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Abstract

The multilayer adsorption isotherms of linear particles (k-mers) on homogeneous surfaces were developed on a gen-

eralization in the spirit of the well-known Brunauer–Emmet–Teller�s approach. The generalized equation is obtained

through an analytical approach that provides the isotherm in the multilayer regime from the isotherm in the monolayer

regime. The formalism leads to exact results in one dimension and provides an analytical approximation to study mul-

tilayer adsorption on two-dimensional surfaces with different geometries (square, honeycomb and triangular). The

entropic effects of the nonspherical character of the adparticles on the determination of the monolayer volume and

adsorption energy, are shown and discussed for type II and type III isotherms. Comparison with Monte Carlo simu-

lations in the grand canonical ensemble and experimental adsorption isotherms are used to test the accuracy and reli-

ability of the model. Close agreement between simulated, theoretical and experimental results supports the applicability

of the proposed model to describe multilayer adsorption in presence of multisite-occupancy.
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1. Introduction

Multilayer adsorption has been attracting a

great deal of interest since long ago [1–4] and the
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progress in this field has gained a particular impe-

tus due to its importance for the characterization

of solid surfaces. Various theories have been

proposed to describe multilayer adsorption in

equilibrium [5–9]. Among them, the Brunauer–

Emmet–Teller (BET) model [9] is one of the most
widely used and practically applicable. The great

popularity of the BET equation in experimental

studies of adsorption has led some authors to
ed.
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extend the original theory of multilayer adsorp-

tion. Thus, numerous generalizations of the BET

model have been reported in the literature, includ-

ing surface heterogeneity, lateral interaction be-

tween the admolecules, differences between the
adsorption energy and structure between the first

and upper layers, etc., [2,4]. These leading models,

along with much recent contributions, have played

a central role in the characterization of solid sur-

faces by means of gas adsorption [10]. One funda-

mental feature of BET�s model is preserved in all

these theories. This is the assumption that an ad-

sorbed molecule occupies one adsorption site.
In practical situations, most adsorbates in-

volved in adsorption experiments are polyatomic

in the sense that, when adsorbed, their typical size

is larger than the distance between the nearest-

neighbor local minima of the gas–solid potential.

For instance, this is true for most n-alkanes [3],

n-alkenes, cyclic hydrocarbons, etc. However, even

the simplest nonspherical molecules such as N2

and O2 may adsorb on more than one site depend-

ing on the surface structure [11–17]. This effect, so-

called multisite occupancy adsorption, introduces

a high degree of difficulty in the adsorption theo-

ries. Consequently, a few elaborated analytical iso-

therms [10,18–29] and numerical studies [30–37]

have been derived for describing the peculiarities

of polyatomics adsorption.
Hence, a more accurate description of multi-

layer adsorption should account for the fact that

it develops in general with multisite occupancy.

Although many other factors have been consi-

dered in multilayer adsorption, there have been a

few studies accounting for the fact of multiple

occupation of sites at multilayer regime [38–40].

Thus, in Refs. [38,39], Aranovich and Donohue
presented a multilayer adsorption isotherm, which

is not limited by the functional form of the mono-

layer adsorption isotherm and should be capable

to include multisite occupancy (with an adequate

choice of a fitting parameter). On the other hand,

the closed exact solution for the multilayer adsorp-

tion isotherm of dimers, along with the basis

for calculating adsorption thermodynamics of
homonuclear polyatomic molecules (k-mers) on

one-dimensional substrates, have been recently

presented [40]. This rigorous thermodynamic study
demonstrated that the entropic contribution of

nonspherical adsorbates is significant in the multi-

layer regime when compared with monoatomic

adsorption. Thus, the determinations of surface

areas and adsorption energies from polyatomic
adsorbate adsorption may be severely misesti-

mated, if this polyatomic character is not properly

incorporated in the thermodynamic functions

from which experiments are interpreted.

In this context, the aim of the present work is to

extend the treatment of Ref. [40] to include the

two-dimensional nature of the substrate. For this

purpose, a new theoretical formalism is presented
based upon (i) the analytical expression of the

adsorption isotherm at monolayer and (ii) a map-

ping from the grand partition function of the

monolayer to the grand function of partition of

the multilayer, where the fugacity of the mono-

layer transforms into the grand partition function

of a single column of k-mers. In addition, Monte

Carlo (MC) simulations are performed in order
to test the validity of the theoretical model. The

new theoretical scheme allows us: (1) to reproduce

the well-known BET isotherm for monomers [9]

and the exact dimer isotherm presented in [40];

(2) to develop a closed exact expression for the

multilayer adsorption isotherm of k-mers on one

dimension; (3) to obtain an accurate approxima-

tion for multilayer adsorption on two-dimensional
substrates accounting multisite occupancy and (4)

to provide a simple model from which experiments

may be reinterpreted.

The present work is organized as follows. In

Section 2, the theoretical formalism is presented.

