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Abstract  24	

Grapevine (Vitis vinifera L.) cultivars are clonally propagated to preserve their varietal 25	

attributes. However, novel genetic variation still accumulates due to somatic mutations. Aiming 26	

to study the potential impact of clonal propagation history on grapevines intra-cultivar genetic 27	

diversity, we have focused on ‘Malbec’. This cultivar is appreciated for red wines elaboration, 28	

it was originated in Southwestern France and introduced into Argentina during the 1850s. Here, 29	

we generated whole-genome resequencing data for four ‘Malbec’ clones with different 30	

historical backgrounds. A stringent variant calling procedure was established to identify reliable 31	

clonal polymorphisms, additionally corroborated by Sanger sequencing. This analysis retrieved 32	

941 single nucleotide variants (SNVs), occurring among the analyzed clones. Based on a set of 33	

validated SNVs, a genotyping experiment was custom-designed to survey ‘Malbec’ genetic 34	

diversity. We successfully genotyped 214 samples and identified 14 different clonal genotypes, 35	

that clustered into two genetically divergent groups. Group-Ar was driven by clones with a long 36	

history of clonal propagation in Argentina, while Group-Fr was driven by clones that have 37	

longer remained in Europe. Findings show the ability of such approaches for clonal genotypes 38	

identification in grapevines. In particular, we provide evidence on how human actions may have 39	

shaped ‘Malbec’ extant genetic diversity pattern. 40	

Introduction 41	

Clonal propagation is a common practice in perennial crops. In this kind of growing system, a 42	

scarce genetic variability could be expected among clones within a given cultivar. However, 43	

intrinsic genetic mechanisms such as somatic mutations keep occurring and accumulating along 44	

cultivars’ history [1]. Grapevine (Vitis vinifera L.) cultivars are perennial crops that consist on 45	

highly heterozygous genotypes, originated from a sexual cross and clonally propagated to 46	

preserve their productive traits [2]. Grapevine is among the top five fruit crops in terms of tons 47	

produced worldwide [3] and it possesses a rather relatively small genome size (~480 Mb) [4]. 48	

The described features, turn this species into an attractive model for studying the impact of 49	

somatic mutations on the genetic diversity of clonal crops [5–7]. In this regard, there are many 50	

well-documented cases of somatic mutations affecting traits of productive interest in 51	

grapevines, mainly involved in berry color determination [8–10], berry aroma [11], cluster shape 52	

[12,13] and reproductive development [14,15]. However, somatic mutations do not always have 53	

qualitative consequences, and quantitative effects have also been reported among clones [16,17], 54	

even with the responsible mutations identified at the nucleotide resolution level [18]. But most 55	

of the occurring somatic mutations might not have phenotypic consequences, nonetheless these 56	
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‘silent’ variants still constitute a valuable resource of genetic diversity [5,6]. For example, they 57	

may be used in marker assisted selection programs [19,20] or to provide insight on the historical 58	

processes shaping current genetic diversity patterns [1,21,22].  59	

When analyzing genetic diversity among different grapevine cultivars genetic variation 60	

turns very clear [23,24]. However, studying the genetic diversity at the intra-cultivar level is more 61	

challenging. This limitation is based on the expected low variability and because traditional 62	

markers such as SSRs and SNPs selected from inter-cultivar polymorphisms, have shown low 63	

efficiency in such approaches [25–28]. The increased accessibility to genome-wide scale 64	

sequencing has made possible to more accurately address this issue [5,6,29,30]. 65	

Here we focused on ‘Malbec’ cultivar, which prime name is ‘Cot’ [31]. This cultivar has 66	

for long been appreciated for the elaboration of high-quality red wines [32]. According to the 67	

genetic evidence [33] and historical records [32,34], ‘Malbec’ was originated from the outcrossing 68	

of cultivars ‘Prunelard’ and ‘Magdeleine Noir des Charentes’, in Southwestern France (Cahors 69	

region). ‘Malbec’ was then introduced into Argentina (Mendoza province) during the 1850s 70	

[32,34]. In fact, in this South American region is where the largest volumes of ‘Malbec’ wine has 71	

been produced for the past two decades [35]. ‘Malbec’ shows a notorious clonal phenotypic 72	

diversity [16,36] and a great adaptation capacity, being successfully introduced into a wide range 73	

of agroecological conditions across Argentina [37]. However, little is known about ‘Malbec’ 74	

inter-clonal genetic diversity. If we track back its clonal propagation history, we can spotlight 75	

milestones that could have shaped the current pattern of genetic diversity. Starting from the 76	

single seedling that became cultivated after the mentioned outcross, followed by a “bottleneck 77	

effect” when it was initially introduced into South America. To the independent accumulation 78	

of somatic mutations, as consequence of clonal propagation under different environmental 79	

