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Abstract

In the present paper, the influence of both pairwise and three-particle interactions on the mobility of adsorbed

particles diffusing on a lattice with triangular symmetry has been studied. Two different techniques has been used for

describing the surface diffusion phenomenon.

On one hand, explicit expressions for the chemical and jump diffusion coefficients have been calculated by using real-

space renormalization group (RSRG) approach. A number of the RSRG transformations with blocks of different sizes

and symmetries have been investigated. In particular, it has been shown that the precision of the method depends

strongly not only on the number of sites in the RSRG blocks but also on their composition and structure.

On the other hand, numerical simulations by using the Monte Carlo scheme has been used to simulate the process of

particle migration. Using both methods, adsorption isotherms for different temperatures and the coverage dependencies

for the thermodynamic factor and the chemical diffusion coefficient have been calculated. The behavior of the above

mentioned quantities has been compared when the adparticles interact via only either pairwise or three-particle in-

teractions.

Despite the fact that both methods constitute very different approaches, the correspondence of numerical data with

analytical results is surprisingly good. Therefore, it can be concluded that the RSRG method can be successfully applied

for lattice gas systems to characterize the thermodynamic and kinetic properties of strongly interacting adsorbates.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Monte Carlo simulations; Surface diffusion; Ising models; Adsorption isotherms; Adsorption kinetics; Surface

thermodynamics (including phase transitions)

1. Introduction

The migration of adsorbates on solid surfaces

plays an essential role in many physical and

chemical processes such as adsorption, desorption,

melting, roughening, crystal and film growth, ca-

talysis and corrosion, just to name a few [1–4].
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Understanding surface diffusion is one of the keys

for controlling these processes.

In recent years, the effects of lateral interactions

between adsorbed particles on the collective sur-

face diffusion coefficients have been intensively

investigated using many different theoretical
methods applicable to critical phenomena. In fact,

mean-field [5–7], Bethe–Peierls [8], real-space ren-

ormalization group (RSRG) [9–11], Mori projec-

tion operator [12–14] and Monte Carlo (MC)

[6,7,15–20] methods have been used to describe

surface diffusion. It has been found that adparticle

interactions can strongly influence surface diffu-

sion, especially at low temperatures and in the
close vicinity of surface phase transitions.

In general, the determination of the chemical

surface diffusion coefficient requires the solution of

a kinetic equation for a system of many particles.

However, if one considers the slowly varying in

space and time small disturbances of the adparticle

surface coverage, the problem can be reduced to

the calculation of purely thermodynamic quantities
[3,21–23]. For this case, the problem of determining

the adparticle diffusion coefficient is equivalent to

the calculation of the system free energy.

The main aim of the present work is the inves-

tigation of the possibilities of the RSRG approach

on lattices of triangular symmetry. For this pur-

pose, a number of RSRG transformations with

blocks of different sizes and symmetries have been
generated. We have determined critical properties

of 32 RSRG transformations for pure pair repul-

sive and attractive interactions and pure three-

particle repulsive and attractive interactions. It

was shown that the RSRG transformations for the

triangular symmetry have some specific properties

quite different from the main features of the

RSRG transformations developed for square and
honeycomb symmetries. Using the best RSRG

transformations we have calculated different ther-

modynamical quantities: adsorption isotherms, the

nearest neighbors pair correlation function and

coverage dependences of the thermodynamic fac-

tor, tracer and chemical diffusion coefficients in a

wide temperature range. All dependences, ob-

tained by the RSRG method, have been checked
by MC simulations showing very good coincidence

even at very low temperatures.

The outline of this paper is as follows: the

model, Hamiltonian and basic definitions are

presented in Section 2. The main features of the

RSRG approach are considered in Section 3.

RSRG and MC results are discussed in Section 4.

Finally, we give our conclusions in Section 5.

2. Basic definitions

In the following, we shall consider an ideal solid

surface of triangular symmetry. The potential re-

lief minima of the surface form a two-dimensional

triangular lattice with lattice constant a, as shown
in Fig. 1. Foreign particles, adsorbed on the sur-

face, are assumed to exclusively occupy these sites.

If the depth of these potential minima, e, is much

larger than the thermal energy, kBT , the adparti-

cles will stay within the potential minima and from

time to time perform jumps to the nearest neigh-

bor empty sites (in the following we shall measure

all energies in units of kBT ). The duration of such a
jump is much shorter than the mean time of an

adparticle sojourn in a site. In this case, we can

define a set of occupation numbers fnig according

to

ni ¼
1; if site i is occupied;
0; if site i is empty;

�
ð1Þ

describing completely all possible states of the

adparticle system.