In Section 3, the basis of the MC method are

given. In Section 4, the results of the theoretical

model are shown and discussed by comparing with
experimental data and MC simulations. Finally,

conclusions are drawn in Section 5.
2. Theory

In order to maintain the simplest model that ac-

counts for multisite-occupancy in multilayers we
define it in the spirit of the BET�s original formu-

lation. The adsorbent is a homogeneous lattice of

sites. The adsorbate is assumed as linear molecules
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having k-identical units (k-mers) each of which

occupies an adsorption site. The concept of linear

k-mer is trivial for square and triangular lattices

[see Fig. 1(a) and (b), respectively]. However, in

a honeycomb lattice, the geometry does not allow
the existence of a linear array of monomers. In this

case, we call linear k-mer to a chain of adjacent

monomers with the following sequence: once the

first monomer is in place, the second monomer

occupies one of the three nearest-neighbor of the

first monomer. Third monomer occupies one of

the two nearest-neighbor of the second monomer.

i-esime monomer (for iP 4) occupies one of the
two nearest-neighbor of the preceding monomer,

which maximizes the distance between first mono-

mer and i-esime monomer. This procedure allow

us to place k monomers on a honeycomb lattice

without creating an overlap. As an example, Fig.
b c

d

ea

(

(c) HONEYCOMB LATTI

(a) SQUARE LATTICE 

Fig. 1. Linear tetramers adsorbed on (a) square, (b) triangular and (c

units and empty sites, respectively.
1(c) shows a available configuration for a linear

tetramer adsorbed on a honeycomb lattice. Once

first, second and third monomers were adsorbed

in positions denoted as a, b and c, respectively,

there exist two possible positions for adsorbing
fourth monomer, d and e. In order to maximize

the distance between the position of first and

fourth monomers, site d is selected and site e is dis-

carded. Furthermore, (i) a k-mer can adsorb ex-

actly onto an already adsorbed one; (ii) no

lateral interactions are considered; (iii) the adsorp-

tion heat in all layers, except the first one, equals

the molar heat of condensation of the adsorbate
in bulk liquid phase. Thus, c = q1/qi = q1/q with

qi = q (i = 2, . . . ,1) denotes the ratio between the

single-molecule partition functions in the first

and higher layers. The fact that k-mers can arrange

in the first layer leaving sequences of l empty sites
b) TRIANGULAR LATTICE 

CE 

) honeycomb lattices. Full and empty circles represent tetramer
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with l < k, where no further adsorption of a k-mer

can occur in such a configuration, makes the calcu-

lation of entropy much elaborated than the one for

monomer adsorption.

For a lattice having M adsorption sites, the
maximum number of columns that can be grown

up onto it is nmax = M/k. Let us denote by Xk(n,M)

the total number of distinguishable configurations

of n columns on M sites. If an infinite number of

layers is allowed to develop on the surface, the

grand partition function, Nmul, of the adlayer in

equilibrium with a gas phase at chemical potential

l and temperature T, is given by

Nmul ¼
Xnmax

n¼0

Xkðn;MÞnn; ð1Þ

where n is the grand partition function of a single

column of k-mers having at least one k-mer in the

first layer. Then,

n ¼
X1
i¼1

q1q
i�1kimul ¼ c

X1
i¼1

qikimul ¼
ckmulq

1� kmulq

¼ cx
1� x

; ð2Þ

where kmul = exp(l/kBT) is the fugacity and kB is

the Boltzmann constant. In addition, it is possible

to demonstrate that x = kmulq = p/p0 is the relative

pressure [10,40].

On the other hand, the grand partition function

of the monolayer, Nmon, can be written as

Nmon ¼
Xnmax

n¼0

Xkðn;MÞknmon ð3Þ

in this case, n represents the number of adsorbed

k-mers and kmon is the monolayer fugacity.

By comparing Eqs. (1) and (3) and from the

condition,

kmon ¼ n ¼ cp=p0
1� p=p0

) p
p0

¼ 1

1þ ck�1
mon

; ð4Þ

we can write the monolayer coverage, hmon, as

hmon ¼
k
M

~n ¼ k
M

kmon

d lnNmon

dkmon

� �
M ;T

¼ k
M

n
d lnNmul

dn

� �
M ;T

; ð5Þ
where n is the mean number of columns. In addi-

tion, the total coverage, h, can be written as

h ¼ k
M

eN ¼ k
M

kmul

d lnNmul

dkmul

� �
M ;T

; ð6Þ

where eN is the mean number of adsorbed k-mers.

After some algebra the total coverage can be writ-

ten in terms of the monolayer coverage,

h ¼ k
M

kmul

d lnNmul

dn

� �
M ;T

dn
dkmul

¼ hmon

ð1� p=p0Þ
. ð7Þ

Finally, the theoretical procedure can be de-
scribed as follows:

(1) By using hmon as a parameter (0 6 hmon 6 1),

the relative pressure is obtained by using Eq.

(4). This calculation requires the knowledge

of an analytical expression for the monolayer

adsorption isotherm.

(2) The values of hmon and p/p0 are introduced in
Eq. (7) and the total coverage is obtained.