pressures and selection criteria. 80	

In this work, we surveyed ‘Malbec’ intra-cultivar genetic diversity with focus on the 81	

impact of its particular clonal propagation history. We implemented a whole genome 82	

resequencing (WGR) approach to discover single nucleotide variants (SNVs), occurring among 83	

four clones with different historical backgrounds. Then, after a validation process, a reduced 84	

set of the identified SNVs was employed to perform a genotyping analysis to survey the genetic 85	

diversity across an extensive sampling. 86	

Results 87	

a. Genetic diversity among ‘Malbec’ clones is 2000-fold lower than compared to 88	

grapevine’s reference genome. We performed WGR of four Malbec clones: MB53, MB59, 89	
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C225 and C143, that differed in their time span of clonal propagation in Argentina. In total, ~90 90	

million paired-end reads per clone were produced, adding more than 45 Gb of sequence 91	

(Supplementary Table S1). Filtered reads were aligned to the Vitis vinifera L. reference genome 92	

PN40024 [4] (hereafter: PN40024), covering ~78% of its length, with a read depth of ~30x 93	

(Supplementary Table S1).  94	

After variant calling and filtering processes, we discovered 2,122,796 variants in total 95	

(Figure 1). More precisely, we detected 2,121,855 single nucleotide polymorphisms  96	

Figure 1 97	

98	
(SNPs), defined here as common variants to the four clones differentiating ‘Malbec’ from 99	

PN40024. We also identified 941 single nucleotide variants (SNVs), defined as variants 100	

distinguishing ‘Malbec’ clones among each other. From which, 884 were clone-specific 101	

(hereafter: CS-SNVs), meaning that one clone had a genotype different from the other three 102	

clones. While 57 were shared SNVs (hereafter: Sh-SNVs), meaning that two clones presented 103	

the same genotype, different from the other two. Genotypes for CS-SNVs were classified as: 104	

Heterozygous (Het) = one clone with a heterozygous alternative allele not observed in the other 105	

three (253 CS-SNVs); Reference (Ref) = one clone showed the reference allele in homozygosis 106	

and the other three shared an alternative allele (577 CS-SNVs); and Homozygous (Hom): one 107	

clone with an homozygous alternative allele and the other three clones were either Het or Ref 108	

(54 CS-SNVs) (Figure 1). Even though CS-SNVs were rather evenly distributed among the 109	

four analyzed clones, C143 still showed the highest number (Figure 1). Sh-SNVs genotypes 110	

were defined as Het and Hom when two clones shared the same alternative allele in a 111	

heterozygous or homozygous state, respectively. Only a single Sh-SNVs was Hom, shared by 112	

Total variants discovered after filtering
2,122,796

‘Malbec’ ≠ PN40024
2,121,855 SNPs

Intra ‘Malbec’ variants
941 SNVs

Genotype
CS-SNVs

Sh-SNVs TotalC143 C225 MB53 MB59
Reference 159 154 142 122 - 577

Heterozygous 98 54 47 54 56 309
Homozygous 17 2 11 24 1 55

Total 274 210 200 200 57 941
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C143 and C225, that position remained Het in MB53 and MB59. The remaining Sh-SNVs were 113	

Het and distributed as follows: 17 were shared by MB53-MB59 and 17 by C143-C225, while 114	

the remaining 22 Sh-SNVs were shared in different combinations: C143-MB53 = 3, C225-115	

MB59 = 4, C225-MB53 = 6 and C143-MB59 = 9. 116	

We performed a phylogenetic analysis based on the 941 SNVs using PN40024 genotype 117	

as an outgroup, and observed that the genetic relations among the four resequenced clones were 118	

associated to their clonal propagation history (Figure 2). 119	

Figure 2. 120	

 121	
More precisely, clone C143 -never grown in Argentina- turned out to be the most genetically 122	

divergent from the other three. While C225, with a short history of clonal propagation in 123	

Argentina (<30 years), differentiated (80% bootstrap support) from MB53 and MB59. Finally, 124	

MB53 and MB59, the two clones that have been longer propagated in Argentina (>70 years) 125	

appeared also divergent (60% bootstrap support), but more closely related between each other 126	

than to the other two clones.  127	

Out of the 941 described SNVs, 34 were chosen for validation through Sanger 128	

sequencing (Supplementary Table S2). All the sequenced SNVs showed the expected allelic 129	

states for the corresponding clone, demonstrating the reliability of the employed bioinformatic 130	

procedures. As an example, we show the electropherogram alignments of four validated CS-131	

SNVs (one for each of the resequenced clones) (Supplementary Fig. S1).  132	

b. Genotyping analysis shows that genetic diversity pattern in ‘Malbec’ is related to 133	

clones’ propagation history. Genetic diversity was surveyed using a custom-designed 134	

genotyping chip. We selected 48 SNVs (including the mentioned 34 validated ones), with 42 135	