We suppose that adparticles interact with its
nearest neighbors (nns) only. Then, the Hamilto-

nian of the system, Ha, and the total number of

particles, Na, can be written as follows

Ha ¼ �eNa þ u
X
ij

ninj þ w
X
ijk

ninjnk;

Na ¼
X
i

ni: ð2Þ

Here u and w are the pair and three nn particle

interaction energies, respectively; symbols ij and

ijk denote summation over all bonds and the ele-

mentary triangles of the lattice just once. The free

energy (per site), f , is defined as follows

f ¼ N�1 ln
X
fnig

exp½lNa

(
� Ha	

)
: ð3Þ
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The summation in Eq. (3) is carried out over all 2N

configurations of the system of adparticles.

It should be noted that the three-particle inter-

action has a clear physical interpretation. At first

glance, it looks quite different as compared with

the ordinary pair–particle interaction but the
physical reason which produces the both type of

interactions is the same. The interaction between

an adparticle and the surface changes not only the

energy of the particle but also its physical prop-

erties. A big energy e means that the interaction of

an adparticle with the surface is strong which in

turn also means a noticeable redistribution of the

electronic density around the adparticle. Another
adparticle produces its own disturbance of the

electronic density. The interference between these

disturbances, changing the adsorption energies, is

equivalent to the lateral interaction between the

particles. The total energy of the system of ad-

particles depends not only on the total number of

adparticles but also on their configuration. Thus

the energy can be expanded in series of different
configurations: one-particle, different pairs of ad-

particles, different three-particles configurations

and so on. We consider here the contributions

resulted from the nn pair and three-particles con-

figurations.

The occupation numbers are changed with time

due to the jumps of adparticles. Different diffusion

coefficients have been defined in order to describe

the adparticle migration. Conceptually the sim-

plest diffusion coefficient is a single particle or

tracer diffusion coefficient, Dt, which is related to
the asymptotic behavior of the mean square dis-

placements of tagged particles. In this case, ad-

particles rather than lattice sites must be labeled.

The tracer diffusion coefficient is defined as follows

Dt ¼ lim
t!1

1

2dt
½~rriðtÞ �~rrið0Þ	2

D E
; ð4Þ

where d is the system dimension (d ¼ 2 in the case

of surface diffusion) and~rriðtÞ is the displacement of

the ith adparticle at time t.
The chemical diffusion coefficient is determined

by the Fick�s first law, which constitutes a linear

relationship between the flux of adparticles,~JJð~rr; tÞ,
and the gradient of the adparticle surface cover-

age, hð~rr; tÞ
~JJð~rr; tÞ ¼ �Dc

~rrhð~rr; tÞ: ð5Þ

A suitable expression for the chemical diffusion

coefficient, Dc, can be obtained in the local equi-

librium approximation. We suppose that adparti-

cles migrate over the surface, jumping from time to
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Fig. 1. Triangular lattice divided into three sublattices. Cell and sublattice RSRG blocks investigated in the paper are shown.
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time to the nn empty sites only. There is no cor-

relation between adparticle jumps. Interested

readers are referred to Refs. [10,23] for a detailed

description of this approach. The expression for Dc

can be written as follows

Dc ¼ D0 expðlÞP00=vT: ð6Þ
Here D0 ¼ 3ma2 expð�eÞ=2 is the diffusion coeffi-
cient of noninteracting adparticles on a triangular

lattice; vT is the isothermal susceptibility and P00 is

the probability of finding two nn holes (empty

sites).

It is possible to calculate all quantities entering

Eq. (6) via the corresponding first and second de-

rivatives of the free energy, f , over the chemical

potential, l, and the pair interaction parameter, u:

h ¼ of
ol

; hn0n1i ¼ � 1

3

of
ou

;

vT ¼ o2f
ol2

; P00 ¼ 1� 2h þ hn0n1i: ð7Þ

Here the angular brackets h� � �i denote averaging

over all possible states of the system.

Thus, the calculation of the chemical diffusion

coefficient is reduced to the evaluation of the free

energy f of the lattice gas system. However, it is

important to recall that the expression for the
chemical diffusion coefficient was derived in the

hydrodynamic limit (i.e. for adparticle coverage

varying slowly in space and time). The character-

istic size of the coverage disturbances should be

much greater than the adparticle jump, a, and the

characteristic time should exceed considerably the

mean time of an adparticle sojourn in a site.

3. Real-space renormalization group transforma-

tions

In order to determine the free energy of the

system, f , it is necessary to use some approximate

methods. Even for the simplest models, the prob-

lem remains too complex to be solved exactly.

RSRG approach has been applied for the cal-

culations of the free energy and its corresponding

derivatives. The detailed description of the RSRG
approach can be found elsewhere [24–29].

In this work, we have investigated 32 RSRG

transformations with block size varying from 3 to

13 lattice sites, shown in Figs. 1 and 2. There are

two possible ways of dividing lattices into blocks.

The whole lattice can be divided into polygons

(cells or blocks) of equal form and size. In this

case, every block contains sites from different su-
blattices (recall that a triangular lattice may be

regarded as composed of three equivalent sublat-
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Fig. 2. The sublattice RSRG blocks investigated in the paper.
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tices). Such type of blocks is used in the so-called

cell RSRG transformations, which are denoted as

L� 3. These blocks are shown as polygons in Fig.

