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Abstract

The Metabolomics Quality Assurance and Quality Control Consortium (mQACC) evolved from 

the recognized need for a community-wide consensus on improving and systematizing quality 

assurance (QA) and quality control (QC) practices for untargeted metabolomics. As an initial step, 

members of the consortium and several non-members who used liquid chromatography-mass 

spectrometry (LC-MS) untargeted metabolomics were asked to voluntarily participate in a 

collaborative research project and took part by providing the QA and QC practices utilized in their 

laboratories, via a six-page questionnaire composed of over 120 questions and comment fields. All 

contributors to this project are authors. Responses were then analyzed to identify common and 

divergent QA and QC practices among the contributing laboratories. For QA, many laboratories 

reported documenting maintenance, calibration and tuning (82%); having established data storage 

and archival processes (71%); depositing data in public repositories (55%); having standard 

operating procedures (SOPs) in place for all laboratory processes (68%) and training staff on 

laboratory processes (55%). For QC, universal practices included using system suitability 

procedures (100%) and using a robust system of identification (Metabolomics Standards Initiative 

level 1 identification standards) for at least some of the detected compounds. Most laboratories 

used QC samples (>86%); used internal standards (91%); used a designated analytical acquisition 

template with randomized experimental samples (91%); and manually reviewed peak integration 

following data acquisition (86%). A minority of laboratories included technical replicates of 

experimental samples in their workflows (36%). Due to the recruitment method for participants 

and its voluntary nature, although the 23 contributors were researchers with diverse and 

international backgrounds from academia, industry and government, most being current members 

of mQACC, they are not necessarily representative of the worldwide pool of practitioners. The 

findings presented here, in addition to other data gathering efforts within mQACC, will be used to 

guide discussions for recommendations of best practices within the community and to establish 

internationally agreed upon reporting standards.

Introduction

Untargeted metabolomics detects and identifies as many small molecules (typically 

compounds < 2000 Da) present in specimens as is technically possible for a given platform, 

usually in the range of hundreds to low thousands. Often referred to as a discovery tool, 

untargeted metabolomics provides an open evaluation of detectable small molecules and can 

identify novel signatures of exposures or disease, in animals, plants and microbes and 

provide a route to understand biological processes at a mechanistic level. Unlike measures 

generated from genomics, small molecules represent the products of endogenous 
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metabolism, in addition to products of environmental exposure (including lifestyle, diet, and 

other environmental exposures), individual-specific metabolism driven by underlying 

genetics, gut microbial influences, and the presence or absence of disease or pathological 

processes. Data derived from untargeted metabolomics have been used to interrogate the 

mechanisms underlying exposure-disease relationships and treatment or intervention effects 

as well as to understand the metabolic phenotype at the human population level (Dunn et al., 

2015, Ilhan et al., 2019, Gafson et al., 2019, Chen et al., 2019, Bouhifd et al., 2013, Ramirez 

et al., 2013, Crestani et al., 2019, Hollister et al., 2019, Hu et al., 2019, Lains et al., 2019, 

Rangel-Huerta et al., 2019, Yu et al., 2019, Cao et al., 2019, Shi et al., 2019, Kelly et al., 

2019, Blacher et al., 2019, Wilmanski et al., 2019, Tang et al., 2019, Plaza-Diaz et al., 2019, 

de Groot et al., 2019, Wittemans et al., 2019, Tziotzios et al., 2019, Burrage et al., 2019, 

McCullough et al., 2019, Olson et al., 2018, Zambrana et al., 2019, Sato et al., 2019, 

Rebholz et al., 2019, Isganaitis et al., 2019, Gangler et al., 2019, Cirulli et al., 2019, Shin et 

al., 2014).

Due to the enormous potential of untargeted metabolomics to enrich scientific research, 

investigators increasingly include these data in their research. This has led to a rise in the 

number of laboratories and core facilities with untargeted metabolomics capabilities. 

However, the lack of clear standard operating procedures (SOPs), or recommendations 

regarding untargeted metabolomics quality management, including quality assurance (QA) 

and quality control (QC), has called into question the quality and integrity of metabolomics 

data (Bouhifd et al., 2015). Given the current mandates for submission of data into public 

repositories according to the Findable, Accessible, Interoperable and Reusable (FAIR) 

principles for the benefit of the wider community (Wilkinson et al., 2016), the lack of clear 

quality management practice guidelines makes discerning valid and reliable data very 

difficult, if not impossible. The concern within the untargeted metabolomics community, and 

the agencies that fund them, is that data collected under poor quality management could 

generate biased results, waste valuable resources throughout the scientific process, halt 

progress, or even harm the field’s reputation for high quality science. This would be a great 

disadvantage considering the potential of metabolomics to substantially contribute to the 

advancement of scientific discovery.

Multiple organizations have set forth formal definitions for the terms Quality Management 

System (QMS), Quality Assurance (QA) and Quality Control (QC) including ISO (2015) 

and Eurachem (2016). For the purposes of this document, mQACC used the following 

definitions which built on these formal definitions:

• Quality Management System (QMS) is a management system to direct and 

control an organization with regard to quality where the organization can be 

small (e.g. an academic research group or start-up company) or large (e.g. a 

government organization or large pharmaceutical company).

• Quality Assurance (QA) is part of a quality management system that is focused 

on providing confidence that quality requirements will be fulfilled and includes 

practices focused on providing confidence that quality requirements will be 

fulfilled consistently over time. QA processes are performed independent of data 
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acquisition processes and include, but are not limited to, training, calibrating 

instrument, writing SOPs and performing audits.

