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ABSTRACT: A discovery-based lipid profiling study of serum samples
from a cohort that included patients with clear cell renal cell carcinoma
(ccRCC) stages I, II, III, and IV (n = 112) and controls (n = 52) was
performed using ultraperformance liquid chromatography coupled to
quadrupole-time-of-flight mass spectrometry and machine learning
techniques. Multivariate models based on support vector machines
and the LASSO variable selection method yielded two discriminant lipid
panels for ccRCC detection and early diagnosis. A 16-lipid panel
allowed discriminating ccRCC patients from controls with 95.7%
accuracy in a training set under cross-validation and 77.1% accuracy in
an independent test set. A second model trained to discriminate early (I
and II) from late (III and IV) stage ccRCC yielded a panel of 26
compounds that classified stage I patients from an independent test set with 82.1% accuracy. Thirteen species, including cholic acid,
undecylenic acid, lauric acid, LPC(16:0/0:0), and PC(18:2/18:2), identified with level 1 exhibited significantly lower levels in
samples from ccRCC patients compared to controls. Moreover, 3α-hydroxy-5α-androstan-17-one 3-sulfate, cis-5-dodecenoic acid,
arachidonic acid, cis-13-docosenoic acid, PI(16:0/18:1), PC(16:0/18:2), and PC(O−16:0/20:4) contributed to discriminate early
from late ccRCC stage patients. The results are auspicious for early ccRCC diagnosis after validation of the panels in larger and
different cohorts.

KEYWORDS: lipidomics, clear cell renal cell carcinoma, biomarkers, ultraperformance liquid chromatography, mass spectrometry,
machine learning, support vector machines, LASSO

■ INTRODUCTION

Renal cell carcinoma (RCC) is the main type of kidney cancer
(80%)1 and accounts for 5 and 3% of all oncological diagnoses
in men and women, respectively.2,3 The RCC global incidence
trend is continuously increasing3 and is one of the most lethal
urological malignancies.4 More than 50% of cases are
incidentally detected by imaging procedures, and 20% of the
patients exhibit locally advanced or metastatic RCC at the time
of diagnosis with a poor prognosis (5-year survival rate
<35%).1,3 These tumors are inherently resistant to chemo-
therapy5 and radiotherapy,6 though if localized and detected at
early stages, the disease is potentially curable by surgery.1

Actually, the discovery of early detection biomarkers is the
most promising approach to reduce RCC mortality.7

Clear cell RCC (ccRCC) is the most common RCC
subtype, accounting for 75% of RCC cases,8,9 and it is classified
into stages I, II, III, and IV, the latter being often a metastatic
cancer.1 At a molecular level, the four most frequently mutated
genes in ccRCC are VHL (50−80%), PBRM1 (29−46%),
BAP1 (6−19%), and SETD2 (8−30%),10 leading to an
extremely heterogeneous disease that cannot be diagnosed
based only on genetic information.11,12 A gene expression

profile has shown that ccRCC behaves metabolically different
with respect to other tumor types, with most metabolic genes
being downregulated.13 Moreover, discrepancies were ob-
served between results from transcriptomics and metabolic
profiling of tissue samples,14 highlighting that multiple
pathways contribute to ccRCC progression.14,15 Therefore, a
combination of multiple biomarkers may provide larger
sensitivity and specificity for clinical diagnostic purposes than
a single biochemical marker.
Cellular metabolism reprogramming is an accepted hallmark

of cancer disease.16 The metabolome integrates the responses
to internal and external factors,17 revealing an accurate readout
for the study of cancer development and progression. Over the
last years, many efforts aimed at discovering RCC biomarkers,
principally focused on RCC detection.18 Metabolic profiling
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studies applying mass spectrometry (MS) and/or nuclear
magnetic resonance (NMR) spectroscopy have been mainly
conducted to interrogate urine19−29 and tissue12,14,30−37

samples. Blood analysis offers a fast readout of the body
health status, its collection procedures are less invasive than
biopsies, and data normalization strategies are less contro-
versial for blood than urine.38 However, only a few studies
have focused on the analysis of serum39−41 or plasma42−44

samples.18 Currently, there is a lack of robust tissue and/or
biofluid-based biomarkers for ccRCC early diagnosis in the
clinic.18,45,46

