
This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which 
may lead to differences between this version and the Version of Record. Please cite this 
article as doi: 10.1111/ppl.13141 
 

Maintenance of photosynthetic capacity in flooded tomato plants with reduced 

ethylene sensitivity 

 

Leandro Federico De Pedroa, †, Francesco Mignollib,c,†,*, Andrea Scartazzad, Juan 

Pablo Melana Colavitae, Carlos Alberto Bouzof and María Laura Vidozb,c,* 

 

aFacultad de la Producción y del Medio Ambiente, Universidad Nacional de Formosa, 

Ruta Nac. 86, Km 1352, CP 3613, Formosa, Argentina 

bInstituto de Botánica del Nordeste (UNNE-CONICET), 2131 Sargento Cabral, CP 

3400, Corrientes, Argentina  

cFacultad de Ciencias Agrarias, Universidad Nacional del Nordeste, 2131 Sargento 

Cabral, CP 3400, Corrientes, Argentina  

dInstitute of Research on Terrestrial Ecosystems, National Research Council, 1 via 

Moruzzi, 56124, Pisa, Italy 

eInstituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA, NEA-

CONICET), 5470 Avenida Libertad, CP 3400, Corrientes, Argentina  

fLaboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), 

ICi Agro-Litoral (UNL-CONICET), 2805 Kreder, CP 3080, Santa Fe, Argentina 

  

Correspondence 

*Corresponding authors, 

e-mail: fmignolli80@gmail.com; malauravidoz@gmail.com 

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1111/ppl.13141
http://dx.doi.org/10.1111/ppl.13141
http://dx.doi.org/10.1111/ppl.13141
http://dx.doi.org/10.1111/ppl.13141
mailto:fmignolli80@gmail.com


 
 

†These authors contributed equally to this work 

 

 

Ethylene is considered one of the most important plant hormones orchestrating plant 

responses to flooding stress. However, ethylene may induce deleterious effects on 

plants, especially when produced at high rates in response to stress. In this paper, we 

explored the effect of attenuated ethylene sensitivity in the Never ripe (Nr) mutant on 

leaf photosynthetic capacity of flooded tomato plants. We found out that reduced 

ethylene perception in Nr plants was associated with a more efficient photochemical and 

non-photochemical radiative energy dissipation capability, in response to flooding. The 

data correlated with retention of chlorophyll and carotenoids content in flooded Nr 

leaves. Moreover, leaf area and specific leaf area were higher in Nr, indicating that 

ethylene would exert a negative role in leaf growth and expansion under flooded 

conditions. Although stomatal conductance was hampered in flooded Nr plants, 

carboxylation activity was not affected by flooding in the mutant, suggesting that 

ethylene is responsible for inducing non-stomatal limitations to photosynthetic CO2 

uptake. Upregulation of several cysteine protease genes and high protease activity led to 

Rubisco protein loss in response to ethylene under flooding. Reduction of Rubisco 

content would, at least in part, account for the reduction of its carboxylation efficiency 

in response to ethylene in flooded plants. Therefore, besides its role as a trigger of many 

adaptive responses, perception of ethylene entails limitations in light and dark 
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photosynthetic reactions by speeding up senescence process that leads to a progressive 

disassembly of the photosynthetic machinery in leaves of flooded tomato plants.  

 

Abbreviations – A, net CO2 assimilation rate; Ci, intercellular CO2 concentration; E, 

transpiration rate;  

Fv/Fm, potential efficiency of PSII photochemistry; gs, stomatal conductance; NPQ, 

non-photochemical quenching; PPFD, photosynthetic photon flux density, Vcmax, 

maximum rate of Rubisco-mediated carboxylation; WUEi, intrinsic water use 

efficiency; ΦPSII, actual photon yield of PSII photochemistry.  

 

Introduction  

One of the most evident effects of climate change is the increase in torrential rains of 

short duration, resulting in an uneven distribution of precipitation along the year 

(Kundzewicz et al. 2007). As the intensity of rainfall and evaporation increases due to 

global warming, many arid areas become even more arid, while many wetlands (mainly 

rural areas) are subjected to more frequent floods (Voesenek and Sasidharan 2013). It 

has been estimated that, annually, more than 17 million km2 are exposed to flooding 

(Voesenek and Sasidharan 2013) which is especially concerning for plant crop 

productivity in tropical and sub-tropical regions (Ashraf 2012, Pedersen et al. 2017).  

Flooded soils are subjected to oxygen shortage, reduced availability of certain nutrients, 

lower redox potential and increased solubility of toxic ions (Horchani et al. 2008, 

Striker 2012). In particular, the oxygen limitation in flooded environments is caused by 
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a decrease in gas diffusion in water of around 104 times (Bailey-Serres et al. 2012), 

which rapidly generates a hypoxic environment in roots proximity (Ashraf, 2012). 

Although little is known about the causes of photosynthesis decline in flooded plants, 

most plants undergo a drop in carbon assimilation rate when exposed to such stress 

(Yordanova and Popova 2007, Herrera et al. 2008, Bhatt et al. 2015; Mutava et al. 2015, 

Najeeb et al. 2015). It is believed that stomatal closure, decrease of mesophyll CO2 

conductance, chlorophyll loss, reduction of carboxylation activity and oxidative damage 

of photosystem II (PSII) reaction centres impair CO2 uptake capacity in flooded plants 

(Ashraf 2012, Striker 2012, Pompeiano et al. 2019). In general, while a stomatal 

limitation could account for the initial reduction in carbon assimilation, a non-stomatal 

limitation takes place after longer periods from the onset of flooding stress due to the 

alteration of some biochemical reactions involved in photosynthesis (Chen et al. 2015, 

Yordanova et al. 2005). In tomato, the reduction of stomatal conductance occurs within 

a few hours from the onset of flooding stress (Bradford 1983). The emergence of 

adventitious roots with improved internal aeration partially restores stomatal opening, 

indicating that the loss of root function is responsible for stomatal closure and 

photosynthesis impairment during flooding (Else et al. 2009). Non-stomatal limitations 

are often related to decreases in Rubisco activity and/or its abundance (Pezeshki 2001, 

Ahsan et al. 2007). It has been proposed that the degradation of Rubisco and Rubisco 

activase due to a high proteolytic activity or ROS-mediated oxidative process is 

responsible for the reduction in carbon assimilation of flooded tomato plants (Ahsan et 

al. 2007). In some species, the decrease in leaf gas exchange parameters during flooding 
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could induce photoinhibition (Herrera 2013), since the limited availability of CO2 for 

photosynthesis may affect the photochemical efficiency of PSII (Else et al. 2009). The 

reduction of maximum quantum efficiency of PSII (Fv/Fm) and the actual quantum yield 

of PSII (ΦPSII) photochemistry during flooding, as previously observed in several 

species (Arbona et al. 2009, Herrera, 2013, Pompeiano et al. 2019), may indicate a 

damage of PSII reaction centres and limitations in the electron transport chain (Kläring 

and Zude 2009).  