• Quality Control (QC) is part of a quality management system that is focused on 

fulfilling quality requirements. Practices are focused on demonstrating that 

quality requirement(s) have been fulfilled. In general terms, most QC processes 

are performed during or after data acquisition in each study. Examples of QC 

processes include, but are not limited to, analysis of QC samples, analysis of 

sample blanks, and reporting of study-specific quality metrics.

Several initiatives have begun to address the lack of recommendations regarding untargeted 

metabolomics quality management including the Metabolomics Standards Initiative in 

Toxicology (MERIT), through the European Centre for Ecotoxicology and Toxicology of 

Chemicals (ECETOC); and the Metabolomics Standards Initiative (MSI) through the 

international Metabolomics Society. These groups and others have convened to define and 

highlight quality management processes (Viant et al., 2019, Kirwan et al., 2018, Sumner et 

al., 2007, Dunn et al., 2017, Playdon et al., 2019, Dudzik et al., 2018, Bouhifd et al., 2015). 

Another such initiative was the “Think Tank on Quality Assurance and Quality Control for 

Untargeted Metabolomics Studies” sponsored by the US National Institutes of Health (NIH), 

where the inaugural meeting convened at the NIH in 2017 (Beger et al., 2019). 

Metabolomics practitioners from government, academic and industrial laboratories from 

around the globe were invited to discuss QA and QC practices in untargeted metabolomics. 

As such, participants represented a diversity of untargeted metabolomics research 

applications and regulated environments as well as repository providers. One of the 

outcomes of this Think Tank was the formation of the Metabolomics Quality Assurance and 

Quality Control Consortium (mQACC). The mission of mQACC is to communicate and 

promote the development, dissemination and harmonization of best QA and QC practices in 

untargeted metabolomics. The objectives of mQACC that support the consortium’s mission 

are to: 1) identify, catalog, harmonize and disseminate QA/QC best practices for untargeted 

metabolomics; 2) establish mechanisms to enable the metabolomics community to adopt 

QA/QC best practices; 3) promote and support systematic training in QA/QC best practices 

for the metabolomics community; and 4) to encourage the prioritization and development of 

reference materials applicable to metabolomics research.

An initial step to achieve these objectives was to summarize the current quality management 

practices, both QA and QC, of laboratories that were willing and able to share them. The 

goals of this manuscript were to: (1) highlight common QA/QC practices as a framework for 

minimum requirements, (2) highlight the differences between laboratories in QA/QC 

practices and (3) report and discuss practices that are not currently routine in any lab. The 

differences found can indicate specific potential challenging areas within the community for 

establishing guidelines and can also serve to highlight areas that warrant further discussion 

and development. Since QA/QC practices were recently detailed elsewhere (Broadhurst et 

al., 2018, Viant et al., 2019, Dudzik et al., 2018), we focus here on identifying common 

practices and differences in QA/QC workflows across 23 laboratories and provide references 

for detailed descriptions of the practices themselves.
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Methods

Members of the mQACC consortium and several non-member contributors who utilized 

liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics were asked to 

voluntarily participate in a collaborative research project and took part by providing the QA 

and QC practices utilized in their laboratories, via a six-page questionnaire composed of 

over 120 questions and open comment fields. All individuals who contributed their 

laboratory’s protocols are listed as authors. Representatives from participating laboratories 

filled out a questionnaire (Supplementary Material 1) and/or submitted their relevant QA/QC 

standard operating procedures (SOPs). One laboratory submitted solely its QA/QC SOP, 

which was then used to fill out the questionnaire as fully as possible by the primary author. 

The scope of the questionnaire was limited to LC-MS untargeted metabolomics practitioners 

to ensure a manageable questionnaire length for participants. The questionnaire posed a 

series of yes/no questions on the use of specific QA/QC procedures, followed by more 

granular questions and open comment fields regarding the frequency and purpose of those 

practices for those who answered affirmatively. These data were used to determine the 

proportion of laboratories that used the various QA/QC practices, to quantify QC sample 

frequency, and to summarize how the data from QC samples was utilized by the laboratory.

If a question was unanswered or the answer provided insufficient detail, it was considered 

“Not Specified” and was excluded from both the numerator and denominator in the 

calculation of percent use. We present the proportion of “Yes” responses out of the number 

of total responses to the question, in addition to the count. Contributors did not always 

answer all questions, and no criteria was used to exclude a participant based on a minimum 

percentage of responses. This led to instances of seemingly incongruent data where the 

denominators of different questions could be different. The difference in the denominator 

was solely a result of the number of laboratories choosing to or not to respond to each 

question. In specific cases, the number of non-respondents was highlighted. Instances where 

respondents noted that they were “In process” of development of specific QA or QC 

practices were counted as a “no” responses.

Results

Twenty-three (23) laboratories chose to participate in the questionnaire. Seventy percent of 

respondents (16/23) were from academic institutions, 17% (4/23) were from government 

institutions and 13% (3/23) were from industry. Sixteen contributors represented institutions 

located in North America, six were from Europe, two were from Australasia, and one was 

from South America. The questionnaire data transposed into an excel file and percent usage 

rates of all QA and QC practices can be found in Supplementary Material 2 and 3, 

respectively. Seventeen (17) of the contributing laboratories had a response rate of over 95% 

of the questions, and twenty (20) of the laboratories answered over 90% of the questions. 