Lipids are the main components of biological membranes
and exert many essential biological roles, such as cellular
signaling, energy storage, and cell−cell interactions. In
addition, lipids are involved in biological processes like cell
survival, proliferation, and cell death, acting as mediators of
several oncogenic processes.47 Therefore, the dysregulation of
lipid metabolism and its association with cancer progression
have prompted many lipidomics studies for biomarker
discovery.48 Kidney cancer is considered to be a metabolic
disease.49 In particular, ccRCC is characterized for being lipid-
and glycogen-laden, exhibiting abnormal cholesterol metabo-
lism and fat storage.50,51 Several studies have reported altered
lipid levels, though lipid profiling for RCC diagnosis has been
mainly conducted on tissue samples.18,48

Considering that lipids are promising candidate molecules to
be explored in an untargeted fashion for ccRCC detection, we
hypothesize that lipid panels may overcome single biomarker
limitations for ccRCC diagnosis. Therefore, in this work, we
have profiled serum samples from ccRCC patients with
different stages of the disease and healthy individuals using a
discovery-based lipidomics approach based on ultraperform-
ance liquid chromatography coupled to quadrupole-time-of-
flight mass spectrometry (UPLC-QTOF-MS) in combination
with machine learning techniques. Multivariate statistical
analysis was conducted on a 386-feature matrix using the
least absolute shrinkage and selection operator (LASSO)52

variable selection method coupled with support vector
machines (SVMs).53 The strategy yielded a reduced lipid
panel that allowed discriminating ccRCC patients from healthy
individuals with high accuracy in training and independent test
sets. A second multivariate model trained to discriminate early-
stage (I and II) from late-stage (III and IV) ccRCC patients
provided another panel that allowed sample classification with
high accuracy in the training set and in an independent test set
composed of stage I ccRCC patients. Lipids in the discriminant
panels were identified with confidence levels 1 and 2 according
to the metabolomics standards initiative (MSI).54,55 In

addition, discrimination of patients with chromophobe- and
papillary-RCC from ccRCC patients and healthy individuals
was evaluated.

■ MATERIALS AND METHODS

Chemicals

Ultrapure water with 18.2 MΩ·cm resistivity (Thermo
Scientific Barnstead Micropure UV ultrapure water system,
Sunnyvale, CA); Optima liquid chromatography-mass spec-
trometry (LC-MS)-grade acetonitrile, methanol, and isopro-
panol, analytical grade acetic acid; and LC-MS-grade formic
acid and ammonium acetate (Fisher Chemical, Raleigh, NC)
were used to prepare chromatographic mobile phases, samples,
and chemical standard solutions. Leucine enkephalin was
purchased from Waters Corp. (Milford, MA). Sodium
hydroxide was purchased from EMSURE®ISO (Merck
Millipore, Burlington, MA). Commercial serum from the
North American population (H4522), cholic acid, cortisol,
lactic acid, lauric acid (C12:0), linoleic acid (C18:2),
undecylenic acid (C11:1), PI(16:0/18:1), PC(16:0/18:1),
PC(18:1/18:1), PE(18:1/18:1), SM(18:1/16:0), and lyso-
phosphatidylcholine (LPC) (USP reference standard) were
purchased from Sigma-Aldrich (St. Luis). cis-5-Dodecenoic
acid (C12:1), arachidonic acid (C20:4), MG(0:0/16:0/0:0),
dehydroepiandrosterone sulfate (sodium salt), 2-hydroxymyr-
istic acid, cis-13-docosenoic acid (C22:1), pentacosanoic acid
(C25:0), PC(16:0/16:0), PC(18:2/18:2), PC(16:0/18:2), and
PC(O-16:0/20:4) were purchased from Cayman Chemical
(MI). Decanoic acid (C10:0), undecanoic acid (C11:0),
heptadecanoic acid (C17:0), octadecanoic acid (C18:0),
eicosanoic acid (C20:0), and docosanoic acid (C22:0) were
purchased from Loradan (Solna, Sweden).
Serum Samples