The gaseous hormone ethylene is involved in many physiological processes of a plant, 

such as seed germination, floral initiation, leaf senescence and organ abscission (Abeles 

et al. 2012). When stressed, plants generally increase ethylene biosynthesis by the 

induction of ACC synthase (ACS) and ACC oxidase (ACO) genes (Morgan and Drew 

1997). In flooded tomato plants, ethylene production occurs according to the well-

known model described by Jackson (2002), in which the ACC produced in roots is 

transported to the aerial part of the plant through the xylem. Once in leaves, the 

presence of a normal oxygen concentration allows the conversion of ACC to ethylene 

through the action of ACOs. The role of ethylene as a chemical trigger for adaptive 

strategies to cope with flooding stress has been extensively demonstrated (reviewed in 

Sasidharan and Voesenek, 2015). Boosted ethylene biosynthesis, followed by ethylene 

entrapment by water in proximity to submerged tissues, is able to induce important 

anatomical and biochemical changes in submerged organs. Ethylene-mediated plant 

adaptations to flooded environments include: aerenchyma formation as seen in maize, 

rice and tomato (Yamauchi et al. 2016, Mignolli et al. 2020); adventitious roots 
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formation as observed in species like Solanum dulcamara and tomato (Vidoz et al. 

2010, Dawood et al. 2016); petiole hyponasty thoroughly studied in Rumex and 

Arabidopsis (van Veen et al. 2013); and internode elongation noted in deep-water rice 

cultivars (Hattori et al. 2009). In addition, ethylene seems to be a necessary determinant 

of alcohol dehydrogenase induction and the initiation of the fermentative pathway in 

hypoxic organs (Peng et al. 2001). 

However, in spite of these beneficial responses during flooding acclimation, ethylene 

has some negative effects on flooding tolerance especially when produced in large 

amounts (Fukao et al. 2006). Indeed, injuries caused by flooding in sunflower seem to 

be strictly correlated to high levels of ethylene (Kawase 1974), while tolerance to partial 

submersion observed in the tomato mutant aerial roots would be associated with a 

lower sensitivity to the hormone (Vidoz et al. 2016). Recent experiments have shown 

that ethylene is responsible for lower nitrogen uptake, decreased photosynthetic activity 

and higher rate of fruit abscission in waterlogged cotton plants (Najeeb et al. 2015). 

Similarly, in tomato, flower and fruit abortion could be linked to flooding-induced 

ethylene synthesis (Horchani et al. 2008). This dualistic role of ethylene could be 

explained with a biphasic model in which plant growth is promoted or inhibited by low 

or high concentrations of ethylene, respectively (Pierik et al. 2006, Wi et al. 2010). 

According to this model, the dualistic effect of ethylene would rely upon two 

temporally spaced peaks of ethylene produced during stress. It is suggested that a small 

early ethylene emission in plants would trigger adaptive responses, whereas a second 
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more conspicuous ethylene peak would initiate inhibitory processes such as senescence, 

chlorosis and abscission (Stearns and Glick 2003). 

The role of ethylene in controlling photosynthesis is still controversial and elusive. A 

distinction should be made between basal and stress-induced ethylene production and 

their respective effects on photosynthesis. Although several reports stated that a certain 

level of ethylene in non-stressed plants is essential for stomatal conductance and 

Rubisco activity (Tholen et al. 2004), it is also true that under stressful conditions 

ethylene build-up can be detrimental for these processes (Pierik et al. 2006). Yet, the 

effect of ethylene on photosynthesis in plants under stress is far from being universal 

because it depends on species, type of stress, leaf age and amount of ethylene produced 

(Khan et al. 2008, Djanaguiraman et al. 2011, Masood et al. 2012, Ceusters and Van de 

Poel 2018). In our work, we investigated the effects of attenuated ethylene perception 

on photosynthesis capacity in tomato plants exposed to flooding. To this purpose, the 

tomato mutant Never ripe (Nr), which is characterized by a defective ethylene receptor 

(LeETR3, Lanahan et al. 1994), offers a valid help to understand the role of ethylene 

signalling in biotic and abiotic stress tolerance (Ciardi et al. 2000, Gratão et al. 2009, 

Monteiro et al. 2011, Poór et al. 2015). We indirectly assessed the impact that flooding-

induced ethylene has on plants ability to photosynthesize, shedding light on what could 

be considered the dark side of ethylene-mediated responses to abiotic stresses. 

Considering the increased frequency of flooding events in agricultural areas of the 

world, we believe that our work could provide a base for more applied studies focused 

on managing detrimental ethylene levels in flooded crops. 
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Materials and methods 

Plant growth conditions and experiment set-up 

Tomato (Solanum lycopersicum L.) seeds of Pearson (PRS, accession LA0012) and the 

spontaneous isogenic mutant Nr (accession LA0162) were obtained from The Tomato 

Genetics Resource Center (University of Davis, CA, USA). After 7 days from sowing, 

seedlings were transplanted in 250 cm3 plastic containers in commercial peat-based 

substrate (Dynamics 2, Agri Service, Buenos Aires, Argentina). Seedlings were kept in 

a controlled growth chamber at 26 ± 2°C and 60% relative humidity (RH), illuminated 

by high-pressure sodium lamps with a cycle of 15/9 h, light/dark and an irradiance of 

500 μmol m-2 s-1. Plants were watered with ¼ Hoagland solution periodically, in order 

to maintain the soil at field capacity.  