There was one laboratory whose response rate was significantly lower than the other 

contributors having only answered 46% of the questions (Supplementary Material 6). We 

could not assess the reasons why contributors did not answer any particular question, but it 

does appear to be more related to the individual filling out the questionnaire, rather than the 
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question itself as the response rate per QA/QC topic area was well conserved across the 

questionnaire (Supplementary Material 7).

1.0 General Quality Assurance (QA) Practices

Quality assurance is the part of a quality management system that ensures that a laboratory 

is be able to meet its quality objectives. Many QA activities are, therefore, related to 

assessing the workflow to identify areas where errors may occur and making sure processes 

are in place and adhered to that track and monitor the processes that are independent of data 

collection (Kauffmann et al., 2017). Various QA procedures were queried and organized into 

general categories as follows.

1.1 Review/Audits

Some QA activities involve reviewing processes and workflows with a focus on finding and 

mitigating potential sources of error. This can be done through a variety of processes 

including formal regulatory accreditation where external organizations such as the 

International Organization for Standardization (ISO) or the College of American 

Pathologists (CAP) that provide established metrics for assessing a method and auditing the 

organization for compliance as part of accreditation. Only 10% (2/20) of respondents 

reported that their laboratories were fully regulated or were maintaining accreditation from 

an external entity, which included one industrial and one academic laboratory. One 

additional laboratory was in the process of accreditation, and another two laboratories were 

part of larger organizations that abided by set regulations (e.g. operating at Good Laboratory 

Practices (GLP) standards or Good Clinical Practices (GCP) standards), which were not 

directly incorporated by the laboratories. About a third (29%: 6/21) of responding 

laboratories utilized an independent QA group within their organization, and 27% (6/22) of 

responding laboratories reported regular laboratory audits by either internal or external 

reviewers.

Multiple rounds of data quality review and approval, ideally performed by staff not directly 

involved in the data acquisition, is generally considered a QA practice because reviewer(s) 

assess whether the initial data review and approval processes were performed according to 

established quality management system specifications. Half (50%: 11/22) of responding 

laboratories reported having a formalized review process with multiple levels of approval, 

with review processes under development in two additional laboratories.

1.2 Traceability and Trackability

Part of a quality system is the traceability/trackability of processes that track how a sample 

is handled or stored and whether there are any changes to or deviations from SOPs. Quality 

assurance establishes processes needed to easily track and periodically review these 

procedures for potential improvement. A third (32%: 7/22) of responding laboratories 

reported using sample tracking, management and chain of custody software (e.g. LIMS 

system). Half of respondents (50%: 11/22) reported having established a formal document 

control system with version control and approval processes (under development in one 

laboratory). Half (50%: 11/22) of responding laboratories had formal documentation control 
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processes for tracking at least some laboratory phenomenon, such as deviations from SOPs, 

change control documentation (formal tracking, traceability and approval for any changes to 

methodology), incidents and corrective and preventative action plans (CAPAs: a formal 

process to track errors in process and put in place and report). Many (82%: 18/22) 

responding laboratories utilized logbooks or files to document activities such as 

maintenance, calibration and tuning, while a third (32%: 7/22) also reported tracking/

logging new mobile phase production lots/batches, new column installation and column lots/

batch. Seventy-one percent (15/21) of the responding laboratories reported having an 

established data storage and archival process (under development in one laboratory). Over 

half (55%: 12/22) of responding laboratories reported uploading data into a public repository 

with three noting that this was only done for specific projects/studies or when required by 

the publication journal or project funding agency. This process was under development in 

two additional laboratories. Two thirds (68%: 15/22) of responding laboratories reported 

having SOPs in place for all laboratory processes, with SOPs under development for two 

additional laboratories (e.g. SOPs for sample handling, storage and shipping).

1.3 Equipment Testing and Monitoring

As previously stated, QA activities ensure that a laboratory will be able to meet its quality 

metrics, though quality metrics can differ between laboratories. It is, therefore, important to 

maintain established processes that demonstrate the functionality of the laboratory and 

equipment to perform the methods independent of actual sample analyses. Sixty-two percent 

(13/21) of responding laboratories reported having established systems to set and monitor 

laboratory atmospheric conditions with six also reporting having established an automated 

alarm notification system that sent out alerts (e.g. emails, texts) to user-specified personnel if 

the laboratory conditions deviated outside of user specified set bounds. The majority (91%: 

20/22) of responding laboratories reported having established systems to set and monitor 

cold storage temperature units with 16 laboratories also using an automated alarm 

notification system that sent out alerts (e.g. emails, texts) to user-specified personnel if the 

cold storage units deviated from set parameters. Most (81%: 17/21) respondents reported 

having established new equipment and instrument qualifications to ensure instrument 

functionality. In addition to installation and operational qualifications, 12 of these 

laboratories also established performance qualifications that had to be met. All responding 

laboratories (22/22) reported having established preventative maintenance (PM), calibration 

and tuning schedules for their LC and MS systems. Eighty-six percent (19/22) of responding 

laboratories had established calibration and/or maintenance schedules for some secondary 

equipment including pipettes and analytical weighing balances and 18% (4/22) of the 

responding laboratories reported comprehensive scheduled primary and secondary 

equipment maintenance and calibration processes which further included centrifuges, drying 

apparatus, homogenization equipment, and water supply.

1.4 Staff Training and Proficiency Testing

In addition to processes that demonstrate the ability of equipment to meet quality metrics, 

laboratory staff can also be assessed for their ability to meet quality metrics through training 

and proficiency testing. Over half (55%: 12/22) of responding laboratories reported having 

established formal or semi-formal training processes for staff and 27% (6/22) reported also 
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conducting proficiency testing, albeit with varying degrees of formality. Three laboratories 

conducted specific and routine proficiency testing of staff annually.