Serum samples were provided by the public oncologic serum
biobank “Biobanco Pub́lico de Muestras Seŕicas Oncoloǵicas”
(BPMSO) from “Instituto de Oncologıá A. H. Roffo”
(IOAHR). Samples were drawn from healthy individuals and
patients from IOAHR and from “Hospital Italiano de Buenos
Aires” (HIBA), Argentina, following the guidelines approved
by the IOAHR Institutional Review Board, and after the
signature of the corresponding informed consent. The cohort
consisted of 52 healthy individuals (controls) and 112 ccRCC
patients with stage (S) I, II, III, or IV (Table S1). Additional
samples were collected from patients with chromophobe-RCC
(chRCC, n = 16) and papillary-RCC (papRCC, n = 8). The
male/female ratio in samples was approximately 2:1 (Table
S1), following the worldwide incidence trend.4 The age

Table 1. Patient Cohort Used for the Studya

gender (n, %) hospital (n, %)

sample class samples (n) age (mean ± SD) male female IAOHR HIBA

healthy individuals (controls) 52 58 ± 10 35 (67%) 17 (33%) 33 (63.5%) 19 (36.5%)
ccRCC patients 112 60 ± 9 77 (69%) 35 (31%) 28 (25%) 84 (75%)
SI 56 58 ± 10 35 (62.5%) 21 (37.5%) 5 (9%) 51 (91%)
SII 14 59 ± 8 12 (86%) 2 (14%) 5 (36%) 9 (64%)
SIII 18 64 ± 9 12 (67%) 6 (33%) 6 (33%) 12 (67%)
SIV 24 62 ± 8 18 (75%) 6 (25%) 12 (50%) 12 (50%)
chRCC patients 16 53 ± 14 10 (63%) 6 (38%) 1 (6%) 15 (94%)
papRCC patients 8 61 ± 9 6 (75%) 2 (25%) 2 (25%) 6 (75%)

an: number of samples; SD: standard deviation; IAOHR: Instituto de Oncologıá A. H. Roffo; HIBA: Hospital Italiano de Buenos Aires; ccRCC:
clear cell renal cell carcinoma; S: stage; chRCC: chromophobe-RCC; papRCC: papillary-RCC.
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population was 58 ± 10 years (mean ± standard deviation
(SD)) in controls, 60 ± 9 years in ccRCC patients, 53 ± 14
years in chRCC patients, and 61 ± 9 years in papRCC patients.
The means of the age populations for the binary comparisons
were not significantly different using the Mann−Whitney U
test at the 0.05 level (Table 1 and Figure S1). Blood samples
were drawn before surgery from untreated patients and from
healthy individuals with 8 h of fasting. Samples from all
subjects were subjected to a serological analysis to discard
those with a positive result for HIV and hepatitis B and C.
According to the BPMSO standard operating procedure, 20
mL of blood was collected in tubes without any anticoagulant
and left 15 min at 25 °C to allow the clot formation and
centrifuged at 600g for 10 min. Serum samples were
subsequently split into aliquots and stored at −80 °C. Aliquots
were used only once after thawing.