1. All sites in the polygon perimeter enter the

block.

Another alternative method was suggested by
Schick et al. [30]. In this approach the sublattices

are divided into blocks of equal form and size. Any

block contains sites from a single sublattice only.

The cluster of three interpenetrating blocks from

three different sublattices has also 3L sites but the

value of any block spin is determined by the spins

of a definite sublattice. In this case, the RSRG

transformations are denoted as L� 3S (sublattice
RSRG transformations). These blocks are drawn

as graphs or snowflakes in Figs. 1 and 2, to show

clearly which sites enter the block.

It is also possible to build blocks which are

neither separate cells, not pure sublattice blocks.

These blocks contain sites from different sublat-

tices and partially interpenetrate each other. They

have compositions where most of the sites belong
to one sublattice with some admixture of sites

from other sublattice(s).

We have used finite lattices consisting of three

block sites with periodic boundary conditions. The

lattices are built by a periodic continuation of

clusters having 3L sites (or 3 block sites). It should

be also noted that for RSRG calculations it is

suitable to use the spin representation instead of
occupation numbers. In spin language the pair

attraction between adparticles corresponds to the

ferromagnetic Ising model (F) while the repulsive

interaction is equivalent to the antiferromagnetic

behavior (AF). The three-particle interaction cor-

responds to the three-spin Baxter–Wu (BW) model

[31].

In the following, some general properties of the
RSRG transformations will be discussed. The cell

L� 3 RSRG transformations have better critical

parameters in the F region as compared with the

sublattice RSRG transformations. All pure cell

RSRG transformations have a fixed point in the F

region only. The critical value of the interaction

parameter pc approaches its exact value p� if the

number of sites in the block is increased. The ac-
curacy of the RSRG transformations in the F

domain decreases as one decreases the admixture

of spins from different sublattices in the block,

making its composition more uniform. Simulta-

nously, the critical properties of the transforma-

tion in the AF and BW regions are improved. The

accuracy of the RSRG transformations depends

considerably not only on the block size L, but also
on its composition, i.e. how many sites from dif-

ferent sublattices enter into the block. Really, the

block size, its symmetry and composition are not

independent variables. It is hard to estimate defi-

nitely the influence of the block symmetry and its

composition on the critical properties. But in some

cases it is possible to build blocks with the same

size and different symmetries and compositions.
Actually, there is a strong dependence of the crit-

ical parameters on the block composition. The

symmetry of the blocks does not play important

role for the sublattice L� 3S RSRG transforma-

tions.

One can consider, for example, the sequence of

the RSRG transformation with L ¼ 7 (blocks 9–18

in Figs. 1 and 2). All these transformations use
clusters with the same number of sites from all

three sublattices (7� 3), but the sites are distrib-

uted between blocks in different proportions. The

RSRG transformation with blocks, containing

sites from all three sublattices does not show any

AF and BW ordering, but has the best critical

parameters in the F region among the 7� 3 trans-

formations. The block 9, has the perfect hexagon
symmetry and the best critical values. The asym-

metrical pentagon (#10) has slightly worse values.

Blocks 11–14 include sites from two sublattices

only. They have decreased the accuracy of the F

critical parameters. Blocks 11–13 have almost

uniform composition with only one site from an-

other sublattice. The accuracy is low but they

describe the AF ordering. Pure sublattice blocks
(15–18 for example), have the lowest accuracy in

the F region, but the best AF and BW critical

parameters. Despite the fact that these blocks are

rather different, all critical parameters are the

same. A similar behavior is observed also for other

sequence of blocks with L ¼ 13 (#29–32). It seems

that for the sublattice RSRG transformations the

block symmetry has minor effect. Such behavior of
cell and sublattice RSRG transformations differs

considerably from the case of square lattice [11]. In

A.A. Tarasenko et al. / Surface Science 536 (2003) 1–14 5



this case, the RSRG transformations works in

both regions F and AF interaction with almost

equal accuracy.

The cell L� 3 RSRG transformations describe

the F behavior with rather good accuracy. The

sublattice RSRG transformations (for example,
flakes 30–32 in Fig. 2) produce the best results for

repulsive and three-particle interactions.