When plants were 28 days old, they were placed in transparent plastic containers of 

approximately 30 l (390 × 280 × 280 mm). The flooding treatment, more specifically a 

partial submersion (Sasidharan et al. 2017), was performed by adding tap water to these 

containers up to 15 mm above the cotyledonary nodes. In order to prevent pot buoyancy 

and ensure that plants remained partially submerged, gravel was scattered on top of the 

soil (Fig. S4A). Pots of control plants were placed in the same containers but the 

substrate was maintained at field capacity for the duration of the experiment by 

watering regularly. In order to maintain all plants with the same light intensity, the 

position of containers was changed every day. Plants were maintained under flooding 

conditions for six days.  
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Leaf samples (20 to 100 mg of fresh weight) from control and flooded PRS and Nr 

plants used for pigment analysis, total soluble proteins, proteases activity, and Rubisco 

protein quantification were collected with a cork borer from the 3rd fully expanded leaf 

(terminal leaflet plus lateral leaflets, Fig. S4B). Each sample consisted of a pool of at 

least three leaves from three different plants. Samples were collected at the sixth day 

from the beginning of experiments and immediately stored at -70°C up to analysis. 

 

Growth parameters and leaf pigment analysis 

In order to measure leaf area, leaves of plants at day 6 from the beginning of the 

experiment were removed and photographed on a flat surface. Digital photos were taken 

and analysed with the picture processing software ImageJ (National Institutes of Health, 

http://rsb.info.nih.gov/ij) to quantify leaf area. Plant biomass was obtained by weighing 

oven-dried (70°C) leaves, stems and roots (seminal plus adventitious roots). Specific 

Leaf Area (SLA) was calculated by dividing leaf area by its dry weight. Leaf, Stem and 

Root Mass Fraction (LMF, SMF and RMF, respectively) were calculated by dividing 

leaf, stem and root dry weight by total plant biomass. Leaf chlorophyll content was 

estimated with a portable chlorophyll meter device SPAD-502 (Konica Minolta, Osaka, 

Japan). Quantification of chlorophyll a (Chl a), chlorophyll b (Chl b), and total 

carotenoids (Car) was performed according to Caser et al. (2016). Leaf pigment content 

was calculated according to Lichtenthaler (1987). 

 

Leaf gas exchange and fluorescence analyses 
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Leaf gas exchange in control and submerged PRS and Nr plants was carried out with a 

LI-6400XT portable system (Li-Cor Inc., USA) equipped with 6400-02B LED light 

source chamber. Measurements were made on the terminal leaflet of the 3rd fully 

expanded leaves (Fig S4B) between 9:00 am and 12:00 pm. The instrument was set at 

500 μmol m-2 s-1 of photosynthetic photon flux density (PPFD; 10% blue and 90% red 

light), foliar temperature of 25 ± 1°C, 60% RH, CO2 concentration of 400 ppm and 500 

mmol s-1 of flow rate. Instantaneous measurements of net CO2 assimilation rate (A), 

stomatal conductance (gs), transpiration rate (E) and intercellular CO2 concentration (Ci) 

were recorded at steady state (~3 min). 

In order to estimate Rubisco activity, an A/Ci curve was performed exposing the leaf to 

a range of distinct ambient CO2 concentrations (Ca, in the LI-6400 chamber) between 50 

and 400 μmol mol−1 (~10 min for each data point) under saturating light conditions 

(1500 μmol m-2 s-1 PPDF), according to the method described by Centritto et al. (2003). 

The maximum rate of Rubisco-mediated carboxylation (Vcmax) was estimated by fitting 

the CO2-limited portion of the photosynthetic CO2 response curve (Ci lower than 200 

μmol m-2 s-1) to the biochemical model in Farquhar et al. (1980), as described by 

Scartazza et al. (2016). To avoid errors due to CO2 leakage, a relatively high flow rate 

was maintained inside the chamber (700 mmol s-1) and the absence of significant 

leakage effects was verified according to Flexas et al. (2007). When necessary, 

measurements were corrected to 25 °C using the temperature responses of Bernacchi et 

al. (2001) for the Rubisco-limited portions of the A/Ci curves. 
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Chlorophyll fluorescence parameters were measured using a Mini-PAM fluorimeter 

(Heinz Walz, Effeltrich, Germany) and the fluorescence terminology used by Scartazza 

et al. (2016) was adopted. Measurements were performed on the terminal leaflet of the 

3rd leaf of each plant (Fig. S4B). Instantaneous measurements were performed at 2, 4 

and 6 days after the start of the flooding treatment, between 09:00 and 11:00 am, at 

growth chamber light conditions (500 μmol m-2 s-1). ΦPSII was determined as ΦPSII = 

(Fm′-F′)/Fm′ at steady state. Fm′ is the maximum fluorescence of dark-adapted leaves 

after a flash of saturating light. F′ is the fluorescence at the actual state of PSII reaction 

centres during actinic illumination. Fv/Fm was calculated on dark-adapted leaves (at 

least 30 min of leaf acclimation to darkness) as Fv/Fm = (Fm-Fo)/Fm, where Fm is the 

maximum fluorescence yield in the dark and F0 is the minimal fluorescence emitted by 

dark-adapted leaves. The non-Photochemical Quenching (NPQ) was calculated 

according to the Stern–Volmer equation as NPQ = (Fm/Fm′)-1.  

 

Total soluble protein content and total protease activity  

Leaf total soluble proteins were extracted from about 20 mg of frozen leaf samples. 

Homogenization of leaf tissues was performed in ice-cold extraction buffer 50 mM Tris-

HCl pH 7.4, 1 mM EDTA, 1 mM DTT, Triton X-100, 0.1% (v/v). After centrifugation 

at 12 000 g for 10 min at 4°C, the supernatant was recovered and total soluble proteins 

were quantified by measuring the absorbance at 595 nm with Bradford reagent ("Bio-

Rad Protein Assay" kit, Bio-Rad, USA).  
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Total protease activity was performed by following the method described by Battelli et 

al. (2011). Leaf protein extracts obtained by homogenizing leaf samples in ice-cold 

buffer [50 mM Tris-HCl pH 7.0, 10 mM 2-mercaptoethanol, 2.5% insoluble 

polyvinylpolypyrrolidone (PVPP) and 0.1% Triton X] were assayed. The pH of the 

reaction mixture was adjusted to 5.5 since proteolytic activity showed its maximum at 

this pH (data not shown). The reaction mixture consisted of 225 µl of 50 mM acetate 

buffer pH 5.5, 250 µl of 0.4% azocasein (w/v, diluted in 0.1 N NaOH), 5 µl of 0.25 M 

2-mercaptoethanol and 20 µl of leaf protein extract. After incubation for 10 h at 32°C 

the reaction was stopped by the addition of 50% (w/v) trichloroacetic acid (TCA) 

followed by centrifugation at 4°C for 10 min at 14 000 g. For each extract, a blank was 

obtained by adding 50% TCA to the reaction mixture prior to the incubation in order to 

prevent any proteolytic activity. Change of absorbance of “azo” dye between samples 

and blanks was measured spectrophotometrically at 440 nm. The protease activity was 

expressed as ΔABS µg-1 of proteins min-1. 