Sample Preparation

Frozen serum samples were thawed at 0 °C on a water-ice
bath. Cold (4 °C) isopropanol was added to serum samples in
a 3:1 solvent/sample volume ratio for protein precipitation and
lipid extraction.56,57 Samples were subsequently vortex-mixed
for 10 s and centrifuged at 16 000g for 20 min at 4 °C.
Different types of quality control (QC) samples were prepared
and jointly analyzed with the study samples.58 Ten intrastudy
QC samples (QCss) consisting of pools of equal volume
aliquots of subsets of the study samples were generated and
followed protein precipitation and further sample preparation
steps. Each subset included randomly selected serum samples
from controls and patients with different RCC stages and
histology. A process blank QC sample (QCblank) was prepared
by replacing serum with ultrapure water. Commercial serum
from the male North American population was used as inter
and intralab QC samples, and as a long-term reference sample.
Supernatants from the study samples and QC samples were
randomly lyophilized in 10 batches at −80 °C and 50 mTorr
for 48 h using a Telstar LYOQuest-85 freeze dryer (Telstar,
Madrid, Spain). After lyophilization, samples were stored at
−80 °C until analysis. Dried samples were reconstituted with a
cold mixture solution of water/methanol/acetonitrile/isopro-
panol (40:10:25:25 v/v) to provide similar initial UPLC
gradient conditions. After reconstitution, samples were further
vortex-mixed and centrifuged at 16 000g for 10 min at 4 °C.
Supernatants were subsequently transferred to LC vials for
analysis. A second type of intrastudy QC sample that consisted
of pooled reconstituted serum samples from an independent
set of healthy individuals (n = 5) from the same population
under study (QCHI) was included for analysis. The QCHI
sample was split into several aliquots and stored at −80 °C
until analysis. A chemical standard mixture that included
saturated fatty acids (FAs) (C10:0, C11:0, C12:0, C17:0,
C18:0, C20:0, C22:0) and different phospholipids (PLs)
(PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), PE(18:1/
18:1), SM(18:1/16:0) and lysophosphatidylcholine (LPC16:0
and LPC18:0)) dissolved in water/methanol/acetonitrile/
isopropanol (40:10:25:25 v/v) was also analyzed to evaluate
adduct type formation, retention time, and fragmentation
patterns in tandem MS experiments and, therefore, to aid
assessing the lipid identification process.

Ultraperformance Liquid Chromatography-Mass
Spectrometry

Ultraperformance liquid chromatography-mass spectrometry
(UPLC-MS) lipid profiling analyses were performed on a

Waters ACQUITY UPLC I-Class system fitted with a Waters
ACQUITY UPLC BEH C18 VanGuard precolumn (2.1 mm ×
5 mm, 1.7 μm particle size) connected directly to the inlet of a
Waters ACQUITY UPLC BEH C18 column (2.1 mm × 100
mm, 1.7 μm particle size, Waters Corporation, Milford, MA)
and coupled to a Xevo G2S QTOF mass spectrometer (Waters
Corporation, Manchester, U.K.) with an electrospray ioniza-
tion (ESI) source. The typical resolving power and mass
accuracy of the Xevo G2S QTOF mass spectrometer were
32 000 full width at half-maximum (FWHM) and 0.2 ppm at
m/z 554.2615, respectively. The chromatographic separation
method for lipid analysis was adapted from Sarafian et al.56

Gradient elution was conducted with acetonitrile/water (60:40
v/v) mixed with 10 mM ammonium acetate and 0.1% acetic
acid (mobile phase A) and isopropanol/acetonitrile (90:10 v/
v) mixed with 10 mM ammonium acetate and 0.1% acetic acid
(mobile phase B), with the following program: 0−2 min 40−
43% B; 2−2.1 min 43−50% B; 2.1−12.0 min 50−54% B;
12.0−12.1 min 54−70% B; 12.1−18.0 min 70−99% B; 18.0−
19.0 min 99% B. The flow rate was constant at 0.4 mL min−1

for 12 min and was decreased to 0.30 mL min−1 between 12
and 19 min. Subsequently, the gradient was returned to its
initial conditions in 11 min. The injection volume was 2 μL.
The temperature of the column and the autosampler tray was
set to 55 and 5 °C, respectively. The mass spectrometer was
operated in negative ion mode with a probe capillary voltage of
2.3 kV and a sampling cone voltage of 30 V. The source
temperature was set to 120 °C, and the desolvation gas
temperature was set to 300 °C. The nitrogen gas desolvation
flow rate and the cone desolvation flow rate were 600 and 10 L
h−1, respectively. Every day, a 0.5 mM sodium formate solution
prepared in isopropanol/water (90:10 v/v) was used for
calibrating the mass spectrometer across the range of m/z 50−
1200. A reference solution of leucine enkephalin (m/z
554.2615) was infused at 2 μL min−1 every 45 s and was
used for data correction during acquisition. Data were acquired
in the range of m/z 50−1200 in MSE continuum mode,59 and
the scan time was set to 0.5 s. The UPLC-QTOF-MSE data are
available under the data set identifier MTBLS1839 in
MetaboLights public repository60 (www.ebi.ac.uk/
metabolights/MTBLS1839). Base peak intensity (BPI)
chromatograms obtained for serum samples of a healthy
individual and SI-SIV-ccRCC patients are shown in Figure S2.
For UPLC-MS/MS experiments, the product ion mass