The critical parameters for all RSRG transfor-

mations are compiled in Tables 1 and 2. We have

calculated critical values of the pair, pc, and three-

particle, tc, interaction parameters, and corre-

sponding critical exponents yh, yT and y3. It should
be noted that for all RSRG transformations the

third critical exponent is irrelevant (y3 < 0) in the

F critical point and does not influence the critical

dependencies of the thermodynamic quantities.
We have also calculated the critical values of the

entropy Sc and the internal energy Uc. These values

are also known with great accuracy [32]. The

critical values of the above mentioned parameters

approach their exact values if the number of sites

Table 1

Compilation of the ferromagnetic critical values for the different clusters studied in the present work

# Cluster pc �F yh yT y3 Sc=kB �Uc s0

Exact 0.2747 1.875 1.0 0.330 0.549 0.323

1 3� 3 0.243 11.4 1.76 0.86 )1.2 0.439 0.378 0.299 1:1:1

2 3� 3 0.229 16.4 1.70 0.82 )1.4 0.488 0.301 0.324 2:1:0

3 3� 3S 0.185 32.7 1.45 0.64 )1.1 0.612 0.124 0.324 3:0:0

4 3� 3S 0.185 32.7 1.45 0.64 )1.1 0.612 0.124 0.324 3:0:0

5 4� 3 0.2732 0.52 1.85 0.90 )1.0 0.337 0.541 0.333 2:1:1

6 4� 3 0.2737 0.36 1.86 0.89 )0.9 0.326 0.552 0.387 3:1:0

7 4� 3S 0.198 27.8 1.62 0.42 )0.8 0.596 0.194 0.374 4:0:0

8 4� 3S 0.203 26.3 1.62 0.4 )0.7 0.593 0.204 0.358 4:0:0

9 7� 3 0.254 7.35 1.79 0.9 )0.9 0.411 0.428 0.322 3:3:1

10 7� 3 0.251 8.7 1.77 0.9 )1.0 0.426 0.406 0.318 3:2:2

11 7� 3 0.232 15.5 1.67 0.81 )1.4 0.499 0.302 0.325 4:3:0

12 7� 3 0.220 20.0 1.59 0.72 )1.3 0.538 0.245 0.324 6:1:0

13 7� 3 0.220 20.0 1.59 0.72 )1.3 0.538 0.245 0.324 6:1:0

14 7� 3 0.231 15.7 1.66 0.80 )1.2 0.501 0.299 0.324 4:3:0

15 7� 3S 0.197 28.3 1.43 0.57 )1.2 0.595 0.162 0.324 7:0:0

16 7� 3S 0.197 28.3 1.43 0.57 )1.2 0.595 0.162 0.325 7:0:0

17 7� 3S 0.197 28.3 1.43 0.57 )1.2 0.595 0.162 0.325 7:0:0

18 7� 3S 0.197 28.3 1.43 0.57 )1.2 0.595 0.162 0.325 7:0:0

19 9� 3 0.255 7.34 1.78 0.90 )0.9 0.415 0.425 0.320 3:3:3

20 9� 3 0.253 8.06 1.77 0.89 )0.9 0.423 0.413 0.355 3:3:3

21 9� 3S 0.200 27.1 1.43 0.55 )1.2 0.589 0.174 0.326 9:0:0

22 9� 3S 0.200 27.1 1.43 0.55 )1.2 0.589 0.174 0.326 9:0:0

23 9� 3S 0.202 26.6 1.43 0.54 )1.2 0.585 0.180 0.326 9:0:0

24 9� 3S 0.200 27.1 1.43 0.55 )1.2 0.589 0.174 0.326 9:0:0

25 12� 3 0.256 6.6 1.79 0.91 )0.9 0.410 0.433 0.319 4:4:4

26 12� 3 0.250 9.1 1.75 0.87 )0.9 0.439 0.392 0.321 4:4:4

27 12� 3S 0.203 26.0 1.43 0.5 )1.1 0.586 0.185 0.325 12:0:0

28 13� 3 0.257 6.27 1.79 0.91 )0.8 0.407 0.439 0.324 7:3:3

29 13� 3 0.251 8.51 1.75 0.87 )0.9 0.434 0.400 0.324 6:6:1

30 13� 3S 0.205 25.3 1.42 0.51 )1.2 0.580 0.191 0.324 13:0:0

31 13� 3S 0.205 25.3 1.42 0.51 )1.2 0.580 0.191 0.324 13:0:0

32 13� 3S 0.205 25.3 1.42 0.51 )1.2 0.580 0.191 0.324 13:0:0

The first column shows the number of the block in Figs. 1 and 2 and the second is the corresponding RSRG transformations. pc is the

value of the spin pair interaction parameter p in the F critical point; yh, yT, y3 are the corresponding critical exponents; �F is the relative

error of the critical value of the pair interaction parameters in %; Sc and Uc are the values of entropy and internal energy in the critical

point; s0 is the entropy of the ground state. The last column is the composition of the blocks. The known exact values of the critical

parameters are shown in the first line.
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in the block L is increased. However, the accuracy

of the RSRG transformation is not a monotone

function of the block size L. As it was mentioned,

for blocks with even L one must introduce an ad-

ditional condition in order to determine the block

spin for the spins configurations with zero sum.