CS-SNVs and 6 Sh-SNVs (Supplementary Table S3). Only heterozygous alternative variants 136	

0.5

MB53

MB59

C225

C143

PN40024

Long clonal propagation history 
in Argentina (>70 years)

Short clonal propagation history 
in Argentina (<30 years)

Never grown in Argentina

60%

80%

0.5
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were selected, based on their ability to distinguish among the four resequenced clones. Final 137	

analyses were performed on 214 successfully genotyped ‘Malbec’ accessions based on 41 138	

properly working SNVs (37 CS-SNVs and 4 Sh-SNVs). We discarded seven out of the 48 139	

starting SNVs and five out of the 219 starting samples, due to technical problems related to 140	

missing data. Based on the resequenced clone for which they were originally identified, the 37 141	

properly working CS-SNVs distributed as follows: nine for C143, seven for C225, eleven for 142	

MB53 and ten for MB59; while the four Sh-SNVs corresponded to variants shared by MB53 143	

and MB59. Regarding the 41 SNVs variability, as expected for de novo mutations, most of them 144	

consisted in transitional mutations and only eight were transversion 145	

(transitions/transversions=4.1). A total of 22 SNVs markers in the chip were widely informative 146	

across the surveyed clonal population, as they ranged from 2 to 164 samples showing the 147	

alternative heterozygous allele. Only one of the latter (C225-snv4) showed the three possible 148	

genotypes, including the alternative allele in homozygosis. Finally, 19 CS-SNVs showed the 149	

alternative heterozygous allele only for one of the four resequenced clones (Supplementary 150	

Table S4), which were analyzed with the genotyping chip as a proof of concept of its precision. 151	

In fact, the four resequenced clones showed in the chip the expected alternative allele for the 152	

respective CS-SNVs, in agreement with the WGR data (Supplementary Table S5). 153	

The genotypes of the 214 samples based on 41 SNVs (Supplementary Table S5), 154	

constituted the genotypic dataset used in the subsequent genetic diversity analyses. We built a 155	

Median-Joining network, which identified 14 different clonal genotypes: five singletons (i.e. 156	

genotypes observed uniquely for one sample) and nine genotypes that were represented by more 157	

than one sample (named A to I) (Figure 3). Most genotypes   158	
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Figure 3. 159	

 160	
differentiated each other by one, two or three SNVs; except for Genotype-F that accumulated 161	

seven, C143 six and MB59 nine SNVs, that differentiated them from their respective closest 162	

genotype. The number of samples represented by each genotype ranged from 96 (Genotype-A), 163	

comprising 45% of the analyzed accessions, to three (Genotype-I). After inspecting the origin 164	

of the samples, no association was observed between the mass selections and the genotypes 165	

assignment. Meaning that most genotypes had representatives of samples coming from different 166	

mass selections (Supplementary Table S6). The five singleton genotypes corresponded to a 167	

sample from Perdriel mass selection (Perd_121) and to the four resequenced clones. As 168	

expected from the WGR origin of markers in the chip, MB53, MB59, C143 and C225 were the 169	

most differentiated samples (Figure 3), due to the effect of CS-SNVs that were variable only 170	

for each of them (Supplementary Table S4). Nonetheless, after a more stringent analysis based 171	

only on the 22 SNVs showing at least two samples with the alternative allele, the main nine 172	

genotypes were recovered (Supplementary Fig. S2). The difference was that C225 and MB53 173	

were the only two samples still differentiating as singletons, while C143, MB59 and Perd_121 174	

were included in Genotypes E, F and A respectively.  175	

We tested for the phylogenic relations among the 14 identified clonal genotypes based 176	

on 41 SNVs. The analysis included a unique sequence representing each of the nine Genotypes 177	

from A to I and the five singletons. The resulted tree displayed the existence of two divergent 178	

clades, named Group-Ar (Argentina) and Group-Fr (France) (Figure 4a).   179	

(1)

Genot-E
(12)

C225

Genot-I
(3)

Genot-B
(29)

C143

Genot-H
(4)

Genot-A 
(96)

Genot-G
(8)

MB59

Perd_121

MB53

Genot-C
(25)

Genot-D
(24)

Genot-F
(8)
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Figure 4. 180	

 181	

Group-Ar was driven by the resequenced clones with >70 years of clonal propagation in 182	

Argentina (MB53 and MB59) and clustered the closely related genotypes A, C, D and F. Jointly, 183	

these genotypes represented the great majority of the analyzed samples (155), including also 184	

the singleton genotype Perd_121. While Group-Fr was driven by the resequenced clones that 185	

longer remained close to the origin of Malbec in France, never grown or with less than 30 years 186	
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of clonal propagation in Argentina (C143 and C225), clustering all the genotypes closer related 187	

to them: E, B, G, H, I. In total, 64 samples clustered in Group-Fr, including all the other 188	

analyzed samples with less than 30 years of clonal propagation in Argentina (Cot42, Cot46, 189	