spectra were recorded within the range of m/z 30−1200 with
collision cell voltages between 10 and 40 V, depending on the
analyte. Ultrahigh-purity argon (≥99.999%) was used as the
collision gas. Data acquisition and processing were carried out
using MassLynx version 4.1 (Waters Corp., Milford, MA).
Additional experiments were conducted in positive ion mode
to assist in feature identification, using a probe capillary voltage
of 2.5 kV.
To further assist in compound identification, a hydrophilic

interaction liquid chromatography (HILIC) QTOF-MS-based
method was used with a Waters ACQUITY UPLC BEH
HILIC column (2.1 mm × 100 mm, 1.7 μm particle size,
Waters Corporation, Milford, MA). Gradient elution was
conducted with a 10 mM ammonium acetate solution (pH
5.8) with 5% of acetonitrile (mobile phase A) and acetonitrile
(mobile phase B) using the following program: 0−10 min 95−
65% B; 10−12 min 65−35% B; 12−16 min 35% B. The flow
rate was constant at 0.3 mL min−1 for 12 min and was
increased to 0.4 mL min−1 for 4 min. Subsequently, the
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gradient was returned to its initial conditions in 12 min. The
injection volume was 2 μL. The temperature of the column
and the autosampler tray was set to 35 and 5 °C, respectively.
The mass spectrometer was operated with the same parameters
as described above for the reverse-phase chromatographic
method.

Data Acquisition

Quality assurance procedures were followed throughout the
analytical workflow. System suitability procedures were
performed before data acquisition of the study samples to
determine that the method and associated instrumentation
were fully functioning. The intrastudy QCHI sample was
injected 26 times for conditioning the UPLC-MS system
before sample analysis. Table S2 shows a typical analysis order
applied in this study. Samples were randomly analyzed in 10
batches by UPLC-QTOF-MS together with a system suitability
blank (reconstitution solvent) and QC samples along 10 days.
To ensure data quality, the coefficients of variation were daily
analyzed for selected features in the intralab QC and intrastudy
QCHI samples to ensure that peak area values were below
20%61 within every batch and the accumulated batches.
Moreover, unsupervised principal component analysis (PCA)
was performed daily to inspect data quality before analyzing a
new batch. These strategies allowed evaluation of the
instrument performance and method reproducibility.

Feature Matrix Extraction, Data Preprocessing, and
Curation

UPLC-MS spectral features (retention time (Rt), m/z pairs)
were extracted using the Progenesis QI software package
version 2.1 (Nonlinear Dynamics, Waters Corp., Milford, MA).
The different steps involved in this procedure included
retention time alignment, peak picking, deisotoping, integra-
tion, and deconvolution by grouping together adduct ions
derived from the same compound. The following adduct ions
were considered for deconvolution: [M − H]−, [2M − H]−,
[3M − H]−, [M + Cl]−, [M + Na − 2H]−, [M + K − 2H]−,
[M + HCOO]−, [M + CH3COO]

−, and [M − H2O − H]−.
Neutral masses provided by Progenesis QI as a result of
deconvolution were manually reviewed based on the isotopic
patterns and the mass difference between detected ions. When
incorrect assignments were identified, the m/z values
associated with the most intense ionic species from the
group of adducts originally informed by the Progenesis QI
software were retained. Different filters were applied for data
cleaning. Blank deduction was applied to features with a peak
area of at least 3-fold or more in samples than in process
blanks; otherwise, the area was set to 0.62 After process blank
subtraction, only features present in at least 50% of one class
(controls and SI-, SII-, SIII-, and SIV-ccRCC patients) were
retained. Only features having monoisotopic peaks with signal
intensity larger than 103 in the continuum mass spectra,
exhibiting a mass difference lower than 10 mDa compared to
the intrastudy QCss sample, and exhibiting the isotopic pattern
were retained. The matrix obtained after this procedure,
consisting of 386 features, was normalized to the total peak
area for each sample (Data Set S1). This matrix was used to
develop and train supervised multivariate models based on
SVM and the LASSO52 variable selection method. The data
were autoscaled before statistical analysis. A PCA model was
built with the 386-feature matrix to evaluate data quality and
confirm intrastudy QCss sample clustering (Figure S3).