For blocks with even L, we have used a simple rule:
the block spin for the zero sum configurations is

determined by a value of some definite spin in the

block. This condition gives an additional degree of

freedom for improving the accuracy of the RSRG

transformations with even L. We have tested all

possibilities for blocks with L ¼ 4 and only the

best results are shown in Table 1. Depending on

the chosen spin, the accuracy in determining the
critical value of the pair interaction parameter is

changing from 16% to 0.36% for triangles (block 6

in Fig. 1) and from 8% to 0.52% for rhombs (block

5 in Fig. 1). For triangle blocks the additional rule

is the following: the block spin is equal to the

negative value of the central site spin. The small

total number of configurations makes the results

very sensitive to the distribution of the zero sum
configurations between domains.

All RSRG transformations (and RSRG calcu-

lations) have been carries out by using ordinary

PC. It is a rather simple method with easy imple-

mentation, without any heavy requirements on

memory and performance of computer used for

the calculations. The accuracy of RSRG trans-

formations with the smallest possible blocks

(L ¼ 3) is low. But transformations with bigger

blocks produce results with accuracy satisfactory
for many purposes.

4. Results and discussion

We have calculated some thermodynamic

quantities necessary for determining the chemical

diffusion coefficients using the best RSRG trans-
formations. The data are obtained in the monolayer

region of surface coverage and for a very wide

temperature range. We have considered pure pair

attraction and repulsion and pure three-particle

attractive and repulsive interactions. Results of

RSRG calculations have been compared with the

corresponding data obtained by MC simulations

(details of MC method are presented in Ref. [20]).
At first, we have calculated the adsorption iso-

therms (the first derivative of the free energy over

the chemical potential, hðlÞ). Results obtained by

Table 2

Compilation of the critical values for the different clusters studied in the present work

# Cluster tc �BW y1 y2 y3 jpminj ah hc

Exact 0.4407 1.20 0.276

3 3� 3S �0.741 68.2 2.00 0.55 )0.6 0.713 0.91 0.25

4 3� 3S �0.741 68.2 2.00 0.55 )0.6 0.713 0.91 0.25

12 7� 3 �0.583 32.3 1.99 0.82 )0.2 0.861 1.64 0.315

13 7� 3 �0.583 32.3 1.99 0.82 )0.2 0.861 1.64 0.315

15 7� 3S �0.558 26.7 1.99 0.85 )0.1 0.802 1.312 0.293

16 7� 3S �0.558 26.7 1.99 0.85 )0.1 0.802 1.312 0.293

17 7� 3S �0.558 26.7 1.99 0.85 )0.1 0.801 1.312 0.293

18 7� 3S �0.558 26.7 1.99 0.85 )0.1 0.801 1.312 0.293

22 9� 3S �0.533 20.9 1.99 0.90 0.07 0.854 1.76 0.319

23 9� 3S �0.529 20.0 1.99 0.92 0.01 0.818 1.46 0.305

24 9� 3S �0.533 20.9 1.99 0.90 0.06 0.851 1.76 0.319

27 12� 3S �0.501 13.7 1.98 1.00 0.11 0.786 1.37 0.299

30 13� 3S �0.498 13.0 1.42 0.51 )1.2 0.784 1.37 0.298

31 13� 3S �0.498 13.0 1.42 0.51 )1.2 0.784 1.37 0.298

32 13� 3S �0.498 13.0 1.42 0.51 )1.2 0.784 1.37 0.298

The first column shows the number of the block in Figs. 1 and 2. The second one is the corresponding RSRG transformations. tc, �BW,

y1, y2, y3 are the critical value of the three-particle interaction parameter t, relative error in % and critical exponents of the BW phase

transition; jpminj is the value of the pair interaction parameter corresponding to the maxima on the phase diagram in the plane t ¼ 0; ah

and hc are the slope of the critical line at zero temperature and the corresponding surface coverage.
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RSRG (solid lines) and MC methods (symbols)

are shown in Figs. 3 and 4 for pairwise and three-

particle interactions, respectively. At high tem-

peratures isotherms are close to the Langmuir case

(lattice gas without lateral interaction). For pair-

wise and three-particle repulsive interactions, the
adsorption isoterms present clearly defined pla-

teaus. In the former case the plateaus are located

at h ¼ 1
3
and h ¼ 2

3
, see Fig. 3a, while in the latter

the isotherm present just one plateau at h ¼ 2
3

in the low temperature range shown in Fig. 4a. In

all the cases considered these peculiar behavior

corresponds to the AF ordered structures. Strong

enough repulsion produces ordered phases when

particles occupy preferentially sites of a single

sublattice (h ¼ 1
3
), or two sublattices (h ¼ 2

3
). For

pure pair repulsion between adparticles the regions
of existence of these phases are placed symmetri-

cally about h ¼ 1
2
. The three-particle interaction

destroys the symmetry inhibiting one AF ordered

phase (centered at h ¼ 1
3
for t ¼ �w=8 < 0) and

expanding the region of existence for the other

phase. Such behavior corresponds to the second

order phase transitions.