2.0 General Quality Control (QC) Practices

2.1 Use of a System Suitability Procedure

System suitability procedures determine whether instrumentation and methods are 

performing to a defined, appropriate and acceptable level before acquisition of project 

samples (Viant et al., 2019, Broadhurst et al., 2018). All respondents (23/23) reported using 

a system suitability procedure to establish instrument and method readiness. Over 90% of 

responding laboratories reported that system readiness was defined by the correct retention 

time (RT) of standards within acceptance criteria (22/22), correct mass accuracy of defined 

compounds within acceptance criteria (23/23) and sensitivity within acceptance criteria 

(22/23) (Figure 1A). Sixty-four percent of responding laboratories (14/22) also reviewed 

chromatographic peak width as part of determining instrument readiness. Over 70% of 

laboratories also required instrument stability over several injections (17/23) and reviewed 

peaks observed in blank samples (18/23). The specific acceptance criteria that each 

laboratory used was not evaluated in this questionnaire.

Different types of samples were used to determine instrument readiness. Forty-three percent 

(9/21) of responding laboratories reported assessing system suitability with sole use of a 

solution of authentic chemical standards of varying complexity, which ranged from a small 

number of chemical standards to a mixture of over 40 chemical standards (Figure 1B); 10% 

(2/21) of responding laboratories reported the sole use of a biological sample spiked with 

chemical standards; 48% (10/21) of responding laboratories reported using multiple sample 

types for system suitability assessment including various combinations of a solution of 

chemical standards (10/10), a biological sample spiked with chemical standards (9/10) and a 

non-spiked biological sample (2/10).

2.2 Use of Quality Control Samples

2.2.1 Blanks

2.2.1.1 Process/Extraction Blanks: A process or extraction blank (Broadhurst et al., 

2018, Viant et al., 2019) is defined as a blank sample (for example, an aliquot of water) 

passed through the analytical process including the extraction and instrument analysis 

followed by comparison to a biological sample’s data. Most (86%: 19/22) of the responding 

laboratories reported analyzing process/extraction blanks with every study. With regards to 

frequency of use, 58% (11/19) of responding laboratories analyzed these blanks at multiple 

points throughout a batch, specifically one or two blanks at the beginning and end of each 

batch, and additional blanks analyzed intermittently placed throughout the batch at 

approximately every 10 to 20 injections. The remaining 42% (8/19) of responding 

laboratories analyzed one or two process/extraction blanks per batch. Questions were also 

asked, in the questionnaire, to elucidate the use of the blank data. The majority of 

responding laboratories (86%: 19/22) reported using the process/extraction blanks data to 

assess carryover in the methods, particularly during method development (Figure 2A). Two 

thirds (66%: 15/22) of responding laboratories reported using process/extraction blanks data 
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to identify contaminants in the processes arising from storage and handling. Most (71%: 

15/21) responding laboratories used the process/extraction blank data to filter or remove 

peaks detected in the experimental samples, of which one laboratory used background 

subtraction methodology and the remaining laboratories filtered peaks based on blank levels 

by using a defined “must exceed” ratio of the experimental peak intensity to blank peak 

intensity. Of those laboratories that chose to set a defined “must exceed” ratio, seven 

reported using a minimum 3:1 experimental-to-blank ratio for inclusion of peaks; four 

laboratories used a 10:1 ratio; one laboratory used a 5:1 ratio and one laboratory used a 

conservative 20:1 ratio (Figure 2B).

2.2.1.2 System Suitability Sample/Solvent Blank with Standards: Most (70%: 16/23) 

laboratories reported injecting a system suitability sample (Broadhurst et al., 2018) (a 

mixture of standards in a solvent blank) at defined intervals throughout a batch while the 

frequency of use mirrored that of the process/extraction blanks, where slightly over half of 

the laboratories analyzed these blanks multiple times throughout a batch. The reported use 

of this blank was mostly to isolate and assess instrument performance independent of the 

sample extraction process.

2.2.1.3 Solvent Blank (No Internal Standards): Over a third (39%: 9/23) of laboratories 

reported analyzing a pure solvent blank (Broadhurst et al., 2018) (a solvent that has not 

passed through the sample preparation process applied to biological samples and which 

contains no internal standards) injected periodically throughout a batch, with eight of these 

nine laboratories utilizing this blank in addition to the process/extraction blank. This solvent 

blank was reported as being used to assess carryover, including the carryover of the internal 

standards that have generally been spiked into all other samples. Solvent blanks were also 

used to assess contamination coming solely from the solvent system.

2.2.2 Pooled-QC/Intra-Study QC Samples—A pooled QC or intra-study QC sample 

is a technical replicate of a sample that has the same matrix as the sample type in the study 

(Sangster et al., 2006). Pooled/intra-study QC samples are created by pooling an aliquot of 

all or a subset of the experimental biological samples in the study (Broadhurst et al., 2018, 

Viant et al., 2019, Dunn et al., 2012, Gika et al., 2007, Bijlsma et al., 2006, Gika et al., 

2008). Almost all (96%: 22/23) laboratories reported using pooled QC/intra-study QC 

samples. The frequency was consistent with most responding laboratories running one to 

three injections at the beginning of a batch (excluding column conditioning injections), one 

to two at the end, and intermittently throughout the batch, generally every 10 to 20 

injections. Approximately three-quarters (76%: 16/21) of responding laboratories used these 

samples for column conditioning before batch analysis, 71% (15/21) used them to assess 

relative standard deviation (RSD) for a study and 76% (16/21) reported using the pooled/

intra-study QC samples to assess peak quality (Figure 3A). About half (55%: 12/22) of 

responding laboratories reported using these data to filter/remove peaks based on the relative 

standard deviation (RSD) of response and detection rate criteria. Specifically, in seven 

laboratories, the RSD of the experimental peak in the technical replicates were required to 

be <30%; two laboratories used <25%; two laboratories used <20% and one laboratory 

reported using a <15% RSD criteria (Figure 3B). Detection rate filter criteria (Smilde et al., 
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2005) ranged from a required detection rate of greater than 50%, to a required 100% in all 

technical replicates for inclusion in the subsequent data analyses.

