyIF interface and

wrap the component. More precisely, the diagram pre-

scribes that four tasks should be carried out by the user:

1. An ImplementInterface task that has to produce a
subclass of FunctionalProxyIF.

Fig. 4. The workflow application generated by Hint (gray boxes correspond to AMF classes).

Fig. 5. Example of graphical instantiation scheme for the Aspect-Moderator framework.

60 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64
2. A DefineVariable task, which must add a myCompo-

nent attribute in the proxy class.

3. A DefineMethod task in charge of overriding the

method Method() in the component (to incorporate

additional behavior).
4. And finally, an OptionalDefineMethod task if any up-

date to the constructor is required.

The kind of tasks presented in the example can be

seen as basic tasks or programming tasks, because they

Table 2

List of some programming tasks supported by Smartbooks

Task Type Description

Define/UpdateClass Pending It adds/updates a new class definition (from an existing base class)

Define/UpdateMethod Pending It adds/updates a new method into a given class

Define/UpdateAttribute Pending It adds/updates a new attribute into a given class

ImplementInterface Pending It makes a class to implement a given interface

Warning Pending It shows a warning message explaining some framework constraint

AskSelection Waiting It presents several alternatives and asks the user for a choice

GetUserInput Waiting It asks the user to enter a string

SelectClass Waiting It asks the user to specify a class

SelectMethods Waiting It asks the user to specify a set of methods of a class

Fig. 6. Example of textual instantiation scheme for the Aspect-Moderator framework.

M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64 61
refer to programming activities associated with frame-

work code. These tasks are classified as pending or

waiting tasks, according to their role in the planning

process. Table 2 shows a sample of other programming
tasks supported by the environment.

Internally, an instantiation scheme is represented as a

rule in the form precondition-effects. The rule defines

which preconditions are needed for the effects to be true.

In every step of the planning algorithm, the planner tries

to make true the preconditions of the rule whose effects

(or at least one of them) are goals. It is important to

note that the body of the rule is only evaluated when all
their preconditions are true. The scheme of Fig. 6 shows

the internal representation of the instantiation scheme

presented in Fig. 5.

It must be noticed here, that the designer arbitrarily

fixes the terms used to express functionality provided

by the target framework. In this way, the tool can show

to the user different kinds of functionality implemented

by the framework so he can specify and also customize
what is needed in his application.
5. The planner

This module provides some of the most important

functionality of the Hint environment. From a list of
functional requirements, it elaborates a list of required

instantiation tasks based on the instantiation knowledge

provided by the framework designer, particularly from

the instantiation schemes. The central component of the
Planner module is the PHint planning algorithm. This

algorithm was developed on the basis of the UCPOP

planning algorithm (Weld, 1994, 1998), and it was spe-

cifically adapted to fulfill the requirements of the

framework instantiation domain.

One of the main requirements for the planning

algorithm was to avoid making decisions before they

were really needed. For example, if two tasks can be
executed in any order, the algorithm should not impose

any arbitrary sorting, but it should allow the user to

choose which one executes first, or even executes them in

parallel. This technique of delaying decisions as much as

possible is known as least commitment planning.

It may be possible that, for a given set of functional

requirements, the planner cannot find a suitable

instantiation plan. Two reasons can produce an
unsuccessful planning: either the functionality cannot

be implemented using the framework or the documen-

tation available is not enough to determine how this

functionality can be implemented. In both cases, the

planner should generate a partial plan for those

requirements for which enough information is avail-

able. Once this partial plan has been generated, the user

62 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64
can choose to begin executing the plan, or alter the

initial requirements so that a complete plan can be

produced instead. Even in the former case, he can also

decide to return to the starting point and change the

requirements after executing some tasks of the plan. In

this situation, the planner should be able to build a new
plan for the modified requirements, taking into account

all the information provided by the user in the previous

plan. If the user executed some tasks of the old plan,

and those tasks are also part of the new plan, they must

be reused. That is, the user should not be asked to

execute twice the same task or to answer the same

questions again.

The PHint algorithm works based on the scheme
representation presented in Section 4. The algorithm is,

basically, a loop that tries combinations of goals. If a

plan cannot be built for the complete set of goals, the

algorithm takes instead a subset of these goals. PHint

works using backtracking, and eventually it will check

every combination of goals until producing a plan for a

given subset or returning an empty plan. A plan is built

for a proper subset of the original goals, in the case that
the framework documentation is not enough to com-

pletely describe how to implement the total required

functionality. In other words, a complete plan for every

goal is not possible, but some user tasks for imple-

menting some goals are generated anyway.
6. Results and lessons learned

In order to evaluate the feasibility of the proposed

approach, we have applied the Hint tool to assist the

development of applications in two domains, namely:

graphical interfaces using the HotDraw framework

(Ortigosa and Campo, 2000) and aspect-oriented appli-

cations using the AMF framework (Diaz Pace et al.,

2002). The preliminary results obtained from the com-
parison of a number of (assisted) designs against the

solutions reported in the literature have revealed a very

reasonable matching between them. For example, in the

case of the workflow application presented in this paper,

we contrasted the design given in Fig. 4 against the one

described in (Constantinides et al., 2001). Anyway, these

results should be taken as a partial insight of the po-

tential of the approach, and more validation activities
still remain to be done.