The items (1) and (2) are summarized in the fol-

lowing scheme:

hmon þ kmonðhmonÞ þ Eq. ð4Þ ! p=p0

) hmon þ p=p0 þ Eq. ð7Þ ! h. ð8Þ
3. Monte Carlo simulation of adsorption in the

grand canonical ensemble

Following the Metropolis scheme [41], the tran-

sition probability from a state i to a new state j,

W(i ! j), is defined by

W ði ! jÞ ¼ minf1; exp½�bðDU � lDNÞ�g; ð9Þ

where b = 1/kBT, and DN and DU represent the

variation in the number of particles and the varia-

tion in the total energy, respectively, when the sys-

tem changes from the state i to the state j.

In adsorption–desorption equilibrium there are
four elementary ways to perform a change of the

system state, namely, adsorbing one molecule onto

the surface, desorbing one molecule from the sur-

face, adsorbing one molecule in the higher layers
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and desorbing one molecule from the higher

layers. The corresponding transition probabilities

are,

� W surf
ads ¼ minf1; exp½�bðU 1 � lÞ�g; ð10Þ

where W surf
ads is the transition probability of adsorb-

ing one molecule onto the surface and U1 is

adsorption energy of one molecule on the surface.

In addition, exp[�b(U1�l)] = q1k, q1 = cq and

qk = p/p0. Then,

W surf
ads ¼ min 1; c

p
p0

� �
; ð11Þ

� W surf
des ¼ minf1; exp½bðU 1 � lÞ�g; ð12Þ

where W surf
des is the transition probability of desorb-

ing one molecule from the surface, which can be

written in terms of p/p0 as

W surf
des ¼ min 1;

1

c
p0
p

� �
; ð13Þ

� W bulk
ads ¼ minf1; exp½�bðU � lÞ�g; ð14Þ

where W bulk
ads is the transition probability of adsorb-

ing one molecule in the bulk liquid phase and U is

adsorption energy of one molecule on the ith layer
with i P 2. In addition, exp[�b(U�l)] = qk = p/p0.

Then,

W bulk
ads ¼ min 1;

p
p0

� �
; ð15Þ

� W bulk
des ¼ minf1; exp½bðU � lÞ�g; ð16Þ

where W bulk
des is the transition probability of desorb-

ing one molecule from the bulk liquid phase. Then,

W bulk
des ¼ min 1;

p0
p

� �
. ð17Þ

The algorithm to carry out an elementary step

in MC simulation (1 MCS), is the following:

(1) Set the value of the relative pressure p/p0 and

the temperature T.

(2) Set an initial state by adsorbing N molecules
in the system. Each k-mer can adsorb in two

different ways: (i) on a linear array of (k)

empty sites on the surface or (ii) exactly onto

an already adsorbed k-mer.
(3) Introduce an array, denoted as A, storing the

coordinates of ne entities, being ne,

ne ¼ number of available adsorbed

k-mers for desorption ðndÞ
þ number of available

k-uples for adsorption ðnaÞ; ð18Þ

where na is the sum of two terms: (i) the

number of k-uples of empty sites on the sur-

face and (ii) the number of columns of ad-

sorbed k-mers.1

(4) Choose randomly one of the ne entities, and
generate a random number j 2 [0,1]
(4.1) if the selected entity is a k-uple of

empty sites on the surface then adsorb

a k-mer if j 6 W surf
ads .

(4.2) if the selected entity is a k-uple of

empty sites on the top of a column with

i k-mers then adsorb a new k-mer in the

i + 1 layer if j 6 W bulk
ads .

(4.3) if the selected entity is a k-mer on the

surface then desorb the k-mer if

j 6 W surf
des .

(4.4) if the selected entity is a k-mer on the

top of a column then desorb the

k-mer if j 6 W bulk
des .
(5) If an adsorption (desorption) is accepted in
(4), then, the array A is updated.

(6) Repeat from step (4) M times.

In the present case, the equilibrium state could

be well reproduced after discarding the first

m � 104 MCS. Then, averages were taken over

m 0 � 104 MCS successive configurations. The total

coverage was obtained as simple averages,

h ¼ khNi
M

; ð19Þ

where hNi is the mean number of adsorbed parti-

cles, and h� � �i means the time average over the

MC simulation runs.
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Fig. 2. Adsorption isotherms for k-mers on one-dimensional

lattices and different values of the parameter c (as indicated).

Solid lines and symbols represent theoretical and simulation

results, respectively.
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4. Results

4.1. Exact solution in 1-D

By following the scheme presented in the previ-
ous section, we can obtain the exact solution for

multilayer adsorption of k-mers on a one-dimen-

sional lattice.

We start from the equation

kmon ¼
hmon

k

1� ðk � 1Þ
k

hmon

� �k�1

ð1� hmonÞk
; ð20Þ

which represents the one-dimensional exact iso-

therm of k-mers adsorbed at monolayer [26].