2.2.3 Long-Term Reference (LTR)/Intra-Laboratory QC Samples—A long-term 

reference (LTR) or intra-laboratory QC sample is a large pool of samples that is analyzed 

consistently and repeatedly over time within a laboratory, though typically at a lower 

frequency than for pooled-QC/intra-study QC samples. To support this QC sample type, a 

large quantity of this sample is required, and the sample needs to be stable over the time-

period of use (Viant et al., 2019, Broadhurst et al., 2018). Half (52%: 11/21) of responding 

laboratories reported using a long-term reference QC sample (with three additional 

laboratories in the development stage). Eight of these laboratories used their own pool of 

sample(s) for this purpose, one laboratory did not specify the LTR source and the rest used 

the National Institute of Standards and Technologies (NIST) SRM 1950 (Simon-Manso et 

al., 2013). Some laboratories noted that LTR samples were not applicable to their laboratory 

since they did not analyze samples from longitudinal or large studies that would require 

assessment of long-term instrument stability. The laboratories that utilized LTR samples 

analyzed them multiple times per batch, generally following the same trend as blanks with 

one to two at the beginning of the batch, one to two at the end of the batch and additional 

samples interspersed throughout the batch. One laboratory reported that if an LTR sample 

was being used for bridging long-term studies, it was incorporated approximately every 10 

samples. Reasons for incorporating LTR samples were to: 1) assess the stability of 

laboratory processes over time and/or 2) bridge/normalize batch-to-batch data over time 

(Zelena et al., 2009, Dunn et al., 2011).

2.2.4 Standard Reference Material (SRM)/Inter-Laboratory QC Samples—A 

standard reference material (SRM)/inter-laboratory QC sample is an externally tested, 

validated and maintained sample that is available for purchase by the metabolomics 

community (Broadhurst et al., 2018, Viant et al., 2019). SRMs can range in compound 

complexity but within the context of untargeted metabolomics, it is generally a biological 

sample of appropriate biological origin (human, plant, fish, etc.) and matrix (plasma, urine, 

etc.). A third (33%: 7/21) of responding laboratories reported the use of an SRM, 

specifically commercially available SRM 1950 (NIST Metabolites in Frozen Human Plasma 

(Simon-Manso et al., 2013)), and two laboratories also used several different SRMs (all 

NIST standards). Two laboratories noted that SRM samples were used as their LTR QC 

samples while the other laboratories reported the use of an SRM only in the context of cross-

platform or site performance comparisons.

2.3 General Practices

2.3.1 Use of Internal Standards—Internal standards are defined here as isotopically 

labelled or otherwise not endogenously present chemicals which are intentionally spiked 

into some or all samples in a process and are used to help assess data quality. Most (91%: 

21/23) laboratories reported using internal standards in their laboratories. Two laboratories 

used them in some but not all of their methods. Of the laboratories/methods that used them, 

internal standards were consistently spiked into all samples. Eight of the laboratories spiked 

different standards at two different points in the process (pre-extraction and post-extraction); 
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seven laboratories spiked all standards pre-extraction; four laboratories spiked all standards 

post-extraction; and two laboratories did not respond to their spiking procedures (Figure 

4B). Among laboratories spiking standards at multiple times in the extraction process, the 

rationale was to separately assess quality throughout the entire process, including sample 

extraction and the quality of the instrumental analysis and ionization matrix effects. The 

number of standards utilized per method varied greatly across the laboratories from one to 

800 standards, with one to fifteen standards being the most common. Internal standards were 

specified to be chosen to cover both the analytical method mass range and chromatographic 

time, in addition to not interfering with other compounds present in the sample. A list of 

specific standards used by each laboratory was not requested, therefore, information on their 

origin and/or if these standards were isotopically labelled were not available.

More than 80% of responding laboratories used the spiked internal standards to assess the 

chromatographic performance (19/21) and mass accuracy (17/21) of the data. Over 70% of 

responding laboratories reported using the standards to assess RSDs (15/21), to monitor for 

instrument sensitivity drift (16/21) and mass stability (16/21) across the data. Just under half 

(45%: 9/20) used their standards for peak retention time alignment post-acquisition (Figure 

4A).