As regards the effectiveness of the approach, this is

closely connected to the issue of framework documen-

tation. It seems that a disadvantage of Smartbooks is

that the tool cannot always derive the right instantiation

actions if there is not enough knowledge available at the

documentation repository. This aspect comes inherently

associated with the approach, because it is assumed that
the documentation provided suffice to get a correct
framework assistance. However, the approach does not

care neither about the relevancy/consistency of the

instantiation schemes nor how they are acquired by

framework developers. This may vary according to the

facilities of the target framework and the developer’s

experience. On the other hand, the flexibility of instan-
tiation schemes for documentation purposes enables

further refinement of this representation through some

domain language providing a textual vehicle to capture

the functionality desired for a specific application. For

example, in the case of the AMF, the mapping of

schemes to rules let developers decide which is the best

strategy to implement aspects on top of the framework.

In addition, as the AMF is mostly composed of abstract
classes and interfaces, it can be though more as pro-

gramming model than a component-based framework.

This feature makes the Smartbooks method particularly

useful, because we can express many model constraints,

not completely expressed through code structures, by

means of instantiation schemes.

Besides, the current state of Hint environment pre-

sents a number of limitations. One of them is the way
required functionality for a given application is specified

in the Functionality Collector. Here, the use of textual

menus to select functionality items may force the user to

accommodate his needs to a vocabulary predetermined

by the framework developer. As we have observed that,

in practical cases, the developer usually defines these

items on the basis of framework design models rather

than on functionality-oriented framework services, a
text-based strategy may diminish the capability of the

approach to properly capture the user’s needs. An

alternative strategy to define functionality requirements

is to complement menus with more expressive graphical

models, for instance, UML diagrams.

As another drawback, the implementation of similar

applications cannot be detected, loosing some oppor-

tunities to make the instantiation process simpler. For
these reasons, we have started to explore the possibilities

of enhancing the agent’s reasoning capabilities with

more advanced techniques such as case-based reasoning

(Kolodner, 1993) and bayesian networks (Heckerman

and Wellman, 1995).
7. Related work

The problem of framework usability has led to dif-

ferent documentation proposals. Some of these tech-

niques include recipes and cookbooks, interface

contracts, exemplars, or UML/F, among others. The

first techniques designed for documenting frameworks

were recipes and cookbooks (Pree, 1995). A recipe de-

scribes how to perform a typical example of reuse during
application development, while a cookbook is a collec-

tion of recipes. Recipes do not explain the design

M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64 63
rationale, but they just explain how the problem can be

solved using the framework. An example of this type of

documentation is (Krasner and Pope, 1988).

Currently, one of the most promising techniques is

active cookbooks (Schappert et al., 1995), which are tools

that provide semi-automated assistance to the frame-
work instantiation process. Active cookbooks are able

to enact recipe descriptions, providing the user an

interactive interface that guides him through the

instantiation process. This kind of help facilitates the

instantiation of predicted functionality because humans

are good at following step-by-step directions, but, par-

adoxically, its little flexibility represents one of the

fundamental drawbacks of the approach. When dealing
with an active cookbook, the user usually has to follow

the embedded recipes up to the last detail, or resign to

not using the tool at all.

As the size and complexity of frameworks increased,

more formal techniques were needed to represent

framework structures. An example of formal docu-

mentation is interface contracts (Meyer, 1992), which are

specifications of obligations, each one providing speci-
fication of a class interface and an invariant in isolation.

An interface contract specifies the type constraints given

by the signature of a method and the interface semantics

of the method. Similarly to other techniques focused on

individual classes, this approach does not scale up well

to frameworks. Moreover, the complexity of the

resulting specifications makes them more adequate for

automated interpretation.
Another approach is the one of (Gangopadhyay and

Mitra, 1995) based on exemplars. An exemplar is an

executable visual model consisting of instances of con-

crete classes together with explicit representation of their

collaborations. For each abstract class of the frame-

work, at least one of its concrete subclasses is instanti-

ated in the exemplar. This technique is oriented towards

providing assistance to the framework instantiation
process. The user creates a new application by gradually

adapting the exemplars according to the application

requirements, being able to visualize in each step the

result of these modifications. In spite of the usefulness of

starting from an existing application, this approach has

some drawbacks. The visual models are hard to build,

and there are limits to what can be done through them.