Substituting Eq. (20) into Eq. (4), one obtains
the following expression for the relative pressure,

p
p0

¼
hmon 1� ðk � 1Þ

k
hmon

� �k�1

kcð1� hmonÞk þ hmon 1� ðk � 1Þ
k

hmon

� �k�1
.

ð21Þ

Eqs. (7) and (21) represent the exact solution

describing the adsorption of k-mers at multilayer

regime on a homogeneous surface in 1-D. In the

case of monomer adsorption (k = 1), Eqs. (7) and

(21) reduce to the well-known BET isotherm [9],

i.e.

h ¼ cp=p0
ð1� p=p0Þ½1þ ðc� 1Þp=p0�

k ¼ 1. ð22Þ

For k = 2, the dimer isotherm can be written in
a simple form:

h¼ 1

ð1� p=p0Þ
1� 1� p=p0

1þ ð4c� 1Þp=p0

� �1=2( )
k ¼ 2.

ð23Þ
By using other methodology, the Eq. (23) has

been recently reported in the literature [40].

In Fig. 2 we address the comparison between the

analytical adsorption isotherm in 1-D andMC sim-

ulation. The simulations have been performed for
monomers, dimers and 10-mers adsorbed on chains

of M/k = 1000 sites with periodic boundary condi-
tions. Different values of the parameter c have been

considered. In all cases, the computational data

fully agree with the theoretical predictions, which
reinforces the robustness of the two methodologies

employed here.

As it can be observed from Fig. 2, for certain

values of the parameter c, the corresponding

isotherm has a point of inflection. The point of

inflection can be obtained in three steps: (1) differ-

entiating twice the adsorption isotherm equation

to obtain d2h/dY2 (being Y = p/p0 for the sake of
simplicity); (2) equating the resulting expression

to zero and solving for Y gives YF, the value of

p/p0 at the point of inflection; and (3) inserting

YF in the adsorption isotherm equation gives hF,
the value of h at the point of inflection.

The location of the point of inflection

(XF � hF,YF) is plotted in Fig. 3 for different val-

ues of c and k. Clearly, the value of h at the point
of inflection may deviate considerably from unity.

However, there exist a certain value of c = cm,

where the point of inflection coincides with the

point corresponding to the monolayer capacity.

Fig. 4 shows the behavior of cm as a function of

k. The values of cm, which have been obtained

numerically in the range k = 1–10, provide a expo-

nential dependence [exp(bk)]. As shown in the
inset, b � 0.79, obtained from the slope of lncm
vs. k. For values of c between cm and infinity the

adsorption at the point of inflection exceeds the
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monolayer capacity; for values of c below cm the

two quantities deviate more and more and for a

limit value of c = cn, the point of inflection disap-

pears. cn vs. k can be calculated analytically (see
Appendix A for further discussion). The result of

this calculation is presented in Fig. 5. As it is can

be visualized from the figure, the function

cn(k) = 2/(2k � 1) separates two well differentiate

regions: (i) for c > cn, the isotherm is of Type II

and (ii) when c is less than cn the isotherm is of

Type III and discussion of the point of inflection

is meaningless.
As it is well-known, the main application of

BET model consists in taking an experimental iso-

therm in the low-pressure region and fitting values

of the monolayer volume, vm, and the parameter c,

from the slope and intercept of the linearized

form of the BET equation, (p/p0)/[v(1 � p/p0)] =

1/(cvm) + (c � 1)p/(cvmp0). In this context, it is of
interest to study the behavior of k-mers multilayer

isotherms (with k P 2) in the low-pressure region

in comparison with BET isotherm (k = 1). This

comparison is shown in Fig. 6 for c = 5, 10, 100;

k = 1, 2, 10; and pressures ranging from p/p0 = 0
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up to p/p0 = 0.30. A linear function is only

obtained if k = 1. The nonlinear behavior of

k-mers isotherms (k > 1) at low pressures, which

is a distinctive characteristic of many experimental

isotherms, is showing that the polyatomic
character of the adsorbate must be taken into

account.

The significant differences observed as k is var-

ied indicate that the analysis of experimental

isotherms of larger molecules by means of the k-

mers isotherm [Eqs. (7) and (21)] would lead to

values of the parameters c and vm appreciably dif-

ferent from the BET ones. This effect will be widely
discussed in Section 4.3.

4.2. Approximated solution in 2-D

As it is well-known, from an analytical point of

view, the problem in which a two-dimensional lat-

tice contains isolated lattice points (vacancies) as

well as k-mers (with k > 1) has not been solved
in a closed form. However, different approximate

methods have been developed to study this topic.