Cot595, Cot596, Cot598, Inta19) or never grown outside Europe (Esp217). Even though 190	

Genotype-G was clearly differentiated from other genotypes of Group-Fr (Figure 4a), all 191	

performed analyses consistently placed it closer to genotypes from this group (Figure 4b and 192	

AMOVA). The distinction between Group-Ar and Group-Fr was also observed in the Principal 193	

Coordinate Analysis (PCoA), where the PCo1 and PCo2 explained almost 55% of the genotypic 194	

variance (Figure 4b). The separation between the two Groups was mainly depicted by PCo1 195	

(37.4%), all genotypes with a closer genetic distance to C143 and C225 clustered together 196	

(including Genotype-G) and the same occurred for genotypes closer related to MB53 and 197	

MB59, although with a larger dispersion (Figure 4b). PCoA based only on the four Sh-SNVs, 198	

also recovered the distinction between Groups Ar and Fr. Again Genotype-G clearly 199	

differentiated from the two Groups, but it was still closer to Group-Fr (Supplementary Fig. S3). 200	

Finally, the AMOVA results indicated that a significant proportion of the total molecular 201	

variance, was explained after grouping and contrasting the genotypes included in Group-Ar and 202	

Group-Fr. The highest AMOVA value was reached when Genotype-G was included in Group-203	

Fr, PhiPT = 0,39 (p = 0,001). 204	

Discussion 205	

Extant cultivated grapevines (V. vinifera ssp. sativa) have retained most of the genetic diversity 206	

present in their wild counterpart, ssp. sylvestris [21,38]. This genetic diversity is evidenced 207	

through the great variability observed among cultivars [7,24]. However, genetic variation is 208	

strongly reduced at the intra-cultivar level. Here, we surveyed the genetic variation in V. 209	

vinifera L. cv. ‘Malbec’ and found evidence on how clonal propagation history has shaped the 210	

diversity pattern of this cultivar. 211	

Somatic mutations mostly accumulate as heterozygous variants, which are more prone 212	

to generate false positives in variant calling analyses. Therefore, a major challenge when 213	

processing high-throughput genomic data, for clonal genetic diversity studies, consists on 214	

avoiding variants overestimation [39,40]. Being stringent with the bioinformatic procedures, as 215	

well as experimental corroboration of the called variants might provide more certainty on this 216	

regard. Here, we worked with a set of variants that were consistently called by three different 217	

software: GATK [41], BCFTOOLS [42] and VARSCAN2 [43]. Afterwards, stringent 218	

bioinformatic filters, particularly related to the read edit distance and the variant allele 219	
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frequency (VAF), were applied to discard spurious variants. Moreover, experimental 220	

corroboration was successfully performed by means of two alternative technologies, Sanger 221	

sequencing (Supplementary Fig. S1) and a Fluidigm genotyping-chip (Supplementary Table 222	

S5). All tested SNVs showed the expected alternative allele for the expected sample, so we 223	

could assume for a non-significant proportion of false positives among the identified variants. 224	

This stringent workflow allowed us to obtain a reliable set of SNVs and set-up a genotyping 225	

experiment, to analyze the clonal genetic diversity in ‘Malbec’. 226	

We observed that the number of SNPs distinguishing ‘Malbec’ from the PN40024 227	

grapevine reference genome, exceed the intra-cultivar SNVs by three orders of magnitude 228	

(Figure 1). The identified number of SNPs in the present study is within the range of those 229	

reported in other works, that have also compared the genetic diversity between grapevine 230	

cultivars [44–46]. While previous works that studied the intra-cultivar genetic diversity (using 231	

WGR data) identified total numbers of SNVs ranging from the few thousand in ‘Chardonnay’ 232	

[30] and ‘Nebbiolo’ [5], to the several thousand in ‘Zinfandel’ [6]. Here, we present the lowest 233	

total number of SNVs reported so far (Figure 1). A reason for this might be that assuming the 234	

presence of putative false negatives in the variant calling procedures, we aimed for a stringent 235	

filtering to yield reliable markers for clonal lineages identification. However, final results 236	

reported in each genetic diversity analysis might be differentially influenced by other technical 237	