2.3.2 Use of Technical Replicates of Experimental Samples—Technical 

replicates are repeat analyses of the same biological sample and should not be confused with 

biological replicates which are repeat biological samples of a specific study design, i.e. six 

mice in a control group are considered biological replicates. Technical replicates can be 

applied in two primary ways. One is to perform two or more injections from the same post-

extraction sample tube (“injection replicates”) and another is by re-extracting the same 

source of biological sample multiple times and analyzing each sample once and 

independently (“extraction replicates”). Over a third (36%: 8/22) of responding laboratories 

reported the use of technical replicates on at least a subset of experimental samples in 

addition to QC samples. An additional six laboratories used technical replicates on 

experimental samples “sometimes” or in relation to specific methods or when the number of 

biological replicates was low. Five laboratories reported that their experimental technical 

replicates were injection replicates (i.e. injections from the same post-extraction tube), three 

laboratories used extraction replicates (i.e. analysis of the same source sample extracted 

multiple times) and other laboratories used a combination of both replicate types depending 

on the method or study. The investigators reported using the technical replicate data to 

monitor reproducibility while other investigators used them for batch normalization to 

correct for instrument drift within a batch or to merge/integrate data from different batches/

studies analyzed at different times. When technical replicates of experimental samples were 

used, most investigators reported that data from the replicates were averaged.

2.3.3 Run Order Randomization and Balancing—Run (or analysis) order is defined 

as the order in which the experimental and QC samples are analyzed in a batch (Broadhurst 

et al., 2018). Run order randomization is the process by which experimental samples are 

randomly distributed within a batch to ensure that important metadata elements are not 

inadvertently accumulated during any phase of the batch, such as running more control 
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samples at the beginning of the batch than at the end. Balancing is the process by which the 

experimental samples are intentionally distributed based on metadata to ensure that 

important metadata elements are not inadvertently accumulated across multiple batches, 

such as running significantly more females or control samples in one batch compared to 

other batches. Balancing is more critical for multiday analyses than for single day analyses if 

the run order is randomized. Paired case/control sets can be randomized across batches to 

address this issue. Most (91%: 20/22) responding laboratories reported randomizing 

experimental samples within a defined template of QC samples and one additional 

laboratory randomizing all samples (experimental and QC). Eighty-one percent (17/21) of 

responding laboratories reported balancing their study samples. Laboratories that did not 

balance their study samples did not provide a specific reason, however, they all reported 

randomization of experimental samples.

2.4 Post Analysis Quality Management

2.4.1 Quality of Compound Identification—Compound identification is the process 

by which an LC-MS peak is assigned a chemical identity. The act of compound 

identification is not a QC practice, however, the verification of the correctness of the 

identification is considered to be a QC practice. The rigor with which a compound is 

identified has been classified into distinct levels by the Metabolomics Society in order to 

promote a clear understanding of the confidence of the reported identification (Sumner et al., 

2007). MSI level 1 is the highest confidence and most rigorous identification and is defined 

as “a minimum of two independent and orthogonal data relative to an authentic compound 

analyzed under identical experimental conditions”. For LC-MS applications, retention time 

and MS/MS data are utilized for identification. Analysis of authentic chemical standards in 

the research laboratory is essential for the retention time data because different laboratories 

utilize different LC assays (column type, solvents, gradient elution, temperature, stationary 

phase), thus retention time data collected in one laboratory may not be transferable to 

another laboratory. MS/MS data can be collected in different laboratories using the same 

analytical conditions and so data collected in one laboratory are transferable to other 

laboratories. All laboratories (22/22) reported establishing MSI level 1 (Sumner et al., 2007) 

confidence identifications on at least some of the detected compounds (Supplementary 

Material 4). Thirteen respondents stated that they reported the MSI confidence levels for all 

reported/published compounds, and three additional laboratories were in the development 

process. Eighty percent (16/20) of responding laboratories established their own in-house 

library in order to have MSI level 1 confidence identifications. In all cases, the compound 

retention time and mass were stored and in all except one laboratory, the fragmentation 

spectra were also stored within the compound libraries. These libraries ranged in size from 

40 to 4,800 compounds (median = 600; mean=884). The majority (91%: 20/22) of 

responding laboratories also used a public database in their compound identification process. 

Close to two thirds (65%: 11/17) of responding laboratories reported using workflows that 

identified statistically significant compounds only. It should be noted that there are four MSI 

levels for reporting metabolite identifications and that these levels are currently being 

reviewed by the metabolomics community (personal communication, Warwick Dunn, April 

2020).

Evans et al. Page 12

Metabolomics. Author manuscript; available in PMC 2021 October 12.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



2.4.2 Data Quality Review—Many (86%: 19/22) laboratories reported the manual 

review of peak integrations. Four laboratories reviewed only a subset of peak integrations 

which includes: named compounds only, compounds with poor integration track records or 

those compounds highlighted by an automated software system that flagged peaks of 

concern. Greater than 75% of responding laboratories assessed resolution of 

chromatographic peaks (16/18), consistency of integration throughout a study (14/18) and 

signal-to-noise ratio (19/19) (Supplementary Material 5). Two laboratories also used positive 

correlation analysis either across methods or across metabolite groups to assess quality of 

peak integration.

Approximately half (11/21) of the responding laboratories manually reviewed of peak 

alignment across samples in a study. Two additional laboratories used an automated process 

to check alignment quality. Several laboratories used retention time window criteria to assess 

and monitor alignment quality; for example, no greater than 25% of peaks must be outside a 

0.1 min window, or all aligned peaks must be within 0.2 min. Several laboratories also used 

retention time deviation plots to help identify problem alignments. Most (85%: 17/20) 

laboratories used principal component analysis (PCA) score plots to look for clustering of 

replicate samples and to identify potential QC and/or biological outliers during the quality 

review process. Several groups also used additional minimum required detection rates within 

the experimental samples based on group/meta-data criteria; for example, for a peak to be 

included in a study, it must be found in at least 80% of the treatment samples.