Data Processing, Classification, and Prediction

Two classification problems were considered for training
multivariate models based on (i) ccRCC detection and (ii)
early ccRCC diagnosis. The sample cohort was split into
different training, validation, and test sets for each binary
comparison (i.e., ccRCC patients versus controls, and early
versus late ccRCC stages) (Figure 1). Training and validation,

sets were used for model building, and the test set was used to
evaluate the performance of the models with independent
samples. For the first classification problem, the data set
consisted of 164 samples categorized as control (healthy
individuals) or tumor (ccRCC patients including all four
disease stages). Samples were randomly split into three sets;
48.8% were used for training, 8.5% for validation, and 42.7%
for testing the models (Table 2A and Figure S4A). The

Figure 1. Scheme illustrating the two-model strategy for ccRCC
detection and discrimination of early stages (I and II) from late stages
(III and IV) of the disease.

Table 2. Number of Samples Used for Training, Validating,
and Testing the Multivariate SVM and LASSO Models for
the Binary Comparison of (A) ccRCC Patients versus
Controls and (B) Early-Stage (I and II) versus Late-Stage
(III and IV) ccRCC Patientsa

(A)

ccRCC

set total (n) SI SII SIII SIV control

training 80 10 10 10 10 40
validation 14 2 2 2 2 6
test 70 44 2 6 12 6
total 164 56 14 18 24 52

(B)

ccRCC

early stages late stages

set total (n) SI SII SIII SIV

training 70 24 11 15 20
validation 14 4 3 3 4
test 28 28 0 0 0
total 112 56 14 18 24

aTraining and validation sets were balanced between classes.
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training set included 80 samples and was balanced using the
same number of age-matched samples from ccRCC patients
and controls. The validation set included 14 samples, of which
42.9% corresponded to control and 57.1% corresponded to
tumor, including equal contribution from each ccRCC stage.
The test set comprised 70 samples. This design was aimed at
having a large enough number of samples for training and
validating the models but also for evaluating the model
performance with a large independent test set that was not
used to build the models. The second classification problem
involved discriminating serum samples of patients with early
ccRCC stages (SI and SII) from those with late ccRCC stages
(SIII and SIV). In this case, the data set consisted of 112
samples that were randomly split in 62.5% for training, 12.5%
for validation, and 25.0% for testing the models (Table 2B and
Figure S4B). The training and validation sets were balanced
according to both classes,46 whereas the test set consisted of
samples from SI ccRCC patients. Feature autoscaling was
performed with the ensemble of the training and validation sets
using their mean and standard deviation. The independent test
set was autoscaled using the training and validation mean and
standard deviation. A Mann−Whitney U test was applied to
evaluate the age distribution between classes for the training
and validation sets under the null hypothesis that age mean
between classes was the same. A resulting p-value >0.05
between classes suggested that there was not enough evidence
to reject the null hypothesis.
The machine learning pipeline was divided in three blocks

(Figure 2). First, features were ranked using the training set
(steps 1 and 2 of Figure 2). Subsequently, a group of ranked
features was selected with the validation set (step 3 of Figure
2), and finally, classification and model testing was
accomplished with the test set (steps 4 and 5 of Figure 2).
The training set was shuffled 20 times, and at each shuffle,
samples were fivefold split using 4/5 to select a reduced feature
subset by a LASSO method and the remaining 1/5 to validate

the selected features. After fivefold feature selection turns
nested within 20 random shuffle iterations, 100 feature subsets
were independently obtained. Subsequently, a feature ranking
was built based on the selection frequency within the 100
subsets obtained by the LASSO method.52