Attractive interactions produce another kind of
peculiarities. If temperature decreases, the ad-

sorption isotherms became steeper at h ¼ 1
2
for the

pair (Fig. 3b) and at h ¼ 2
3
for the three-particle

attractive interactions (Fig. 4b). At the critical

Fig. 3. Adsorption isotherms: surface coverage, h, vs. l=kBT for

different temperatures expressed in units of K ¼ kBT=juj as in-

dicated. Pair interaction: (a) repulsion, (b) attraction. Solid

lines are obtained by the RSRG method, symbols denote MC

data.

Fig. 4. Adsorption isotherms for different temperatures ex-

pressed in units of K ¼ kBT=jwj as indicated. Pure three-particle

interaction: (a) repulsion, (b) attraction. Solid lines and symbols

denote the RSRG and MC data, respectively.
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temperature the isotherms have vertical tangents

at the corresponding coverages. As temperature

drops below critical, the dependencies became

discontinuous. The behavior is typical for the first

order phase transitions, when the mean surface

coverage changes abruptly at some value of the
chemical potential.

In all the cases considered here, the coincidence

between RSRG and MC data is very good over the

whole range of temperatures and surface coverages.

The quantity being the most sensitive to the

phase transitions is the thermodynamic factor, Tf ,

which is related to the isothermal susceptibility vT

(mean square surface coverage fluctuations) by the
relationship:

Tf ¼
ol
o lnh

¼ h
vT

: ð8Þ

The coverage dependencies of the thermody-

namic factor are plotted in Figs. 5 and 6 for

pairwise and three-particle interactions, respec-

tively. For high temperatures (Langmuir case) the

thermodynamic factor is equal to 1=ð1� hÞ. At

low temperatures and for repulsive interactions,
the density fluctuations are strongly suppressed at

the stoichiometric coverages h ¼ 1
3
and h ¼ 2

3
in the

case of pairwise interactions (Fig. 5a) and at h ¼ 2
3

for three-particle interactions (Fig. 6a). Any den-

sity disturbance (i.e. the displacement of an ad-

particle from its stable position in the filled

sublattice to any site of the empty sublattice)

substantially increases the free energy of the sys-
tem and is thermodynamically unfavorable. As the

coverage is not equal to (a) either one third or two

thirds of a monolayer in the case of pairwise

Fig. 5. The coverage dependencies of the thermodynamic fac-

tor for different temperatures. Notations are the same as in Fig.

3.

Fig. 6. The coverage dependencies of the thermodynamic fac-

tor for different temperatures. Notations are the same as in Fig.

4.
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repulsive interactions and (b) two thirds for pure

three-particle repulsive interactions; there are

fluctuations of non-stoichiometric nature that do

not require additional energy for their existence

and cannot be removed from the system due to

jumps of adparticles. Therefore, Tf increases when
h is approaching to such coverages. In fact, the

coverage dependencies of Tf have high and narrow

maxima at these coverages but remain analytical.

In addition, the thermodynamic factor exhibits

minima when the system cross the critical lines

TcðhÞ. The dependence of Tf in these points is

nonanalytic. There are a good coincidence between

RSRG and MC data in the whole coverage range
for different temperatures excluding the vicinities

of the critical points.

In the low temperature regime, attractive in-

teractions cause the averall growing of the cover-

age fluctuations, keeping adparticles together and

decreasing the relaxation of the coverage distur-

bances. The adparticle density fluctuations exhibit

a sharp maximum at half coverage, growing to
infinity as T ! Tc. In contrast, the thermodynamic

factor exhibits a strong minimum, see Figs. 5b and

6b. Any surface coverage disturbance relaxes

slower and slower as the lateral interactions be-

tween adparticles tends to its critical value. The

system becomes unstable in the critical point and

the fluctuations are strongly divergent. The critical

behavior of the isothermal susceptibility is de-
scribed by the following scaling dependence

vT � Tð � TcÞ�c
as T � Tc ! þ0; h ¼ 0:5: ð9Þ

One can determine easily the critical exponent c
by using the RSRG values for yT and yh listed in

Table 1 and the relationship

c ¼ 2ðyh � 1Þ
yT

: ð10Þ

The same critical exponent c describes the critical

slow down of the thermodynamic factor, Tf , and

the chemical diffusion coefficient, Dc.

We shall proceed to the analysis of the coverage

dependence of the normalized tracer diffusion co-

efficient which is plotted in Figs. 7 and 8 for the

pair and three-particle interactions, respectively.

In the both figures, the part (a) represents the case
of attractive interactions while in part (b) the case

of pure repulsive interactions is presented. The
MC data for Dt=D0 have been obtained for some

representative temperatures. From a first qualita-

tive inspection, it is obvious that repulsive inter-

actions between adparticles cause a dramatic speed

up of surface diffusion especially at low tempera-

tures and high coverages. For the highest tem-

perature shown in Figs. 7a and 8a, the tracer

diffusion coefficient decreases monotonically with
h. Such behavior is typical for the Langmuir case.