Discussion

We designed and administered a questionnaire to assess quality assurance (QA) and quality 

control (QC) management practices of a cross section of international LC-MS untargeted 

metabolomics research groups (including members of the Metabolomics QA and QC 
Consortium (mQACC)) drawing from academic, industry and government facilities (Figure 

5). The over-arching aim of the project was to establish a consensus of QA/QC best practice 

within this specific group of experts such that it could be formally documented and 

disseminated to the broader metabolomics community. We also sought to identify 

differences in QA/QC practices across laboratories to prompt discussion within the 

metabolomics community on areas requiring development, promotion or training. These data 

are intended to inform best practices and reporting standards within the consortium and 

serve as a basis for the expansion of content through further community engagement efforts. 

Future planned activities include conducting similar studies to gather information on QA/QC 

practices for nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-

mass spectrometry (GC-MS) based metabolomics methods, lipidomics methods and to 

determine specific pass/fail metrics and criteria used in quality processes. It is important to 

note that the goal here was not to define which criteria should or should not be used by the 

community but rather to define acceptable practices to use and report such data and 

processes.

This initiative builds upon the continued efforts of the Metabolomics Society (Sumner et al., 

2007, Dunn et al., 2017, Kirwan et al., 2018), MERIT (Viant et al., 2019), the Johns 

Hopkins Center for Alternatives to Animal Testing (CAAT) (Bouhifd et al., 2015) and 
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independent researchers (Broadhurst et al., 2018) to encourage the acceptance and use of 

quality management practices. As such, this publication bridges the various differences in 

terminology among the current publications when referring to the same quality practices.

We found that some practices were commonly adopted among laboratories (>80% usage 

rate)(Figure 6). These included system suitability assessments, sample run-order 

randomization and balancing, the use of authentic chemical standards, and the use of various 

quality control samples such as pooled-QC/intra-study QC samples and blanks. In addition, 

a high degree of concordance occurred among post-analytical quality control practices, such 

as compound identification practices, assessment of integration accuracy and the use of PCA 

for quality assessments of sample clustering. This speaks to the success of the previous 

efforts to bring awareness of these practices to the community, and also to the value of the 

practices to the users (and the metabolomics field) to monitor and assess quality.

For laboratories adopting a specific QC practice, the use of practice-specific procedures was 

comprehensive (Figures 1 to 4, and Supplementary Material 4 and 5). For example, over 

70% of respondents assessed the same factors in system suitability practices, namely: 

sensitivity, mass accuracy, retention time, blank levels and instrument stability (Figure 1). 

Likewise, greater than 70% of laboratories used internal standards to assess chromatographic 

performance, mass stability, mass accuracy, sensitivity/response stability and sample-to-

sample reproducibility (Figure 4); and used pooled-QC/intra-study QC samples to assess 

process reproducibility, peak quality and to condition columns.

We evaluated post-analysis quality practices such as establishing MSI level 1 identifications 

(Sumner et al., 2007) to ensure high confidence compound identification, manual review and 

confirmation of peak integrations and alignment, and the use of PCA as a quality assessment 

tool. Accurate compound identification is fundamental to the process of deriving correct 

biological insight. The rigor with which a compound is identified has been classified into 

distinct levels by the Metabolomics Society in order to promote a clear understanding of the 

confidence of the reported identification (Sumner et al., 2007). MSI level 1 is the highest 

confidence and most rigorous identification and is defined as “a minimum of two 

independent and orthogonal data relative to an authentic compound analyzed under identical 

experimental conditions”. Lower confidence identifications rely on matching experimental 

data to public or commercial spectral libraries that were not collected under identical 

experimental conditions. These data showed that the metabolomics field relies upon public 

and/or commercially available databases for tentative annotations, with over 90% of 

practitioners utilizing them. However, all laboratories also reported establishing MSI level 1 

confidence identifications on at least a subset of metabolites (Supplementary Material 4). 

This was predominantly done by establishing in-house authentic standard libraries which 

ranged in size from 40 compounds to over 4,800, with a median of 600 compounds and a 

mean of 884 compounds. Establishing comprehensive in-house authentic standard libraries 

to support MSI level 1 confidence identification requires a large investment in resources. 

Therefore, some laboratories reported only doing so for a subset of reported molecules, 

presumably focusing on the statistically relevant compounds in their study. An additional 

community effort is underway through the Metabolomics Society’s Metabolite Identification 

Task Group to further “build consensus on metabolite identification reporting standards” and 
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“educate the community on best practices” (www.metabolomicssociety.org/board/scientific-

task-groups/metabolite-identification-task-group).

Other post-analysis quality practices were well conserved with over 80% of practitioners 

reviewing peak integrations (Supplementary Material 5). and using PCA to assess clustering 

of replicate injections and identification of outliers. Half of the laboratories also reported a 

manual review of data alignment using various metrics. As many of the processes involved 

in untargeted metabolomics rely on automated processes such as peak integration, alignment 

and compound identification; data quality is directly impacted by the algorithms at the core 

of the processes, which do not always perform as desired.

Many of the differences in quality control practices were notably related to practices that 

were either inappropriate or unnecessary for some workflows. For example, laboratories that 

rarely analyzed data over long periods of time had no need for a long-term reference 

standard/intra-laboratory QC sample. SRMs/inter-laboratory QC samples were only utilized 

when a comparison of performances across sites or laboratories was required, further 

emphasizing the need for future best practice guidelines to consider the context of their use 

and analysis of the data.

Other differences were relatively minor such as whether blanks included internal standards 

or were solvent blanks with no spiked standards or were differences related to the point at 

which the internal standards were added in the sample preparation process (Figure 4b). 