 

Quantification of Rubisco large subunit  

Quantification of Rubisco large subunit was performed according to Westbeek et al. 

(1999) with some modifications. Leaf proteins were obtained according to the 

previously described method. Twenty-five µg of proteins were diluted in 1 M Tris HCl 

pH 6.8, 10% SDS, glycerol, 2-mercaptoethanol and bromophenol blue. Each 

preparation was heated at 95°C for 4 min. The separating gel was prepared with 30% 

acrylamide:bisacrylamide (39:1 ratio), 1.5 M Tris-HCl buffer pH 8.8, distilled water, 

This article is protected by copyright. All rights reserved.



 
 

10% SDS, 10% ammonium persulfate (APS) and tetramethylethylenediamine 

(TEMED). Stacking gel was prepared with 30% acrylamide:bisacrylamide (39:1 ratio), 

0.5 M Tris-HCl, distilled water, 10% SDS, 10% APS and TEMED. Kaleidoscope 

Prestained Standards was used as molecular weight marker. The electrophoretic run was 

performed in glycine/Tris-HCl buffer at constant voltage and variable amperage 50 mA 

for 60 min and 150 mA for 90 min. Protein binding was performed by incubating the 

gel for 30 min in a solution of 50% methanol, 10% acetic acid and 40% distilled water. 

Gel staining was carried out in a solution of 50% methanol, 10% acetic acid, 40% 

distilled water and 0.25% Coomassie brilliant blue r-250 for 120 min. Finally, the gel 

was discoloured in a solution of 5% methanol, 7.5% acetic acid and 87.5% distilled 

water for approximately 240 min. The Rubisco large subunit (RcbL, c. 56kD) was 

quantified by measuring the band surface with the open- source software GelAnalyzer 

2010 (http://www.gelanalyzer.com/index.html).  

 

Gene expression analysis  

In order to analyse the expression of tomato MSRA, SlERF-A2, CYP-1, CYP-2 and CYP-

3, rbcL and rbcS genes, we followed the protocol described by Mignolli et al. (2012). 

Real-Time PCRs were performed using the HOT FIREPol® reaction mixture 

EvaGreen® qPCR Mix Plus ROX (Solis BioDyne, Estonia). Relative expression levels 

were obtained using LeEf1α as internal reference gene. Primer sequences are listed in 

Supporting Information Table S1.  
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Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6.0 statistical software 

(www.graphpad.com).For each graph, data were analysed with D’Agostino-Pearson 

omnibus normality test. Whenever data fulfilled the normality requisite, one-way 

ANOVA and Tukey’s HSD test were performed (Fig. 1A-B; Fig. 2B,F; Fig. 3A,C; Fig. 

4B,D; Fig. 5A,C; Fig. 6A-B; Fig. 7A-F; Fig. S1A-D; Fig. S2A-D; Fig. S3A-F); 

otherwise, the non-parametric Kruskal-Wallis test was carried out (Fig. 2C-E; Fig. 3B; 

Fig. 4A,C; Tabel 1; Fig. S2E,F) . 

Results 

Ethylene responsiveness is attenuated in leaves of flooded Nr plants 

In order to ascertain whether Nr leaves are actually less sensitive to ethylene when 

plants are exposed to flooding stress, we analysed the expression of two ethylene 

responsive genes. The MSRA (methionine sulfoxide reductase) gene, formerly known as 

E4, is strongly upregulated in response to ethylene during the tomato ripening process 

(Lincoln et al. 1987; Montgomery et al. 1993) and is also induced in vegetative parts of 

tomato plants when exposed to exogenous ethylene (Vidoz et al. 2016). Similarly, the 

SlERF-2A (ethylene response factor, formerly LeERF1) gene, which is part of the 

ethylene signalling system, shows a strong upregulation in ethylene-treated fully 

expanded tomato leaves (Tournier et al. 2003, Pirrello et al. 2012). Both MSRA and 

SlERF-2A were induced on the second day in the 3rd leaves of PRS flooded plants 

indicating an activation of ethylene signalling in those leaves. However, in leaves of Nr 
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flooded plants, MSRA induction levels were about half of those in PRS and SlERF-2A 

transcript abundance remained as low as in control plants (Fig. 1).  

 

Nr retains leaf pigments in flooded plants 

Reduced ethylene perception in Nr limited flooding-induced green pigment loss in the 

3rd leaf (Fig. 2A). While in submerged PRS plants SPAD units progressively declined 

after the second day of stress, in submerged Nr plants this index was maintained 

practically unchanged (Fig. 2B). After 6 days of flooding, Chl a content significantly 

decreased in 3rd and 4th leaves of PRS stressed plants with respect to non-flooded 

plants (Figs 2C and S1A), while no significant change was observed in Nr plants. 

Regarding Chl b content, no variation was observed in 3rd and 4th leaves of both 

genotypes in response to flooding (Figs 2D and S1B). Total carotenoids (Car) content in 

Nr did not change in response to flooding while a 16 and 22% decrease was observed in 

3rd and 4th leaves of PRS, respectively (Figs 2E and S1C). Carotenoids to total 

chlorophylls ratio, i.e. Car/Chl (a+b), did not change in 3rd and 4th leaves of flooded 

PRS plants while it increased in 3rd leaves of flooded Nr plants (Figs 2F and S1D). 

 

Nr mutation limits flooding-induced leaf area reduction  

Total biomass significantly decreased in flooded PRS and Nr plants (Tabel 1). 

However, differently from PRS in which flooding stress caused an abrupt decrease in 

leaf area this parameter did not change in flooded Nr plants. Leaf Mass Fraction (LMF), 

which indicates the proportion of biomass allocated to leaves, was lower in both PRS 
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and Nr flooded plants respect to their controls. Regarding Stem Mass Fraction (SMF), 

there was an increase in PRS and Nr flooded plants in comparison with their controls. 