Among them, the Occupation Balance approach

(OB) [28] is one of the most accurate approxi-

mation to this problem. In the simplest case of

k = 2, the monolayer isotherm for noninteracting

dimers adsorbed on a honeycomb lattice can be

written as,

k�1
mon ¼

3

hmon

� 5þ 4

3
hmon

þ 2

3
h2mon ðhoneycomb latticeÞ. ð24Þ

For other connectivities, the adsorption iso-

therms result,

k�1
mon ¼

4

hmon

� 7þ 9

4
hmon

þ 3

4
h2mon ðsquare latticeÞ; ð25Þ

k�1
mon ¼

6

hmon

� 11þ 23

6
hmon

þ 7

6
h2mon ðtriangular latticeÞ. ð26Þ

The relative pressures for honeycomb, square

and triangular lattices are obtained inserting
Eqs. (24)–(26), respectively, into Eq. (4). On doing

so, we obtain

p
p0

¼ 3hmon

9cþ ð3� 15cÞhmon þ 4ch2mon þ 2ch3mon

ðhoneycomb latticeÞ; ð27Þ

p
p0

¼ 4hmon

16cþ ð4� 28cÞhmon þ 9ch2mon þ 3ch3mon

ðsquare latticeÞ; ð28Þ

p
p0

¼ 6hmon

36cþ ð6� 66cÞhmon þ 23ch2mon þ 7ch3mon

ðtriangular latticeÞ. ð29Þ
The set of Eqs. (27)–(29) and Eq. (7) provide a

theoretical solution to study multilayer adsorption

of dimers on two-dimensional lattices. This treat-
ment, in which the entropic effects of the adsorbate

size are accounted for, bears theoretical interest

because it represents a qualitative advance with

respect to the existing models of multilayer

adsorption.

In order to extend the study to adsorbates larger

than dimers, we will start from EA model in Ref.

[28]. In this paper, we presented a model to study
adsorption of linear adsorbates on homogeneous

surfaces. The model is based on exact forms for

the thermodynamic functions of linear adsorbates

in one dimension [Eq. (20)] and its generalization

to higher dimensions. The resulting equation for

the adsorption isotherm at monolayer is [26,28]:

kmon ¼
hmon

kgðz; kÞ

1� ðk � 1Þ
k

hmon

� �k�1

ð1� hmonÞk
; ð30Þ

where z is the connectivity of the lattice and g(z,k)
represents the number of available configurations

(per lattice site) for a k-mer at zero coverage.

By using Eq. (30) and following the scheme

described in Section 2, the multilayer isotherm

for k-mers adsorbed on a lattice of connectivity z

results,

p
p0

¼
hmon 1�ðk�1Þ

k
hmon

� �k�1

kgðz;kÞcð1�hmonÞk þhmon 1�ðk�1Þ
k

hmon

� �k�1
.

ð31Þ
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Fig. 8. Comparison between theoretical and simulated adsorp-

tion isotherms for dimers and tetramers adsorbed on square

lattices with different values of the parameter c. Symbols

correspond to MC simulations and lines represent theoretical

results: full circles, dimers; open circles, tetramers; solid lines,

data from Eq. (28); dashed lines, data from Eq. (31) (with k = 2

and z = 4); and dotted lines, data from Eq. (31) (with k = 4 and

z = 4).

1.6

Triangular Lattice
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It is easy to demonstrate that g(z,k) = z/2 for

linear k-mers. Thus, Eq. (21) is recovered by putt-

ing z = 2 in Eq. (31).

In order to test the analytical results, in Figs.

7–9 simulated isotherms were compared to theo-
retical ones from Eqs. (27)–(29) and Eq. (31)

for dimers and linear tetramers adsorbed on

two-dimensional lattices with different values of

c (= 0.1; 1; 10 and 100). The computational sim-

ulations were developed for honeycomb, square

and triangular L · L lattices, with L = 100 and

periodic boundary conditions. With this lattice

size we verified that finite-size effects are
negligible.

In the case of dimers, the agreement between

OB (solid lines), EA (dashed lines) and simulated

isotherms (full circles) is very good, OB being the

most accurate for all lattices and for all values of

c. The main differences between OB and EA are:

(1) the larger the lattice connectivity the better

OB reproduces the MC results. On contrary, EA
provides exact results in the limit of z = 2 (one-

dimensional lattice) and its accuracy diminishes

as the connectivity increases. This behavior, which

has been observed in previous studies of dimers
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Fig. 7. Comparison between theoretical and simulated adsorp-

tion isotherms for dimers and tetramers adsorbed on honey-

comb lattices with different values of the parameter c. Symbols

correspond to MC simulations and lines represent theoretical

results: full circles, dimers; open circles, tetramers; solid lines,

data from Eq. (27); dashed lines, data from Eq. (31) (with k = 2

and z = 3); and dotted lines, data from Eq. (31) (with k = 4 and

z = 3).
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Fig. 9. Comparison between theoretical and simulated adsorp-

tion isotherms for dimers and tetramers adsorbed on triangular

lattices with different values of the parameter c. Symbols

correspond to MC simulations and lines represent theoretical

results: full circles, dimers; open circles, tetramers; solid lines,

data from Eq. (29); dashed lines, data from Eq. (31) (with k = 2

and z = 6); and dotted lines, data from Eq. (31) (with k = 4 and

z = 6).
adsorption at monolayer [28], has a simple expla-

nation. Namely, EA is based on exact forms for

the thermodynamic functions of linear adsorbates

in one dimension and its generalization to higher
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Fig. 10. (a) Simulated adsorption isotherms for dimers

adsorbed on surfaces with different connectivities as indicated.