Ultimately, these differences may or may not need to be defined in best practices. Rather, it 

is more useful to recommend the inclusion of blanks and internal standards with 

explanations for their use, but leave these finer details to the discretion of laboratory 

practitioners to decide what is most appropriate for their laboratory and/or a given study.

Differences were seen in the frequency of injections utilized by practitioners and the specific 

acceptance criteria. For example, for respondents using a ratio of peak levels detected in an 

experimental sample to peak levels detected in a process blank to remove or filter low 

quality peaks, the specific acceptance criteria ranged from a greater than 3-to-1 ratio to a 

greater than 20-to-1 ratio for acceptance (Figure 2B). A similar diversity of acceptance 

criteria was apparent for the process of filtering/removing peaks based on the reproducibility 

of aligned peaks in the technical replicates of a pooled QC/intra-study QC sample; 

acceptance criteria ranged from filtering the data based on an RSD of technical replicates 

(with cut-off values ranging from 15% to 30%) to no filtering criteria based on RSDs at all 

(Figure 3B). These differences in acceptance criteria could contribute to inter-laboratory 

differences, where some labs could remove/disqualify certain compounds as a result of more 

strict acceptance criteria. Laboratories using more strict criteria usually did so for specific 

methods or studies only. Reasons for choosing the method or study-specific criteria were not 

probed, but a better understanding of what drives the choice for stricter quality criteria is 

warranted.

There appeared to be limited consensus on most quality assurance practices among the 

responders. Few laboratories incorporated various QA practices into their workflow outside 

of instrument care, maintenance and sample cold storage. The definition of QA was another 
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area of debate among authors and the wider mQACC community. The definition as settled 

upon after debate was that QA practices provide confidence that quality requirements will be 

fulfilled consistently over time and that these practices are performed independent of data 

acquisition processes. Many QA processes are focused on traceability, establishing defined 

processes with documentation, and optimizing workflows through reviews/audits. 

Informally, part of quality assurance is analogous to having a “second pair of eyes” which 

critically reviewing the entire process to identify areas in need of improvement and to ensure 

traceability. Examples of quality assurance practices include requiring: secondary signatures 

in laboratory notebooks, peer-review of scientific manuscripts, secondary review of data, 

establishing systems for sample and data tracking, regular auditing of all processes, and 

establishing processes and documentation that show alternations to or deviations from SOPs. 

Untargeted metabolomics laboratory practitioners may not be exposed to quality assurance 

processes since these are typically only required in regulated environments. However, their 

added value is important and is mandated if the data generated is destined for regulatory 

agencies or involves the study of humans. The area of QA within the untargeted 

metabolomics community is certainly wide open for discussion regarding which of the QA 

activities are of high enough value for potential incorporation into practice recommendations 

(Manghani, 2011, Dudzik et al., 2018).

Strengths and Limitations of the Study

Strengths of this study include participation from over 20 laboratories from across the globe 

with inclusion of academic, industry and government laboratories. Also, the success of the 

last two mQACC workshops at the annual Metabolomics Society meeting indicate there is a 

strong demand for a forum to discuss these topics, which the current analysis aimed to 

facilitate. Paradoxically, this strength is also a weakness, as the results presented are likely 

biased toward greater incorporation of quality assurance and quality control practices than 

actually occurs in the wider metabolomics community; participants willing to fill out a 

questionnaire on QA/QC are more likely to be concerned with QA/QC practices. The data 

presented here reflects the overall experience and commitment to QA and QC by the 

questionnaire participants. We also acknowledge that many metabolomics practitioners fit 

their QA/QC practices to a specific purpose. For example, some laboratories did not use 

specific quality control practices because the practices were, justifiably, not relevant to their 

workflow. Consequently, any “good practices” recommendations and defined reporting 

standards must be flexible enough to permit these natural and expected differences among 

users with appropriate knowledge transfer. It will be important to expand our questionnaire 

beyond mQACC to gain a more representative snapshot of current practices in the field. In 

summary, there was a high level of consensus among untargeted metabolomics users 

regarding QA and QC practices, however, there were also differences, which warrants open 

discussion and establishment of best minimal practices by the community.

Conclusion

There was a surprisingly high level of consensus regarding best practices across the 

international laboratories sampled for this study. These results provide a useful blueprint for 

QA and QC assessment when developing new assays within a laboratory as well as a 
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teaching resource for analytical chemistry/biochemistry. We are optimistic that through 

mQACC the metabolomics community at large will be able to develop a common set of best 

minimum practices and reporting standards to ensure that metabolomics research is robust 

and repeatable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
System suitability user metrics. A. Parameters assessed to determine instrument readiness. 

B. Percentage of different sample types used for system suitability testing.
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Figure 2. 
Process/extraction blank user metrics. A. Uses of the data; B. Peak filtering criteria when 

removing peaks from experimental samples.
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Figure 3. 
Pooled QC/intra-study QC metrics. A. Pooled/intra-study QC data uses. B. RSD criteria of 

technical replicate peaks when removing peaks from experimental samples.
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Figure 4. 
Internal standards user metrics. A. Parameters assessed and data usage from internal 

chemical standards; B. Percentage of different internal standard spiking procedures.
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Figure 5. 
Summary of example QMS practices. Note that the practices highlighted in this figure as 

QA or QC will likely change as the community continues to discuss these topics and reach a 

consensus.
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Figure 6. 
Common (>80% usage rate) QA and QC practices
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