Besides, this kind of documentation, similarly to cook-
books, does not provide information about the design

rationale.

The work on UML-F (Fontoura et al., 2000) de-

scribes an approach to explicitly model framework

variation points in UML diagrams by expressing the

allowed structure and behavior of framework variation

points with a specific language. The authors introduce a

number of extensions to the standard UML to form a
new profile called UML-F, especially useful for assisting

framework development and instantiation. Variation
points are modeled in terms of tagged values, applicable

to both methods and classes. OCL specifications (Object

Modeling Group, 2001) are used to describe pattern

behavior that should be followed by the variation point

instances. Besides, a tool assisting developers is given,

based on the use of several design patterns, meta-pro-
gramming and aspect-oriented programming to support

various implementation models. Additionally, the

UML-F semantics are formally described to allow the

verification of the design, implementation and adapta-

tion activities.

Analyzing the aforementioned approaches, it can be

observed that techniques like exemplars and cookbooks

(including active cookbooks) are good at providing
procedural assistance, but the lack of design rationale

makes it hard to adapt the documented framework in

unanticipated ways. On the other hand, more passive

approaches, especially those combining more than one

documentation technique, seem to provide more flexi-

bility. This usually comes at the price of imposing a

greater overload on the framework user. This additional

effort is more evident with novice users, who may need
to spend a considerable time reading deeply into the

documentation before being able to build applications.

As regards the user experience, it should be considered

that users with different knowledge level have different

framework needs. None of the analyzed approaches

provides the flexibility needed to support these types of

conflicting requirements.

In the light of this discussion, the best approach
seems to be the use of models combining active docu-

mentation with detailed design explanations, both for-

mally and informally specified. Although this schema

has been already proposed by some approaches built

around hypermedia systems (Lajoie and Keller, 1994),

they do not explain how this combination should be

achieved beyond the use of hyperlinks to relate the dif-

ferent documentation parts. From a different perspec-
tive, the UML-F approach tries to support framework

development and instantiation in a manner very similar

to the one proposed by Smartbooks. The extensions to

UML given by Fontoura et al. provide alternative

mechanisms to the instantiation schemes. It is also

important to note how the approach takes into account

the selection of different implementation alternatives for

a given framework design.
8. Conclusions

In this work, an agent-based approach aiming to

provide better means to cope with application compo-

sition was presented. The use of this approach requires

the documentation be produced according to the
Smartbooks method. The Hint tool is able to derive an

instantiation plan for building a given application on

64 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64
top of a target technology. The approach can play an

important role in helping different kinds of users to

better understand what they really need of a framework

when building their applications.

An additional contribution of this work is the dem-

onstration that planning techniques can be useful to
generate a sequence of programming tasks to guide a

user to implement an application. These techniques are

the core component of an agent, which is able to guide

the instantiation process based on the functionality re-

quired for the application being implemented. More-

over, the assistance provided by the agent could be

extended beyond the limits of what was anticipated in

the design and documentation. Along this line, we have
started to investigate the use of the Smartbooks method

to provide guidance in the development of aspect-ori-

ented applications, extending programming tasks to

support higher-level design activities and mapping to

specific implementation technologies.
References

Bosch, J., 2000. Design and Use of Software Architecture-Adopting

and Evolving a Product-line Approach. Addison-Wesley.

Bradshaw, J., 1997. An introduction to software agents. In: Bradshaw,

J.M. (Ed.), Software Agents. AAAI Press/The MIT Press, pp. 3–46

(Chapter 1).

Campo, M., Diaz Pace, A., Zito, M., 2002. Developing object-oriented

enterprise quality frameworks using. Software Practice and Expe-

rience 32 (8), 837–843.

Constantinides, C., Bader, A., Elrad, T., Netinant, T., Fayad, M.,

2000. Designing an aspect-oriented framework in an object-

oriented environment. ACM Computing Surveys 32 (1), 41–41.

Constantinides, C., Skotiniotis, T., Elrad, T., 2001. Providing dynamic

adaptability in an aspect-oriented framework. ECOOP 2001.

Demeyer, S., D’Hont, K., Steyaert, P., 2000. Consistent framework

documentation with computed links and framework contracts.

Computing Surveys (March).

Diaz Pace, A., Campo, M., Trilnik, F., 2002. Assisting the develop-

ment of aspect-based multi-agent systems using the smartweaver

approach. In: Proceedings SELMAS 2002, LNCS-Springer Special

Volume on Software Engineering for Large-Scale Multi-Agent

Systems.

Fayad, M., Schmidt, D., Johnson, R., 2000. Building Application

Frameworks, Object-Oriented Foundations of Framework Design.

Wiley Computing Publishing.