The decrease in Root Mass Fraction (RMF) observed under flooded conditions was 

similar in both genotypes, when compared to their respective controls. The Specific 

Leaf Area (SLA) remained unchanged in flooded PRS plants with respect to the 

controls but in Nr this parameter increased by 42% under flooding (Tabel 1). 

 

Flooded plants of Nr exhibited higher PSII photochemical efficiency  

In order to ascertain whether the difference in leaf pigment content in Nr reflected an 

alteration of the PSII photochemistry, we measured several parameters related to 

chlorophyll a fluorescence. In PRS, Fv/Fm decreased as early as the second day of 

flooding in 3rd (Fig. 3A) and 4th leaves (Fig. S2A), whereas it decreased only at or after 

4 days in 3rd and 4th leaves of Nr, respectively (Figs 2A and S2A). The reduction of 

Fv/Fm in 3rd leaves of flooded PRS plants was always stronger than in Nr throughout 

the flooding period (Fig. 3A). The decrease of ΦPSII in flooded PRS plants started as 

soon as the second day of treatment, whereas a reduction in Nr was observed only after 

4 days of flooding (Figs 3B and S2B); interestingly, in both time points, levels attained 

by the mutant were higher than in the wild type. While no statistical difference was 

observed in PRS plants under flooding and control conditions regarding NPQ, this 

parameter increased after 4 days of flooding in the 3rd leaf of Nr (Fig. 3C).  

 

Nr mutation induces photosynthetic non-stomatal limitations 
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In control Nr plants, A was maintained at the same level as in control PRS plants, and 

both genotypes showed a significant reduction in this parameter when flooded (Figs 4A 

and S2D). Similarly, as early as the second day from the onset of flooding, plants of 

both genotypes underwent a drastic decrease of gs in 3rd and 4th leaves (Figs 4B and 

S2E). A reduction in E levels was observed after 2 and 4 days of treatment in 3rd leaves 

of Nr and PRS plants, respectively (Fig. 4C). Notably, Ci did not significantly change in 

flooded PRS plants whereas it significantly decreased in 3rd and 4th leaves of flooded 

Nr plants at 2, 4 and 6 days after the beginning of the experiment (Figs 4D and S2F). 

Intrinsic water use efficiency (WUEi) was calculated as the ratio between A and gs. The 

ratio was consistently higher in leaves of flooded Nr plants with a peak after 4 days that 

almost doubled the control value (Fig. 5A). On the contrary, in flooded PRS plants, 

WUEi was constantly kept at nearly the same level as in non-flooded plants (Fig. 5A). 

Variation of A in response to different concentrations of CO2, produced the A/Ci curve 

shown in Fig. 5B. The initial slope (dA/dCi) of the CO2-limited portion of the A/Ci curve 

provides a measure of carboxylation efficiency and allows estimating the maximum 

carboxylation rate of Rubisco (Vcmax). While flooding caused a dramatic reduction of 

carboxylation efficiency in PRS as indicated by the reduced slope of the A/Ci curve 

(0.054 vs 0.024 for control and flooding, respectively), the Nr slope was only slightly 

affected (0.074 vs 0.065 for control and flooding, respectively) (Fig. 5B). Consequently, 

under flooding conditions, Vcmax in PRS was reduced to less than a half of controls 

(48.6 vs 23.2 µmol m-2 s-1 for control and flooding, respectively), whereas no significant 

differences were observed in Nr (Fig. 5C).  
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Higher Rubisco abundance in Nr flooded plants is due to lower proteolytic 

activity  

Following, we sought to determine whether higher carboxylation activity in Nr was 

dependent on higher abundance of Rubisco enzymes. For this, we first examined the 

transcript levels of genes encoding the large and small Rubisco subunits (rbcL and rbcS, 

respectively). In both genotypes, these genes were strongly downregulated in response 

to flooding (Fig. 6A,B). In particular, the expression of rbcL and and rbcS declined as 

early as two days after flooding in both genotypes, with rbcS expression abruptly 

dropping to levels that were 7 to 50 times (PRS) and 3 to 46 times (Nr) lower than 

control plants.  

Although flooding decreased the abundance of Rubisco large subunits in both 

genotypes, its relative content was approximately twice as high in flooded Nr compared 

to PRS (Fig. 7A). In order to test whether this difference in Rubisco protein content 

would rely on a reduced proteolytic activity in flooded Nr, we analysed total protein 

content, total protease activity and the expression of three cysteine protease genes 

(CYP-1, -2 and -3). In both genotypes, total soluble protein content decreased in 

response to flooding, but in Nr the level was 36% higher than in PRS (Fig. 7B). In 

addition, total protease activity in flooded Nr was 26% lower than in PRS (Fig. 7C), 

which correlates with null (CYP-2 and CYP-3) or very low (CYP-1) induction of 

cysteine protease genes in flooded mutant plants. Differently, the expression of these 
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genes was strongly induced in leaves of flooded PRS plants, reaching levels that were 9, 

5 and 3.5 times higher than in control plants (Fig. 7D-F).  

 

Discussion 

Soil flooding is considered one of the most concerning events associated with climate 

change (Pedersen et al. 2017). One of the earliest responses in tomato, when exposed to 

such stressful conditions, is the high production of ethylene (Vidoz et al. 2010). This 

gaseous hormone, besides triggering important adaptive mechanisms (Sasidharan and 

Voesenek 2015), is believed to be detrimental for some vital metabolic processes 

(Gepstein and Glick 2013). Indeed, post-submergence survival of Arabidopsis plants 

appears to be severely challenged by the sudden increase of ethylene production that 

triggers an early senescence programme (Yeung et al. 2018).  

In this work we sought to demonstrate, by using the Nr mutant, that reduced ethylene 

sensitivity allows plants to retain their photosynthetic capacity when subjected to partial 

submersion. Although, ethylene levels produced in leaves of flooded Nr plants are 

similar to those in wild type leaves (Vidoz et al. 2010), the lack of functionality of the 

NR/ETR3 ethylene receptor in the mutant seems to confer only partial ethylene 

responsiveness, as indicated by the low or no induction of two ethylene-inducible genes 

MSRA and SlERF-2A, respectively (Fig. 1).  