A variable feature subset, which decreased the number of
features for each iteration, was used to build an SVM53

classifier with the training set. The classifier was applied to the
validation set while iteratively removing the least important
feature until only one remained. Validation accuracy was
computed at each iteration. The selected subset consisted of
the minimum number of features that maximized the validation
accuracy within the 30 most frequently selected features. Once
the feature subset was defined, an SVM classifier was built with
fivefold cross-validation using the training and validation sets,
and the resulting model was tested with the independent test
set. The computed performance metrics were accuracy,
sensitivity, specificity and the area under the receiver operating
characteristic (ROC) curve. In addition, permutation tests
were implemented as a complementary way to evaluate
possible model overfitting. For that purpose, 1000 iterations
were performed considering all of the samples.
The support vector classifier builds a nonlinear decision

function (eq 1) for a binary classification problem using Kernel
functions by constructing a hyperplane (eq 2) as follows

D x x( ) sign T
0β β= [ + ] (1)

x f x x: ( ) T
0β β= + (2)

where β and β0 are the hyperplane feature coefficients and bias,
respectively. The goal of the binary classification is to estimate
a function f: R → {+1, −1} from the training data samples xi
with label Yi. More details about the decision function
parameters are described in the Materials and Methods section
of the Supporting Information.

Figure 2. Machine learning pipeline designed for feature selection based on support vector machines (SVMs) coupled with the least absolute
shrinkage and selection operator (LASSO) variable selection method. The pipeline consisted of three blocks: (i) features were ranked using the
training set, which was 20-fold shuffled (steps 1 and 2), (ii) ranked features were selected with the validation set, and the model was trained on the
selected feature panel with the training + validation sets (steps 3 and 4); and (iii) classification and model testing were accomplished with the test
set (step 5).

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00663
J. Proteome Res. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.0c00663/suppl_file/pr0c00663_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.0c00663/suppl_file/pr0c00663_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00663?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00663?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00663?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00663?fig=fig2&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00663?ref=pdf


A one-class SVM classifier was also developed to classify
samples from chRCC and papRCC patients despite the
limitation associated with the sample cohort size of these
RCC histological subtypes. The one-class SVM model was
trained with a selected class instead of two classes; thus, the
classification approach determined whether a sample belonged
to that class or not.
All machine learning steps including data preprocessing,

model building, feature selection, classification, and independ-
ent testing were performed with the Scikit Learn Machine
Learning library in Python 3.6.
Data were inspected through PCA before and after variable

selection (i.e., on the curated spectral feature matrix and on the
discriminant feature panel). Fold changes for discriminant
features were calculated as the ratio of median peak areas
between compared classes. Mann−Whitney U tests were used
to calculate statistical significance, and p-values within each
panel were corrected using the Benjamini−Hochberg63

procedure for multiple comparisons with a false discovery
rate (FDR) of 0.1. Pairs of features that exhibited a Spearman’s
correlation coefficient larger than 0.7 were considered highly
correlated.

Identification Procedure of Discriminant Features

Lipid identification was attempted for all of the discriminant
features. Elemental formulas were generated based on accurate
masses and isotopic patterns and were used to assess spectral
adduct ions. Lipid identification was further confirmed with
tandem MS experiments and validated through retention time
and fragmentation pattern matching with chemical standards
when possible. Neutral masses were searched in the LIPID
MAPS64 database, and elemental formulas were searched in the
Human Metabolome Database (HMDB).65 For some cases,
neutral masses or m/z values were also searched in the HMDB
and the METLIN66 database. The mass window tolerance was
set at 10 mDa. Experimental tandem MS spectra were
compared to the aforementioned databases when the spectra
were available, and fragmentation patterns were manually
interpreted in all cases. Chemical standard solutions were
prepared in water/methanol/acetonitrile/isopropanol
(40:10:25:25 v/v) and were analyzed under identical
conditions as serum samples to validate putative lipid
identification. Different collision cell voltages were used to
assist in fragmentation pattern interpretation. Two different
quadrupole-mass windows of 6 and 1 Da were used in tandem
MS experiments to address spectral overlap due to quadrupole
co-selection. The narrower mass window provided higher
selectivity at the expense of lower sensitivity. When the
precursor ion intensity was too low to conduct tandem MS
experiments or when quadrupole co-selection could not be
mitigated, tentative identification was not informed. To avoid
misidentification, tandem MS experiments were conducted not
only for the discriminant feature but also for the different
adduct ions corresponding to the same compound both in
negative and positive ion modes. Diagnostic and characteristic
fragments and neutral losses, as well as the position of
substituents in phospholipids (PLs), were assigned based on
the literature.67−69 The terminology used for lipids and
fragment ion annotation follows the lipidomics standards
initiative (LSI).70−72