(e.g. sequencing methods) and biological aspects (e.g. genetic distance among the analyzed 238	

clones), as well as by the aim of the analysis [47,48]. Regardless of the differences in the absolute 239	

numbers of SNVs identified, it is clear that in grapevines the intra-cultivar genetic diversity 240	

drops drastically when compared to the inter-cultivar. This observation corroborates the role of 241	

vegetative propagation in preserving the desired phenotypes of cultivars, by stabilizing the 242	

accumulation rate of novel genetic variation [2]. 243	

Despite the scarce intra-cultivar genetic diversity in grapevines, the identified variants 244	

successfully distinguished 14 different clonal genotypes of ‘Malbec’ (Figure 3). We found no 245	

association between the genotype assignment and the mass selection origin of our samples. 246	

Plants from the same mass selection share particular phenotypic traits of productive interest 247	

(Supplementary Table S7). However, the sought phenotypic homogeneity contrasts with the 248	

observed genetic diversity, suggesting that SNVs analyzed here are not associated to genes 249	

responsible for the selected traits. On the other hand, the number of samples represented by 250	

each genotype was highly variable. Genotype-A was the most abundant, including almost half 251	

of the studied accessions (Figure 3). Genotype-A abundancy could indicate that this has been 252	

the most propagated lineage in Argentina. Either as consequence of a “bottleneck effect” caused 253	
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by ancestral introductions of ‘Malbec’ in South America, and/or posterior selections favored by 254	

its productive performance. However, we cannot rule out that Genotype-A abundancy could be 255	

consequence of a sampling bias. It is expectable that including more samples with diverse 256	

origins, as well as employing additional SNVs markers, would turn into a greater number of 257	

genotypes represented by fewer samples. Despite of these caveats, even with a reduced set of 258	

the identified genetic markers here, it was possible to recover the main identified clonal 259	

genotypes (Supplementary Fig. S2). 260	

The identified clonal genotypes clustered in two genetically divergent groups, Groups 261	

Ar and Fr (Figures 4a and 4b). The observed pattern of genetic diversity in ‘Malbec’ is likely 262	

resembling the combination of natural and human directed processes. The only natural source 263	

of genetic variation in grapevine cultivars are somatic mutations and epimutations, which arise 264	

during the vine growth and might be pass to daughter vines through vegetative propagation 265	

[49,50]. Therefore, shared mutated positions turn into fingerprints that provide information on 266	

the history of a given clonal lineage [51]. Here, by using only four Sh-SNVs was enough to 267	

recover the distinction between the two main identified groups (Supplementary Fig. S3). On 268	

the other hand, as a species of commercial interest, human actions such as plants transportation, 269	

as well as clonal and mass selection are over imposed to the observed patterns of genetic 270	

diversity [2,22,49]. 271	

Historical records report that the first ‘Malbec’ plants were introduced from France to 272	

Argentina (Mendoza province) in the 1850s [32,34]. After that, wine-producers kept introducing 273	

plants into Argentina at a continuous rate, that was slightly increased during the 1990s [52]. The 274	

found genetic diversity pattern could be reflecting this history. Distinguishing among genotypes 275	

that have gone through alternative pathways and accumulated different somatic mutations, and 276	

bringing together those with a more recent shared history. Genotypes included in Group-Fr are 277	

closely related to the resequenced clones that have longer remained in Europe (C143 and C225), 278	

including also all the other analyzed samples that were never grown or were recently introduced 279	

into Argentina. On the other hand, genotypes from Group-Ar are closely related to the 280	

resequenced clones with a longer time span of clonal propagation in Argentina (MB53 and 281	

MB59), suggesting a closer link to those first plants introduced from France. Among the 282	

analyzed samples, we can pinpoint those accessions never grown or more recently introduced 283	

into Argentina (<30 years). However, we cannot tell with accuracy the exact time span of clonal 284	

propagation for those accessions that have remained for more than 70 years in Argentina. In 285	

particular, some of the latter accessions appeared included in Group-Fr (Supplementary Table 286	

S6). This could be resembling intermediate times of introduction for certain accessions (as those 287	
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from Genotype-G) or possible traceability inconsistencies. In the same direction, it is not 288	

possible to track back the precise history of individual plants from the sampled mass selections; 289	

the only available information relates to their vineyard of origin and productive criteria of 290	

selection. In this context, it is important to highlight that we were able to retrieve the 291	

phylogenetic relations among the four resequenced clones with a known history, by means of 292	

the custom-designed genotyping chip.  293	

The set of markers included in the chip proved useful for clonal genotypes distinction. 294	