Deviations from the Langmuir behavior are

strongly pronounced at low temperatures where

repulsive interactions force the system to the sec-

ond order phase transitions.

At low coverages (where the adatoms are far

apart on average) the accelerating effect of the

repulsive interactions is much less pronounced. At
low temperatures the tracer diffusion coefficient,

Fig. 7. The coverage dependencies of the tracer diffusion co-

efficient for different temperatures and pair interaction. Nota-

tions are the same as in Fig. 3. The data are obtained by the MC

method.

10 A.A. Tarasenko et al. / Surface Science 536 (2003) 1–14



Dt, exhibits pronounced minima at the stoichio-

metric coverages for the pairwise repulsion (see

Fig. 7a) and only one minimum is seen at h ¼ 2
3
for

the three-particle repulsive interaction (Fig. 8a).

This behavior is clearly attributed to the adatom

ordering.
Figs. 7b and 8b reflect the behavior of the tracer

diffusion coefficient Dt=D0, for pairwise and three-

particle attraction, respectively. As it is clearly seen

the surface diffusion process is slow down due to

the attractive interaction. In particular, this effect

is more pronounced at low temperatures and for

high coverages.

It should be noted that we use only MC simu-
lations for investigation the behavior of the tracer

diffusion coefficient. In principle, the RSRG ap-

proach can be reformulated for investigation the

tracer diffusion coefficient. We need to have tagged

particles for determining the tracer diffusion coef-

ficient. It can be done using the Blume–Emery–

Griffiths model [33]. It is a spin model with S ¼ 1.

Then, any lattice spin can assume three values 0

and �1. In the lattice gas language any site can be

empty or occupied by an �ordinary� particle or by a
�tagged� particle. The diffusion in the mixture of

ordinary and tagged particles was investigated in

Ref. [34]. Really, the system, equivalent to the

Blume–Emery–Griffiths model, is more complex

than the Ising model. Therefore, the RSRG

transformations are also more complex. On the

other hand, the tracer diffusion coefficient is a very

suitable quantity for the investigations by MC
methods.

The chemical diffusion coefficient, Dc, has been

calculated by using Eqs. (6) and (7). Another al-

ternative way of evaluating the chemical diffusion

coefficient is the Kubo–Green equation [35]. Thus,

Dc, can be also written in the following form

Dc ¼ DJ

h
vT

; ð11Þ

where DJ is the so-called jump diffusion coefficient

or kinetic factor. The jump diffusion coefficient,

DJ, is a many particle diffusion coefficient de-

scribing the asymptotic behavior of the mean

square displacement of the center of mass of the

system of adparticles. DJ is defined as [35]

DJ ¼ lim
t!1

1

2dNat

XNa

i¼1

½~rriðtÞ
(*

�~rrið0Þ	
)2+

: ð12Þ

This allows us a different and a direct way for

evaluating the chemical diffusion coefficient via

MC simulations. Thus, Eq. (12) in conjunction

with Eq. (11) were used to calculate Dc by means

of MC simulations. Therefore, the purely kinetic

method and analytical approach (Eq. (6)) can be

compared to demonstrate the reliability of the

approximations used for calculating Dc.
It is quite obvious and expected that the cov-

erage dependencies of Dt and DJ are quite similar.

In particular, it is known that they are numerically

equal if there are no velocity-velocity cross corre-

lation terms. However, they represent different

views of the diffusive phenomenon. In fact, the

tracer diffusion coefficient describes the motion of

Fig. 8. The coverage dependencies of the tracer diffusion co-

efficient for different temperatures and three-particle interac-

tion. Notations are the same as in Fig. 4. The data are obtained

by the MC method.
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tagged particles on the surface while the jump

diffusion coefficient represents the mobility of the

center of mass of the system.

The coverage dependencies of the chemical

diffusion coefficient, Dc, for some representative

values of temperature are shown in Figs. 9 and 10.
In the whole range of temperatures considered

here, at low coverage ln½DcðhÞ=D0	 changes almost

linearly with coverage h, as the mean number of

nearest neighbors for any jumping particles is

growing on average. It is interesting to note that

qualitatively the same behavior is visible at cov-

erages slightly below monolayer coverage. At high

coverages the relaxation of density fluctuations
proceeds via migration of holes. As a consequence,

the diffusion activation energy is proportional to

the density of holes, ð1� hÞ.