In part (b), the isotherms shown in (a) are plotted in the range

of low relative pressures.

2 Eq. (31) illustrates clearly the arguments above: parameter c

appears along with the size of the molecule, k, and the number

of available configurations (per lattice site) for a k-mer at zero

coverage, g(z,k), which is, in general, a function of the

connectivity and the size of the adsorbate. Then, it is possible

to define an effective parameter cef(k,z,c) = kg(z,k) c, which

contains information about the configuration of the molecule in

the adsorbed state.

222 F. Romá et al. / Surface Science 583 (2005) 213–228
dimensions by means of a connectivity ansatz; and

(2) for a given connectivity, the accuracy of OB is

practically independent of c. On the other hand,

EA agrees with MC results appreciably better for

larger values of c.
With respect to larger adsorbates (in the partic-

ular case of Figs. 7–9, k = 4), the simulation re-

sults (open circles) are compared with EA

isotherm Eq. (31) (dotted lines). EA model shows

a qualitative agreement with MC simulations.

From a quantitative point of view, the theoretical

approximation agrees fairly well with the numeri-

cal results for large values of c (typically c � 100);
however the disagreement turns out to be signifi-

cantly large for small c�s. In addition, as in the

case of dimers, EA performs better for low

connectivity.

Even though MC simulations of larger linear

adsorbates on regular two-dimensional lattices

would be necessary to confirm the applicability

of Eq. (31), it should be pointed out that EA
model, which is the first analytical approach for

the adsorption isotherm of polyatomic molecules

at multilayer, is a good one considering the com-

plexity of the physical situation which is intended

to be described.

Finally, the last goal of Figs. 7–9 is to show the

effect of the spatial configuration of the molecules

in the adsorbed state (depending on the surface
geometry), on the multilayer adsorption proper-

ties. The phenomenon is more clearly visualized

in Fig. 10, where simulated adsorption isotherms

for dimers adsorbed on surfaces with different

connectivities and c = 1, 10, 100 are plotted in

part (a), and their linearized forms are shown in

the range of low relative pressures in part (b).

As it is observed, the lattice geometry affects
appreciably the multilayer regime for weakly

adsorbing surfaces (c = 1, . . . , 10). It is expected

that the effect increases with the adsorbate size.

This effect, which is disregarded in the BET theory

due to the hypothesis of independent sites, should

be included in any theory treating to reproduce

simulations and experiments in presence of multi-

site occupancy. In this sense, OB and EA repre-
sent simple and manageable analytical models

for multilayer adsorption of polyatomic mole-

cules, which are capable to account for the
structure and entropic effects of the adsorbed

species.2

By following with the analysis about the

influence of the geometry on multilayer k-mers

adsorption, Fig. 11 presents the behavior of the
coordinates of the point of inflection (XF,YF, as

in Fig. 3) for honeycomb, square and triangular

adsorption isotherms of dimers with different



Fig. 11. Coordinates of the point of inflection (being XF and YF

coverage and relative pressure, respectively) for adsorption

isotherms of dimers with different connectivities. Each symbol

in a given curve corresponds to a determined value of c, which

is indicated in the figure. Solid and dashed lines correspond to

OB model and EA model, respectively, and full circles represent

MC simulations results.

Fig. 12. (a) cm (as it is indicated in the text) as a function of

connectivity, z, for adsorption isotherms of dimers on one- and

two-dimensional lattices. Symbols are as follows: vertical lines,

open hexagons, open squares and full triangles represent results

from one-dimensional, honeycomb, square and triangular

lattices, respectively. (b) As in (a) for cn. Inset: cn vs. k, for

one-dimensional (bars), honeycomb (hexagons), square

(squares) and triangular (triangles) lattices.
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values of c. Solid and dashed lines correspond to

OB and EA, respectively. In order to compare the-

oretical predictions with MC simulations (full cir-

cles), each empty circle in OB curve and each

empty square in EA curve is the corresponding

one to each value of c used in the simulation.
The agreement between OB and computational re-

sults is excellent. In the case of EA, Eq. (31) can be

rewritten as a function of cef and it is easy to dem-

onstrate that EA predicts an universal curve

(XF,YF) for all connectivity. This curve reproduces
fairly well the behavior of MC results at low and

high values of c but quantitative differences exist

for medium c�s.
From the diagrams in Fig. 11, we obtained cm

and cn as a function of z. Results are shown in
Fig. 12(a) (cm) and Fig. 12(b) (cn). As in one-

dimensional case, cm was numerically calculated,

while cn was exactly obtained (see Appendix A).

cm decreases strongly from z = 2 to z = 3 and re-

mains practically constant for honeycomb, square

and triangular lattices. On the other hand, cn
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Fig. 13. Fitting of experimental adsorption isotherms of the

systems Ar [part (a)] and N2 [part (b)] on nonporous silica [3],

through isotherms of dimers on 1-D [Eq. (23)] and 2-D [Eqs.