While leaf pigment retention has often been associated with flooding tolerance (Fukao 

et al. 2006, Arbona et al. 2009, Sone et al. 2012, Mutava et al. 2015), chlorophyll loss is 

one of the most evident events occurring under flooding conditions in many flooding-
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sensitive plants (Ella et al. 2003, Smethrust and Shabala 2003, Ezin et al. 2010). Our 

data show that leaves from Nr plants subjected to partial submersion are greener than 

those of wild type plants exposed to the same conditions (Fig. 2A), and this corresponds 

to higher chlorophyll content in Nr leaves (Fig. 2B). In agreement with our 

observations, reduced endogenous ethylene by the introduction of the bacterial ACC-

deaminase gene, which reduced ACC levels in transgenic tomato plants, has been 

reported to restrain chlorophyll loss in flooded tomato plants (Grichko and Glick 2001). 

Chlorophyll loss in PRS is accompanied by a reduction in Chl a but not in Chl b, which 

indicates a change in the photosynthetic pigment stoichiometry during flooding (Figs 

2C,D and S1A,B). Chl a retention in Nr could be considered as an index for relative 

higher quantity of PSII reaction centres (Mishra et al. 2008) and may indicate a more 

efficient photochemical energy conversion process at PSII level (Scartazza et al. 2016, 

Mariotti et al. 2018). Interestingly, carotenoids (Car) content did not change in Nr 

leaves of flooded plants while it significantly decreased in PRS ones (Figs 2E and S1C), 

indicating an effect of ethylene in flooding-induced carotenoids loss. Previous work by 

Chen and Gallie (2015) reported that an Arabidopsis ethylene overproducer mutant was 

impaired in the ability to convert violaxanthin to zeaxanthin making the plant more 

sensitive to reactive oxygen species and more susceptible to photoinhibition. Indeed, 

due to the role of these molecules as photoprotective agents, the retention of carotenoids 

in plants under stress may prevent ROS generation and improve excess energy 

dissipation as heat (Dall’Osto et al. 2005, Demmig-Adams and Adams 2006, Das and 

Roychoudhury 2014). 
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Our observations indicated that flooding stress has a big impact on chlorophyll 

fluorescence parameters (Fig. 3A-C) confirming the susceptibility of tomato to this 

stress (Else et al. 2009; Bhatt et al. 2015). As reported in tomato, reduction of Fv/Fm is a 

common response to flooding stress (Fig. 3A; Else et al. 2009, Ezin et al. 2010, Bhatt et 

al. 2015). However, higher Fv/Fm and ΦPSII values were found in flooded Nr plants 

respect to PRS (Fig. 3A,B). This, in concordance with similar levels of Chl a between 

control and flooded Nr plants (Fig. 2C), reveals lower damage of PSII reaction centres 

and greater efficiency in the use of light in photochemical processes when ethylene 

perception is attenuated. To note, concomitantly with a general maintenance of Fv/Fm, 

the NPQ parameter increased after 2 days of flooding in Nr while no clear change was 

observed in PRS (Fig. 3C). The higher NPQ activity respect to controls, associated with 

higher carotenoids content (Figs 2E, S1C), supports the idea of a more efficient non-

radiative energy dissipation pathway, a photoprotective mechanism when ethylene 

perception is low (Dall’Osto et al. 2005, Demmig-Adams and Adams 2006, Moles et al. 

2016, Scartazza et al. 2016). Overall, these data indicate that flooding-induced ethylene 

leads to a reduction of PSII efficiency making flooded plants more susceptible to 

photoinhibition.  

Flooding stress impairs root hydraulic conductivity and the ability to take up water from 

the soil (Bradford 1983, Horchani et al. 2008, Else et al. 2009). We show that both Nr 

and PRS respond similarly to flooding with an abrupt decrease of gs (Figs 4B and S2E) 

in order to prevent water loss through transpiration (Fig. 4C). Although A also 

diminished in response to the partial stomatal closure (Figs 4A and S2D), WUEi in Nr 
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increased after the start of the flooding and was significantly higher than in PRS (Fig. 

5A). As reported for waterlogging-susceptible tomato genotypes, reduction of gs is 

often accompanied by increased intercellular concentration of CO2 (Ci) suggesting 

that substomatal CO2 is not efficiently consumed by the plants (Bradford 1983, Else et 

al. 2009, Bhatt et al. 2015). Interestingly, while high Ci values were observed in PRS, 

internal CO2 concentration was always lower in Nr (Figs 4D and S2F). Based on our 

results, we believe that the reduction of A in Nr, accompanied by a strong increase of 

WUEi and a lowered Ci, indicates a predominant role of stomatal limitations on 

photosynthesis. On the contrary, a high Ci and low WUEi in PRS suggest that non-

stomatal limitations play a major role in determining its lower photosynthetic CO2 

uptake capacity, possibly due to reduced enzymatic activity, low carboxylation 

efficiency, chlorosis and leaf senescence (Kozlowski 1984, Ashraf and Rehman 1999, 

Mielke and Schaffer 2010, Herrera 2013, Pompeiano et al. 2019). Moreover, 

carboxylation efficiency (Fig. 5B) and maximum rate of carboxylation (Vcmax, Fig. 

5C), clearly show that Rubisco activity was only slightly affected by the stress in Nr, 

suggesting that ethylene could limit leaf photosynthetic capability and affect the 

carboxylation pathway at some point. Rubisco activity is known to be correlated with 

the amount of Rubisco protein which, in turn, depends on the rate of its biosynthesis and 

degradation (Parry et al. 2008). However, Rubisco genes rbcL and rbcS were strongly 

downregulated in flooded plants (Fig. 6A,B). In spite of the very low expression of rbcL 

and rbcS genes in flooded Nr plants (Fig. 5A,B), these plants retained higher relative 

content of rbcL protein with respect to PRS (Fig. 7A). Although we cannot exclude the 
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effect of inhibitors on catalytic performances of Rubisco (Parry et al. 2002), we suggest 

that the higher abundance of Rubisco protein observed in Nr is the consequence of a 

reduced proteolytic activity (Fig. 7C).  