In fact, by genotyping as few as four Sh-SNVs would be enough to tell if a ‘Malbec’ plant is 295	

closely related, either to ancestors that were early introduced in Argentina or that longer 296	

remained in Europe. At the same time, CS-SNVs were essential at discovering the main clonal 297	

genotypes identified here. This observation further supports the importance of combining clone 298	

specific and shared variants, to enhance genotyping experiments sensitivity for clonal diversity 299	

studies [30,51]. Moreover, custom-designed genotyping for grapevine cultivars has already been 300	

proven as a valuable tool with different applications. For example, for nurseries to fill with 301	

genetic evidence the historical gaps of clonal accessions [51], and for the wine industry for 302	

traceability and authentication purposes [53]. 303	

In conclusion, we could setup an efficient workflow to identify a reliable set of clonal 304	

genetic variants, that were employed to design an informative genotyping experiment. We were 305	

able to distinguish several clonal genotypes within ‘Malbec’ and observed that clonal 306	

propagation history has shaped its genetic diversity pattern. Findings add further evidence on 307	

the importance of high-throughput genotyping in grapevines as baseline information, to better 308	

understand cultivars’ history and as a tool with industrial application. 309	

Materials & Methods 310	

a. Biological material. 311	

 To perform WGR, we obtained young leaves and shoot tips from four ‘Malbec’ clones. Two 312	

clones were sampled at the Mercier Argentina nursery collection (Perdriel, Lujan de Cuyo, 313	

Mendoza): Malbec-501 (MB53) and Cot-ENTAV-598 (C225). One clone was sampled at 314	

Mercier Argentina nursery Granata vineyards (Perdriel, Lujan de Cuyo, Mendoza), Malbec-059 315	

(MB59). The fourth clone: Cot-143 (C143) was sampled at the “Finca El Encín” ampelographic 316	

collection (ESP-080, Alcala de Henares, Spain). The two accessions labeled as ‘Malbec’ 317	

(MB53 and MB59) represent plants with long history of clonal propagation in Argentina, 318	

meaning that they have been propagated in this country for more than 70 years (Mercier nursery 319	

records). We also included two accessions labeled as ‘Cot’ (C225 and C143), with short and 320	

null histories of clonal propagation in Argentina. More precisely, C225 was introduced into 321	
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Argentina from France (ENTAV-INRA) during the 1990s (Mercier nursery records) and C143 322	

was sampled in a Spanish germplasm collection, therefore it was never grown in Argentina. 323	

For the genotyping analysis, shoot tips and young leaves were obtained from 219 plants. 324	

We sampled 70 ‘Malbec’ clonal accessions (including the four resequenced ones) belonging to: 325	

(a) the National Institute of Agricultural Technology (INTA-Mendoza) collection (28 clones), 326	

(b) Mercier Argentina Nursery collection (37 clones) (c) Mercier Granata vineyard (three 327	

clones) and (d) Finca El Encin (two clones). Time span of clonal propagation in Argentina were 328	

obtained from [52] and from Mercier nursery records. We also obtained 30 samples from each 329	

of five different Mercier’s mass selections (150 samples in total), located at Granata vineyards 330	

(Perdriel, Lujan de Cuyo, Mendoza). Further details about mass selections and samples are in 331	

Supplementary Tables S7 and S8 respectively.  332	

b. Whole genome resequencing, variant calling and validation.  333	

DNA extractions and resequencing: Whole genomic DNA from the four ‘Malbec’ clones: 334	

MB53, MB59, C225 and C143 was isolated using the DNeasy Plant Mini Kit (Qiagen), 335	

including a RNase treatment, according to manufacturer recommendations. DNA quantification 336	

and quality checks were performed with NanoDrop 2000 spectrophotometer and agarose gel 337	

(5%) electrophoresis. Library preparation and sequencing was performed at the Center for 338	

Genomic Regulation (Barcelona, Spain) 125 bp length paired-end reads were produced using 339	

the HiSeq 2000 Illumina technology with the Sequencing v4 chemistry. 340	

Reads alignment, variant calling and filtering: Standard quality checks of the FASTQ files 341	

were performed with FastQC [54]. Raw reads were pre-processed following the GATK Best 342	

Practices workflow with the toolkit GenomeAnalysisTK-3.3-0 [41]. After marking Illumina 343	

adapters with Picard toolkit v2.9.4 [55], sequences were aligned to Vitis vinifera L. reference 344	

genome PN40024 [4]. We employed the Burrows-Wheeler algorithm as implemented in BWA-345	

MEM v0.7.12-r1039 [56], to align our reads to the reference genome. Mapped reads were 346	

thoroughly filtered also with Picard toolkit [55] allowing only non-duplicates, unique and 347	

concordant alignments with a maximum read edit distance of 1 per 25 nucleotides of query 348	

sequence [57]. Filtered alignments were used as input for variant calling, comparing to 349	

PN40024, using three different tools with default parameters and in the multi-allelic mode: 350	

GATK UnifiedGenotyper [41], BCFTOOLS call v1.9 [42] and VARSCAN2 mpileup2cns v2.3.9 351	