(27)–(29)]. The resulting values of the parameters c and

monolayer volume vm are shown in Table 1 along with the

ones arising from fitting with the BET model. Insets: (a) [(b)]

Theoretical correlation of c(z) (as indicated in the text) for Ar

[N2] on nonporous silica.
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decreases monotonically in the range studied. Inset

in part (b) shows that this behavior continues be-

yond k = 2. In both cases, MC simulations agree

very well with theoretical calculations (the data

are not shown for sake of simplicity).

4.3. Comparison with experimental results

In the following, analysis of experimental re-

sults have been carried out in order to bear the sig-

nificance of the adsorbate/surface geometry on the

classical parameters c and vm. For this purpose, in

Fig. 13, experimental adsorption isotherms for the
systems Ar [Fig. 13(a)] and N2 [Fig. 13(b)]/nonpo-

rous silica [3], were discussed in terms of dimers

isotherm equations for different connectivities

[Eqs. (23), (27)–(29)]. Experimental data are re-

ported in amount adsorbed, v [cm3 g�1 (STP)], as

a function of relative pressure, p/p0. Symbols cor-

respond to experimental data and lines represent

theoretical curves. The values of the fitting param-
eters c and vm are shown in Table 1. In all cases,

the fitting errors do not exceed 7%. Several conclu-

sions can be extracted from Fig. 13 and Table 1:

(1) all theoretical approximations agree very well

with experimental results in the range of pressure

studied; (2) as in previous study [40], vm and c

resulting of the fitting from dimers isotherms differ

from those corresponding with BET analysis,
being c < cBET and vm > vm,BET; (3) vm is not a sen-

sitive parameter to connectivity, ranging from 38.1

(z = 3) to 39.9 (z = 6) for nitrogen and from 35.9

(z = 3) to 37.9 (z = 6) for argon; (4) c is strongly

dependent on the relation adsorbate/surface geo-

metry. The result is consistent with the definition

of c as the ratio between the single-molecule parti-

tion functions in the first and higher layers. Under
this consideration, c involves a mixing of energetic

and entropic effects. Thus, the larger values ob-

tained for c in the BET case trace to the compen-

sation arising in the BET (monomer) model

because of its larger entropy with respect to the di-

mer (k-mer) case [26]. On the other hand, the pre-

viously defined parameter cef, which contains

information about the configuration of the mole-
cule in the adsorbed state, allows us qualitatively

understood the functionality of c with z (for a fixed

k = 2). In a crude approximation, values of c in
Table 1 can be correlated by fitting cef in function

cef(k,z,c) = kg(z,k)c(z). The procedure (see insets)

provides the monotonous decreasing observed in

Table 1 for c [c(z) = cef/z], where the values ob-

tained for cef were (354 ± 22) and (58 ± 3) for
nitrogen and argon, respectively.

In Fig. 14, linearized forms of isotherms in Fig.

13 are plotted in the range of low pressure. By

using the same fitting parameters of Table 1,

experimental data are compared with theoretical

curves. In all cases, theoretical isotherms provide

very good approximations. As in many experimen-

tal isotherms, a detailed analysis of theoretical



Table 1

Resulting values of the parameters c and monolayer volume vm from fitting in Figs. 13 and 14

Adsorbate/nonporous silica 1-D, Eq. (23) OB, z = 3 OB, z = 4 OB, z = 6 BET

c vm c vm c vm c vm c vm

N2 160 39.0 134 38.1 97 38.7 66 39.9 206 36.5

Ar 27 36.5 21 35.9 16 36.5 10 37.9 43 32.5

vm is expressed in cm3 g�1 (STP).
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Fig. 14. Low-pressure adsorption data of Ar [part (a)] and N2

[part (b)] on nonporous silica, complete data given in Fig. 13.
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data indicates a nonlinear behavior of Eqs. (23)

and (27)–(29) at low pressure. In other words,

the rigorous treatment of multilayer adsorption

considering the polyatomic nature of the adsor-

bate, is indicating that multisite occupancy is a

source of nonlinearity, even though lateral interac-

tions and surface heterogeneity are not accounted
for in the model.
5. Conclusions

In the present paper, an analytical approach to

the multilayer adsorption isotherm of polyatomic

adsorbates (k-mers) has been proposed. The

approximation provides the isotherm in the multi-

layer regime from the isotherm at monolayer. In

this framework, exact solution in one dimension
was obtained and calculations were extended to

k-mers in two-dimensional surfaces, based upon

the OB and EA approximations [28].

The proposed model is simple, easy to apply in

practice, and leads to new values of surface area

and adsorption heats. Physically, these advantages

are a consequence of properly considering the con-

figurational entropy of the adsorbate. This treat-
ment, in which the entropic effects of the

adsorbate size are accounted for, bears theoretical

interest because it represents a qualitative advance

with respect to the existing models of multilayer

adsorption.

In all cases, theoretical predictions were dis-

cussed and compared with MC simulated data,

which reinforces the robustness of the two metho-
dologies employed here.