Fontoura, M., Pree, W., Rumpe, B., 2000. UML-F: a modeling

language to object-oriented frameworks. In: Proceedings ECOOP

2000, vol. 1850 of LNCS. Springer, pp. 63–82.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design

Patterns Elements of Reusable Object-Oriented Software. Addison-

Wesley, Massachusetts.

Gangopadhyay, D., Mitra, S., 1995. Understanding frameworks by

exploration of exemplars. In: Muller, H.A., Norman, R.J. (Eds.),

Proceedings: 7th International Workshop on Computer-Aided

Software Engineering. IEEE Computer Society Press, pp. 90–99.

Heckerman, D., Wellman, P., 1995. Bayesian networks. Communica-

tions of the ACM 38 (3), 27–30.
Helm, R., Holland, I., Gangopadhyay, D., 1990. Contracts: specifying

behavioral compositions in object-oriented systems. In Proceedings

of the OOPSLA/ECOOP ’90 Conference on Object-oriented

Programming Systems, Languages and Applications, October

1990, pp. 169–180. Published as ACM SIGPLAN Notices, vol.

25, number 10.

Johnson, R., 1992. Documenting frameworks using patterns. In

Proceedings of the OOPSLA ’92 Conference on Object-oriented

Programming Systems, Languages and Applications, October

1992, pp. 63–76. Published as ACM SIGPLAN Notices, vol. 27,

number 10.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,

Loingtier, J., Irwin, J., 1997. Aspect-oriented programming. In:

Mehmet, A.K., Satoshi, M. (Eds.), ECOOP’97––Object-Oriented

Programming 11th European Conference, Jyv€askyl€a, Finland. In:

Lecture Notes in Computer Science, vol. 1241. Springer-Verlag,

New York, NY, pp. 220–242.

Kolodner, J., 1993. Case-based reasoning. Technical Report, 1993.

Also in Morgan Kaufmann Publishers.

Krasner, G., Pope, S., 1988. A cookbook for using the model-view-

controller user interface paradigm in Smalltalk-80. Journal of

Object-Oriented Programming 1 (3), 26–29.

Lajoie, R., Keller, R., 1994. Design and reuse in object-oriented

frameworks: patterns, contracts and motifs in concert. In: Pro-

ceedings 62nd Congress of the ACFAS, Canada.

Meyer, B., 1992. Applying ‘‘design by contract’’. Computer 25 (10),

40–51.

Object Modeling Group, 2001. Unified Modeling Language Specifica-

tion, Version 1.4.

Ortigosa, A., Campo, M., 2000. Using incremental planning to foster

application framework reuse. International Journal on Software

Engineering and Knowledge Engineering 10 (4), 433–448, World

Scientific Publishing Company.

Ortigosa, A., Campo, M., Moriy�on, R., 2000. Towards agent-oriented

assistance for framework instantiation. In: Proceedings of the

Conference on Object-Oriented Programming, Systems, Languages

and Application (OOPSLA-00), October 15–19, 2000 ACM

Sigplan Notices, vol. 35.10. ACM Press, NY, pp. 253–263.

Pree, W., 1995. Design Patterns for Object-Oriented Software Devel-

opment. Addison-Wesley. ACM Press Books. ISBN 0-201-42294-8.

Schappert, A., Sommerland, P., Pree, W., 1995. Automated support

for software development with frameworks. In: Proceedings

SSR’95 ACM SIGSOFT Symposium on Software Reusability.

Weld, D., 1994. An introduction to least commitment planning. AI

Magazine 15 (4), 27–61.

Weld, D., 1998. Recent advances in AI planning. Technical Report

TR-98-10-01. Department of Computer Science and Engineering,

University of Washington, October 1998.
Marcelo R. Campo is full professor in the Computer Science Depart-
ment and head of the ISISTAN Research Institute at the UNICEN
University (Tandil, Buenos Aires, Argentina). He is also member of
CONICET-Argentina.
J. Andr�es Dı́az Pace is a research assistant in the Computer Science
Department and the ISISTAN Research Institute at the UNICEN
University (Tandil, Buenos Aires, Argentina). He is also a doctoral
candidate with the Faculty of Sciences at the UNICEN University.

Federico U. Trilnik is a research assistant in the Computer Science
Department and the ISISTAN Research Institute at the UNICEN
University (Tandil, Buenos Aires, Argentina). He is also a doctoral
candidate with the Faculty of Sciences at the UNICEN University.

	``Computer, please, tell me what I have to do…'': an approach to agent-aided application composition
	Introduction
	The ``Computer, please, tell me what I have to do…'' paradigm
	The Hint environment
	An instantiation example

	Defining the instantiation knowledge
	The planner
	Results and lessons learned
	Related work
	Conclusions
	References