Reduced biomass in flooded plants (Tabel 1) is very likely the result of impaired net 

carbon assimilation (A, Figs 4A and S2D). Although, the fraction of total biomass that 

was allocated to different organs was similar between PRS and Nr, leaf area was 

significantly reduced in flooded PRS plants whereas it remained at control levels in Nr 

(Tabel 1). In addition, higher SLA in flooded Nr plants (Tabel 1) may indicate better 

light interception and carbon assimilation per unit of leaf biomass when carbon demand 

is high in response to the stress (Bertin and Gary 1998, Jullien et al. 2009, 

Weraduwage et al. 2015). In agreement with our findings, it has been reported that 

plants with reduced ethylene sensitivity are characterized by a larger leaf area than 

their wild type when exposed to high ethylene concentrations (Tholen et al. 2004). 

Even though in certain species a basal level of ethylene seems to be essential under 

normal conditions, it exerts negative effects on photosynthesis when it transiently 

accumulates in response to stress or in senescing leaves (Ceusters and Van de Poel 

2018). Indeed, the induction of premature senescence in response to stress is one of the 

deleterious effects of ethylene (Sade et al. 2018). As part of the senescence programme, 

the disassembly of the photosynthetic apparatus is a common feature that occurs in 

leaves of plants subjected to abiotic stress (Khanna-Chopra 2012). However, our data 

showed that chlorophyll and protein degradation were delayed in flooded Nr plants 

(Figs 2A-C and 7B) since total protease activity was lower than in PRS (Fig. 7C) and all 
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the analysed cysteine protease genes (CYP-1, -2 and -3) showed little or no induction in 

flooded mutant plants (Fig. 7D-F). It is believed that the decline of photosynthesis 

below certain levels acts as one of the signals inducing leaf senescence (Quirino et al. 

2000). Under flooding conditions, both PRS and Nr underwent a decrease of CO2 

assimilation (Figs 4A and S2D) and a strong downregulation of some photosynthesis 

genes (rbcL, rbcS, Fig. 5A,B and CAB5, data not shown), suggesting that this decrease 

was triggered by a stress factor and not by the ability of the plant to perceive ethylene. 

However, the expression of some senescence-associated genes such as CYP-1, CYP-2 

and CYP-3 (Drake et al. 1996) was suppressed in flooded Nr (Fig. 7D-F). Taken 

together, our experiments have revealed some aspects of ethylene insensitive plants that 

could prove beneficial when they are exposed to flooding stress for few days. Indeed, 

being stomatal closure the only hindrance for photosynthesis for flooded Nr plants, it is 

arguably likely that these plants are better prepared to resume growth once the stress 

recedes. Nevertheless, the mutant could be less fit to tolerate long periods of stress if 

senescence does not timely accompany the photosynthesis decline (Grbić and Bleeker 

1995). Namely, the maintenance of green leaves that photosynthesize below the 

compensation point in Nr could result in costly sink organs importing sugar and 

nutrients (Fig. S3E,F; Grbić and Bleeker 1995).  

In conclusion, our data indicate that ethylene perception through the NR/ETR3 receptor 

has deleterious effects on the photosynthetic capacity maintenance of leaves from 

flooded tomato plants. Indeed, flooding-induced ethylene would impair both light and 

dark photosynthesis reactions by hastening the processes that lead to the dismantling of 

This article is protected by copyright. All rights reserved.



 
 

the photosynthetic apparatus. Moreover, we show that NR-mediated ethylene signalling 

cascade would halt leaf expansion limiting in this way light capture and carbon uptake 

in plants under flooding conditions (Fig. 8).  
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Figure legends  

Fig. 1. Relative expression levels of ethylene-responsive genes MSRA (A) and SlERF-

A2 (B) in leaves of Pearson (PRS) and Never ripe (Nr) in control and flooded plants 

after 2 days from the onset of the stress. Each bar represents the mean ± SD (n = 3). For 

each gene, expression of PRS control was set to one. Different letters indicate 
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statistically significant differences (one-way ANOVA with Tukey's HSD multiple 

comparison test, P < 0.05). 

Fig. 2. Leaf pigment changes in Pearson (PRS) and Never ripe (Nr) plants under control 

and flooding conditions. Photographs of the 3rd fully expanded leaves from PRS and Nr 

plants, bars indicate 1 cm (A). Green colour intensity expressed as SPAD units at 2, 4 

and 6 days of flooding in PRS and Nr (B). Values are the mean ± SEM (n = 5). 

Different letters indicate statistical differences within each time point (one-way 

ANOVA with Tukey's HSD multiple comparison test, P < 0.05). Content of chlorophyll 

a, Chl a (C); chlorophyll b, Chl b (D); total carotenoids, Car (E); and total carotenoids 

to chlorophyll ratio, Car/Chl (a+b) (F). Analyses were performed using the 3rd fully 

expanded leaf after 6 days of flooding. Values are the mean ± SEM (n = 5). In graphs 

(C, D, E), different letters indicate statistically significant differences within each time 

point (P < 0.05 by the Kruskal–Wallis test). In graph (F), different letters indicate 

statistical differences according to one-way ANOVA with Tukey's HSD multiple 

comparison test (P < 0.05).  

 

Fig. 3. Chlorophyll fluorescence parameters in control and flooded Pearson (PRS) and 

Never ripe (Nr) plants. Maximum quantum efficiency of PSII (Fv/Fm) (A), Actual 

quantum yield (ΦPSII) (B), Non-Photochemical Quenching (NPQ) (C). Values represent 

the mean ± SEM (n = 8). Measurements were carried out on the terminal leaflet of the 

3rd fully expanded leaf at 2, 4 and 6 days after the start of flooding. For graphs A and 

C, different letters indicate statistical difference within each time point according to 
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one-way ANOVA with Tukey's HSD multiple comparison test (P < 0.05). For graph B, 

different letters indicate statistically significant differences within each time point (P < 

0.05 by the Kruskal–Wallis test). 

 

Fig. 4. Leaf gas exchange analysis in Pearson (PRS) and Never ripe (Nr) plants exposed 

to control and flooding conditions. Net carbon assimilation rate, A (A); stomatal 

conductance, gs (B); transpiration rate, E (C); intercellular CO2 concentration, Ci (D). 