[43]. Produced gVCF files for each accession were intersected and only those single nucleotide 352	

variants identified by all three callers were retained, while INDELs and structural variations 353	

were not considered in this study. Bioinformatic procedures were adjusted using a set of SNPs 354	

between ‘Malbec’ and PN40024 retrieved from Vitis18kSNP array results [58]. Only confident 355	
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identified raw variants were retained, based on WGR recommendations of total depth (DP), 356	

variant allele frequency (VAF), strand bias and distance bias (Bentley et al. 2008). Cut-off 357	

values for these parameters were: DP = [15-150]; VAF(Ref) £ 0.025; VAF(Het) = [0.25-0.75]; 358	

VAF(Hom) ³ [0.95]; P-value (strand bias) £ 0.0001 and P-value (distance bias) £ 0.0001. 359	

Variant allele frequency ranges were particularly adjusted to reduce -at the minimum possible- 360	

the presence of spurious variants. Chimeric mutations are frequent in grapevines, occurring 361	

differentially between the L1 and L2 cell layers of the developmental tissue from the apical 362	

meristem [49]. L1 layer gives rise to the epidermis and represent a smaller proportion of the total 363	

tissues conforming a plant (nearly 30%) [50]. With the employed VAF filters we expected to 364	

detect most of the chimeric mutations occurring in the L2 cell layer, VAF around 0.3 (half of 365	

the total frequency in 60% of somatic tissues). While chimeric heterozygous mutations 366	

occurring only in the L1 would be mostly excluded. We assumed that variants loss as a trade-367	

off, in the aim of reducing the false positives.  368	

Corroboration of the bioinformatic pipeline: We employed IGV v2.3.97 [59] to manually 369	

corroborate a sub-set of the identified SNVs and to isolate a ~600 bp length sequence containing 370	

the target SNVs in the mid-region. These sequences were used as templates for primer design 371	

to perform PCRs and Sanger sequencing of the amplicons. In order to avoid both, primer 372	

annealing and later genotyping issues, we checked for the absence of variable sites on the 5’- 373	

and 3’- regions of the sequence and in the proximities of the SNVs target position. Primers were 374	

designed using the Primer BLAST tool [60], with an average annealing temperature (Tm) of 375	

60.3ºC (range: 58.8-62.5ºC) and an average amplicon length of 447 bp (range: 300-582 bp), 376	

more details in Supplementary Table S2. PCRs were conducted in a 25 μl final reaction volume 377	

containing: 0,3 ul (5 U/μl) Taq Polymerase High fidelity (TransTaq); 1,25 ul (10x) Buffer GC-378	

enhancer (TransTaq); (2,5 ul) 10x PCR Buffer I (TransTaq); 1 ul (2.5 mM) dNTPs; 1 ul of each 379	

(10 μM) Primer forward and reverse and 3 ul (40 ng/μl) DNA template. Cycles consisted in a 380	

denaturation step of 5’ at 98ºC; 35 cycles of 30” 94ºC, 30” at 60ºC and 30” at 72ºC, and final 381	

extension of 7’ at 72ºC. PCR products were purified using ExoSAP-IT PCR Product Cleanup 382	

(Thermofisher), following the manufacturer recommendations. To validate the target SNVs, 383	

electropherograms of the four resequenced clones were aligned and inspected with CODON 384	

CODE ALIGNER v4.0.4 (CodonCode Corp. USA). SNVs were considered as validated if the 385	

allelic state at the position of interest in the sequence, coincided with that observed in the vcf 386	

file and in the IGV genome browser. For example, for a heterozygous CS-SNVs the clone for 387	
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which the variant was identified must be heterozygous and for the other three clones must be 388	

homozygous as the reference genotype (e.g. Supplementary Fig. S1). 389	

c. Genotyping. 390	

DNA extractions were performed employing the NucleoSpin® Plant II Plant Mini kit 391	

(Macherey-Nagel). Quantification of the isolated DNAs was performed using NanoDrop 8000 392	

Spectrophotometer (Thermo Fisher Scientific) and Qubit 2.0 Fluorometer (Invitrogen, Life 393	

Technologies).  394	

SNVs chosen as genetic markers to build the genotyping chip accomplished the following 395	

criteria. We included 42 CS-SNVs and 6 Sh-SNVs, only heterozygous alternative variants were 396	

selected from the deep-filtered list, based on their ability to discriminate among the four 397	

resequenced clones. For the CS-SNVs, equivalent number of variants for each clone were 398	

chosen. Sh-SNVs were picked for their ability to differentiate between the resequenced clones 399	

with a long history of clonal propagation in Argentina, from those with a short or null history 400	

in this country. Since we were particularly interested in identifying genetic markers that could 401	

consistently resemble that historical aspect across our samples. We also intended the chosen 402	

SNVs to be distributed across different chromosomes to better represent the genome-wide 403	

diversity. In total, 48 sequences containing one SNVs of interest (Supplementary Table S3) 404	

were provided to the Genomics Service Sequencing and Genotyping Unit (UPV/EHU) 405	