The chemical diffusion coefficient grows due to
the presence of repulsive interactions, Figs. 9a and

10a. At the critical coverages, the chemical diffu-

sion coefficient exhibits small minima. These

minima are related with the peaks of the coverage

fluctuations, see Figs. 5a and 6a. At low temper-

atures the chemical diffusion coefficient changes

rather abruptly at the stoichiometric coverages

h ¼ 1
3
and h ¼ 2

3
for pairwise repulsion and h ¼ 2

3
for

the three-particle repulsive interaction. The jumps

of the diffusion activation energy are obviously

related to the creation of the ordered phases,

which changes considerably the migration of ad-

particles over surface. For h < 1
3
adparticles mi-

grate over a triangular lattice. The diffusion

activation energy is about e, slightly influenced by

the interaction of the jumping particle with its nns.
As h ! 1

3
one of the three sublattices becomes

Fig. 9. The coverage dependencies of the chemical diffusion

coefficient for different temperatures and pair interaction. No-

tations are the same as in Fig. 3.

Fig. 10. The coverage dependencies of the chemical diffusion

coefficient for different temperatures and three-particle inter-

action. Notations are the same as in Fig. 4.
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almost completely filled by adparticles. The 1/3 of

monolayer occupies one of the three sublattices

and the rest of adparticles jump over the honey-

comb lattice formed by the other two sublattices.

Any adparticle on the honeycomb lattice has three

nns. Therefore, the jumps of these adparticle are
the most probable and give the main contribution

to the surface diffusion. The activation energy is

decreased by about 3u. In fact, the coverage de-

pendencies, DcðhÞ, for h > 1
3
are very similar to the

corresponding curves, obtained for the honeycomb

lattice [10]. The formation of the AF ordered

phase at h ¼ 2
3
is equivalent to the formation of the

ordered cð2� 2Þ structure on the honeycomb lat-
tice and causes the same peculiarities on the de-

pendencies of the chemical diffusion coefficient.

For the case of attractive interactions the be-

havior of the coverage dependencies is determined

almost completely by the density fluctuations. As

temperature decreases, the fluctuations infinitely

grow and cause the slowdown of the diffusion

coefficient (see Figs. 9b and 10b). At critical points
the diffusion coefficient turns to zero. The critical

slowdown is described by Eq. (9).

The fitting between RSRG results and MC data

is rather good in the whole range of coverages and

temperatures. Even for low temperatures (T < Tc)

the discrepancies between the different methods

are rather small. However, in the vicinities of the

critical points there are deviations between RSRG
and MC results.

5. Summary

We have investigated 32 RSRG transforma-

tions on the triangular lattice with blocks of dif-

ferent size and symmetries. Critical properties for
triangular lattice gas system with pair and three-

particle attractive and repulsive interactions have

been investigated. It has been shown that the

precision of the RSRG method depends strongly

not only on the number of sites in the block but

also on its composition and symmetry. In general

the accuracy of the method increases with the

number of sites in the block. It is clearly seen from
Tables 1 and 2 that the critical parameters of

RSRG transformations approach its exact values

as the number of spins in block increases. How-

ever, this behavior is a non monotone function of

L: some blocks give much better results than others

with comparable number of sites.

Using the RSRG method, the triangular lattice

gas with repulsive and attractive pair and three-
particle lateral interactions between adparticles

has been explored. The critical parameters coin-

cide rather well with the known values for this

system. Adsorption isotherms at different tem-

peratures and coverage dependencies of the ther-

modynamic factor and the chemical diffusion

coefficient at different temperatures have been also

calculated. All these quantities have been com-
pared with the corresponding MC simulation re-

sults. The coincidence between RSRG and MC

data is very good in whole coverage region for

different temperatures. Only in the close vicinities

of the critical points for the divergent quantities

proportional to the second derivatives of the free

energy over its variables, such as the thermody-

namic factor, the RSRG approach does not give
accurate results.

Good coincidence of the RSRG and MC results

for the coverage dependencies of the chemical

diffusion coefficient obtained in the wide regions of

the surface coverage and temperature also means

the applicability of the local equilibrium approxi-

mation used for the derivation of Eq. (6). There

are no visible and systematic discrepancies be-
tween the RSRG curves and MC data in the whole

range of surface coverage from the smallest pos-

sible value up to the maximum monolayer cover-

age in a wide region of temperatures, excluding the

critical points of the system. It is clear that there

are some reasons for the divergence between the

RSRG and MC data in the vicinities of the critical

points. The first is the singular behavior of the
thermodynamic quantities. The divergent quanti-

ties like isothermal susceptibility and thermody-

namic factor are very sensitive to the smallest

errors of the critical exponents determined by the

RSRG method. The same is also valid for the MC

approach. The finite lattice size used for simula-

tions can influence the data accuracy also. There-

fore, both methods have decreased accuracy in the
critical regions. In fact, it follows from the basic as-

sumptions of the local equilibrium approximation,
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that its validity in the critical region is rather

questionable.

Summing up all results one can conclude that

the RSRG method can be used successfully for

determining thermodynamic and kinetic properties

of lattice gas and spin systems. In fact, the ther-
modynamic quantities can be calculated with great

accuracy for two dimensional lattice gas systems

with strong lateral pair and multiparticle interac-

tions.
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