All measurements were performed in the terminal leaflet of the 3rd fully expanded leaf 

after 2, 4 and 6 days from the onset of flooding. Each bar represents the mean ± SEM (n 

= 8). For graphs A and C, different letters indicate statistical differences within each 

time point according to one-way ANOVA with Tukey's HSD multiple comparison test 

(P < 0.05). For graphs B and D, different letters indicate statistically significant 

differences within each time point (P < 0.05 by the Kruskal–Wallis test). 

 

Fig. 5. Photosynthesis efficiency parameters of Pearson (PRS) and Never ripe (Nr) 

leaves from control and flooded plants. Intrinsic Water Use Efficiency (WUEi) 

expressed as the result of A to gs ratio at 2, 4, and 6 days from the beginning of the 

stress (A). Each bar represents the mean ± SEM (n = 8). Different letters indicate 

statistical differences within each time point according to one-way ANOVA with 

Tukey's HSD multiple comparison test (P < 0.05). Carboxylation efficiency (B). Each 

point represents net CO2 assimilation rate (A) and intercellular CO2 concentration (Ci) 

values obtained at each level of ambient CO2 concentrations (Ca) (50 to 400 μmol 
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mol−1) in leaves after 6 days of flooding. Vertical bars represent A SEM (n = 3) and 

horizontal bars represent Ci SEM (n = 3). Each line represents the linear regression. 

Maximum rate of Rubisco carboxylation (Vcmax) (C) at the 6th day of flooding. Each 

bar represents the mean ± SEM (n = 8) and different letters indicate statistical 

differences (one-way ANOVA with Tukey's HSD multiple comparison test, P < 0.05).  

 

Fig. 6. Rubisco gene expression. Relative transcript abundance of Rubisco large, rbcL 

(A) and small subunit, rbcS (B) genes. Each point represents means ± SD (n = 3) and 

the value of PRS control plants at time 0 was set to one. Samples of the 3rd fully 

expanded leaves were analysed. Different letters indicate statistical differences within 

each time point according to one-way ANOVA with Tukey's HSD multiple comparison 

test (P < 0.05).  

 

Fig. 7. Leaf protein content and expression of protease genes. Relative abundance of 

RbcL protein (A). Leaf proteins were electrophoretically separated. 56kD bands, 

corresponding to RbcL, were quantified and RbcL abundance of control PRS plants was 

set to one. Each bar represents means ± SEM (n = 3). Total soluble proteins (B), total 

protease activity (C) and transcription levels of cysteine protease genes (D, E, F) in 3rd 

fully expanded leaves of Pearson (PRS) and Never ripe (Nr) plants after 6 days from the 

start of control and flooding treatments. All analyses were performed on the 3rd fully 

expanded leaves after 6 days from the beginning of flooding. Values of total soluble 

proteins and total protease activity are means ± SEM (n = 5). Values of cysteine 
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protease genes transcripts are means ± SD (n = 3) and the value of PRS control plants 

for each gene was set as one. Different letters indicate statistical differences according 

to one-way ANOVA with Tukey's HSD multiple comparison test (P < 0.05).  

 

Fig. 8. Photosynthesis of flooded tomato plants with impaired ethylene sensitivity. 

Stomatal closure in response to flooding decreases CO2 availability for carboxylation 

(stomatal-limitation) and causes downregulation of Rubisco rcbL and rcbS genes 

transcription. Ethylene, which is produced in response to flooding, is perceived by the 

Never Ripe/ETR3 receptor which causes the initiation of a premature senescence 

process. Leaf area reduction and pigment loss are believed to impair both light capture 

and exceeding energy dissipation mechanisms, affecting PSII efficiency. In addition, the 

upregulation of cysteine protease (CYP) genes causes leaf protein dismantling and the 

reduction of Rubisco protein content, possibly reducing its carboxylation efficiency 

(non-stomatal limitation).  

 

Table 1. Growth parameters of control and flooded Pearson (PRS) and Never ripe (Nr) 

plants after 6 days from the start of flooding stress. Data are the mean ± SD; number of 

replicates between parenthesis. Means with a common letter are not significantly 

different (P > 0.05 non-parametric Kruskal-Wallis test). 
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Fig. S1. Leaf pigment content in the 4th fully expanded leaf of Pearson (PRS) and 

Never ripe (Nr) in control and flooded plants. Different letters indicate statistical 

differences (one-way ANOVA with Tukey's multiple comparison test, P < 0.05). 

 

Fig. S2. Analysis of chlorophyll fluorescence and leaf gas exchange of the 4th fully 

expanded leaf in Pearson (PRS) and Never ripe (Nr) plants exposed to control and 

flooding conditions. In graphs a-d, different letters indicate statistical differences within 

each time point (one-way ANOVA with Tukey's HSD multiple comparison test, P < 

0.05). In graphs (e and f), different letters indicate statistical differences according to 

Kruskal-Wallis test, P < 0.05).  

 

Fig. S3. Sucrose (Suc), glucose (Glc) and fructose (Fru) content in 3rd and 4th leaves of 

Pearson (PRS) and Never ripe (Nr) plants after 6 days of flooding. Different letters 

indicate statistical differences (one-way ANOVA with Tukey's HSD multiple 

comparison test, P < 0.05). 

 

Fig. S4. Schematic representation of flooding (partial submersion) experiment set-up 

(a). In section (b) an example of a 28 week-old tomato plant used in the experiment is 

shown. Fully expanded leaf positions are labelled with ordinal numbers.     

 

Table S1. List of gene accessions and primer sequences. 
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Parameter Pearson Never ripe
Control Flooding Control Flooding

Total biomass 
(g)

2.57±0.29 (8) b 1.30±0.30 (8) a 2.59 ±0.43 (8) b 1.71±0.19 (8) a

Leaf area 
(cm2)

424.2±34.4 (8) c 162.0±92.7 (8) a 382.4±62.5 (8) bc 324.5±30.6 (8) b

LMF 
(%)

60.1±1.8 (8) b 48.8±3.8 (8) a 61.3±7.6 (8) b 55.6±1.7 (8) a

SMF 
(%)

27.8±1.7 (8) a 44.1±3.1 (8) b 29.4±2.2 (8) a 39.0±1.7 (8) b

RMF 
(%)

12.0±1.4 (8) b 3.2±0.7 (8) a 12.0±1.0 (8) b 3.2±1.3 (8) a

SLA 
(mm2 mg-1)

27.7±2.7 (8) a 25.1±10.5 (8) a 24.7±5.6 (8) a 34.4±3.3 (8) b
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