(Bizkaia, Spain) to design probes for a Fluidigm chip (https://www.fluidigm.com/) and perform 406	

the genotyping. Each experiment allowed to simultaneously genotype 48 samples using 48 407	

SNVs, in a two steps reaction. In the first step, the target region containing the position to be 408	

genotyped is amplified using two pre-amplification primers (locus-specific primer and specific 409	

target amplification). In the second step, an additional PCR amplifies a portion of that target 410	

SNVs region, using the locus-specific primer and two fluorescently labeled allele-specific 411	

primers, which are internal primers containing either the first or the second allele respectively. 412	

Finally, the genotype is determined by measuring the fluorescence intensity of both alleles using 413	

the Fluidigm genotyping analysis software.  414	

d. Inter-clonal genetic diversity analyses  415	

To assess the degree of genetic variation among ‘Malbec’ clones, biallelic genotypes were 416	

coded to sequences in the fasta format. In first place, we performed a phylogenetic analysis 417	

with MEGA v7.0.26 [61] including only the four resequenced clones and using PN40024 418	

genotype as outgroup. A Neighbor-Joining tree was estimated based on the deep-filtered list of 419	

SNVs, using uncorrected p-distances and nodes’ support were obtained after 200 bootstrap 420	

iterations. 421	
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In second place, we performed a Median-Joining Network [62] analysis with POPART 422	

software [63]; to screen the diversity across all the genotyped samples, identify the number of 423	

different genotypes, their frequencies and phylogenetic relations. Afterwards, we obtained a 424	

single representative sequence for each of the identified genotypes to reconstruct a Neighbor-425	

Joining tree with MEGA v7.0.26 [61], using the same parameters described above. Genetic 426	

diversity was also analyzed considering each SNVs position as an independent marker, by 427	

estimating codominant-genotypic distances among the identified genotypes with GenAlEx v6.5 428	

[64]. Genetic distances among genotypes were analyzed with a model-free approach of Principal 429	

Coordinate Analysis (PCoA), to detect potential groups of genotypes closer related among each 430	

other. We estimated the proportion of the total molecular variance that is explained by the 431	

variance between groups through an AMOVA, we obtained the PhiPT parameter recommended 432	

for distances obtained from codominant genotypic data, p-value was obtained after 900 433	

bootstrap iterations. Both PCoA and AMOVA were also performed with GenAlEx v6.5.  434	
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Figures legends 597	

Figure 1. Total single nucleotide polymorphisms (SNPs) and variants (SNVs) identified in 598	

‘Malbec’. SNPs distinguish ‘Malbec’ from PN40024 and SNVs occurred differentially among 599	

the four resequenced clones. SNVs are classified based on the clone for which they were 600	
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identified and also according to their genotype, relative to PN40024. CS-SNVs are diagnostic 601	

for variation in a single clone and Sh-SNVs are shared between two clones in different 602	

combinations. 603	

Figure 2. Phylogenetic relations among four resequenced ‘Malbec’ clones. Neighbor-Joining 604	

tree based on p-distances and employing 941 SNVs. Percentages on the nodes represent 605	

bootstrap supports after 200 iterations, only values >50% are shown. PN40024 genotype was 606	

used as outgroup. 607	

Figure 3. Intra-cultivar clonal genotypic diversity estimated with a custom designed 608	

genotyping chip. Median-Joining network was built with the genotypes obtained for 214 clones 609	

at 41 SNVs loci. Each circle represents a genotype and its size is proportional to the genotype 610	

frequency. In total 14 clonal genotypes were found, nine were represented by multiple samples 611	

(named from A to I) and five were singletons (C143, C225, MB53, MB59 and Perd_121). The 612	

hashmarks crossing the connecting lines indicate the number of point mutational steps 613	

differentiating genotypes. Color code represents Groups Fr (orange) and Ar (purple). 614	

Figure 4. Phylogenetic relationships among the identified clonal genotypes in ‘Malbec’. (a) 615	

Neighbor-Joining tree based on p-distances among the identified genotypes (based on 41 616	

SNVs), nodes bootstrap supports values >50% are shown. The orange clade (Group-Fr) 617	

included genotypes closer related to the resequenced clones that have longer remained in 618	

Europe (C143 and C225). Purple clade (Group-Ar) included genotypes closer related to the 619	

resequenced clones with more than 70 years of clonal propagation in Argentina (MB53 and 620	

MB59). (b) Principal coordinates analyses (PCoA) based on genetic distances among 621	

genotypes. PCoA recovered the same relations than the phylogeny among the identified 622	

genotypes, differentiating between Group-Ar (purple dots) and Group-Fr (orange dots).  623	
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