In addition, experimental adsorption isotherms

of argon and nitrogen on nonporous silica have

been adjusted in order to test the applicability of

our theoretical model. Several conclusions can be

drawn from the fitting of experimental data. On

one hand, the monolayer volume (or equivalently,

surface area), vm, resulting from experiments by
using the one-dimensional isotherm of dimers (i)

is approximately 1.1 times the corresponding ones

from BET; and (ii) remains practically constant

with increasing connectivity and k = 2. On the

other hand, the parameter c depends on size of

adsorbate and connectivity. In this sense, our goal

was to develop a simple model for c(z), which was
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capable to reproduce the correct qualitative behav-

ior of the fitting values for c from multilayer iso-

therm equations for different connectivities.

In summary, an important advance has been

addressed in the present contribution by including,
in a very simple way, the effect of the adsorbate/

surface geometry on the multilayer adsorption the-

ory. This effect, which is not taking into account in

the standard BET model, should be very impor-

tant in numerous real systems in presence of mul-

tisite occupancy.
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Appendix A

In order to determine cn, we calculate the inflec-

tion point of the adsorption isotherm

d2h

dðp=p0Þ
2
¼ 0 and p=p0 ! 0 ðlow densityÞ.

ð32Þ
By calculating the second derivative of h in Eq.

(7), we obtain:

h00 ¼ h00mon

ð1� p=p0Þ
þ 2h0mon

ð1� p=p0Þ
2
þ 2hmon

ð1� p=p0Þ
3
;

ð33Þ
where h00 and h 0 represent oh/o(p/p0) and o2h/
o(p/p0)

2, respectively. Now, by taking limp/p0!0 in

Eq. (33), which implies limhmon!0, the following

relation is obtained:

0 ¼ h00mon þ 2h0mon. ð34Þ
The last equation allows us to obtain cn from

the monolayer adsorption isotherm. At low den-

sity (hmon ! 0), the Occupation Balance approach
can be considered as an exact result [28]. In gene-

ral, the monolayer adsorption isotherm can be

written as:

1

k
¼ R

n
; ð35Þ

where R is the mean number of states available to

the (n + 1)th molecule, given n particles already

adsorbed on a lattice of M sites. R can be written

as:

R ¼ G� gnþ nf ðhmonÞ. ð36Þ
G (g) represents the number of equilibrium states

available to a single molecule (the number of states

excluded per molecule) at infinitely low density.

Due to the number of states excluded per molecule

depends in general on the number of molecules n

in the surface, a correction function, f(hmon), is
introduced. For instance, G = M, g = 1 and f = 0

for monomers. On the other hand, G = 2M, g = 7

and f 5 0 [28] for dimers adsorbed on a square lat-

tice of M sites. We propose that f(hmon) can be ex-

panded in a power series in terms of hmon:

f ðhmonÞ ¼
X1
i¼1

aih
i
mon. ð37Þ

The inverse of the fugacity can be determined

from Eqs. (35) and (36),

1

k
¼ G

n
� g þ f ðhmonÞ. ð38Þ

Then, by using Eq. (37) and Eq. (4), the relative
pressure can be written as:

p=p0 ¼
hmon

cGk þð1�cgÞhmonþchmonf ðhmonÞ
¼ hmon

F ðhmonÞ
;

ð39Þ
where Gk = kG/M. Differentiating both sides of

Eq. (39) with respect to p/p0, we obtain:

1 ¼ h0monF ðhmonÞ � hmonF 0ðhmonÞ
F 2ðhmonÞ

. ð40Þ

By taking hmon ! 0 in Eq. (40), we arrive to the

expression:

h0mon ¼ cnGk. ð41Þ
Differentiating again Eq. (40) with respect to

p/p0, and using simple algebraic operations, we

obtain:
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h0mon ¼ 2cnGkð1� cngÞ. ð42Þ
Finally, from Eqs. (34), (41) and (42), which are

valid only in the limit p/p0 ! 0, we can determine

the value of cn:

cn ¼
2

g
. ð43Þ

As it can be observed, the expansion coefficients

in Eq. (37) do not appear in Eq. (43). Conse-

quently, Eq. (43) is exact. For the one-dimensional

case g = 2k � 1, which implies

cn ¼
2

2k � 1
. ð44Þ

Eq. (44) is valid for kP 1 (cn = 2 for monomers).

On the other hand, for two-dimensional lattices:

g ¼
5 for k ¼ 2;

6k � 1 for k > 2 honeycomb lattices;

�
ð45Þ

then

cn ¼
2
5

for k ¼ 2;
2

6k�1
for k > 2 honeycomb lattices;

(
ð46Þ

g ¼ k2 þ 2k � 1 for k P 2 square lattices;

ð47Þ
then

cn ¼
2

k2 þ 2k � 1
for k P 2 square lattices;

ð48Þ

g ¼ 2k2 þ 2k � 1 for k P 2 triangular lattices;

ð49Þ
then

cn ¼
2

2k2 þ 2k � 1
for k P 2 triangular lattices.

ð50Þ
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