Spiking experiments were also conducted with the standards
on serum samples to address retention time differences caused
by serum matrix effects. When endogenous compound levels

were too high, samples were diluted 10-fold before spiking with
chemical standards. Moreover, for putatively annotated
compounds that did not interact with the stationary phase of
the C18 column and exhibited a retention time close to the
dead time, complementary experiments were conducted using
HILIC-QTOF-MS. Serum samples, spiked serum samples with
chemical standards, and chemical standard solutions were
analyzed under the same conditions to assess retention time
and mass spectra matching. Confidence levels for metabolite
identification are reported based on the established criteria
suggested by the MSI.54,55

■ RESULTS AND DISCUSSION

Lipid Profiling and Serum Sample Classification

Serum samples from ccRCC patients (n = 112) and controls (n
= 52) were analyzed by UPLC-QTOF-MS to identify
discriminant lipid panels that would allow ccRCC detection
and early diagnosis. A total of 2962 features (Rt, m/z pairs)
were extracted from the UPLC-MS negative ion mode data.
This matrix was reduced to 2260 features after deconvolution,
and it was subjected to consecutive filters to retain only robust-
enough features for data analysis and interpretation.73,74

Features with the highest mean abundance in the system
suitability blank or process blank were eliminated. Following
process blank deduction, only features that were present in at
least 50% of one sample class were retained. This data set
consisted of 1773 features that were manually analyzed to
retain only those with signal intensity, peak shape, and mass
variance within the established thresholds and that exhibited
the isotopic pattern to facilitate identification. This final matrix
consisting of 386 spectral features was subsequently
normalized (Data Set S1) and used to build unsupervised
and supervised multivariate statistical models for sample
classification and prediction. Figure 3A,B shows the PCA
score plots for samples corresponding to controls and ccRCC
patients (stages I−IV) and samples from patients with early
and late ccRCC stages, respectively. No outliers were detected
by this analysis, and no sample clustering was visualized for any
of the binary classification problems using the 386-feature
matrix (Figure 3A,B). Therefore, sample classification and
prediction were further attempted for each classification
problem based on supervised SVM models coupled with the
LASSO feature selection method.
The first model was built and trained to discriminate tumors

from control samples, and the second model was trained to
distinguish early- from late-stage ccRCC samples. The SVM
decision function was executed 10 times using different sample
subsets for training and testing the models, to generate 10
different models for each binary comparison (Tables S3 and
S4). The best models for ccRCC detection and early ccRCC
diagnosis were selected based on (i) the classification accuracy,
sensitivity, and specificity obtained with the training and the
independent test sets; (ii) the number of selected features in
the discriminant panels; and (iii) the feature overlapping
degree among the panels for each binary comparison. The
selected model for discriminating ccRCC from control samples
yielded 96.8% accuracy, 100% sensitivity, and 93.5% specificity
in the training set under cross-validation and 81.4% accuracy,
79.7% sensitivity, and 100% specificity in the test set, which
exhibited an area under the curve (AUC) of 0.89. This model
was based on 18 discriminant features (panel A), with two
pairs of features identified as the same compound (see Lipid
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Identification). Thus, the most intense discriminant features
from each pair were retained, leading to a 16-feature panel for
further analysis. This subpanel exhibited 95.7% accuracy, 100%
sensitivity, and 91.3% specificity in the training set under cross-
validation and 77.1% accuracy, 75.0% sensitivity, and 100%
specificity in the test set, with an AUC of 0.90 (Figure 3C).
The selected model for the early- versus late-stage ccRCC

binary comparison comprised 26 features (panel B).
Interestingly, two of these features were common to
discriminant panels A and B. The latter provided 84.5% total
classification accuracy in the training set, with 92.9 and 76.2%
classification accuracy for early and late ccRCC stages,

respectively. Noteworthy, this model provided 82.1% classi-
fication accuracy in the test set, composed only of SI ccRCC
samples (Figure 3D). To evaluate possible overfitting, PCA
models were built for each binary comparison using the
discriminant panels with 16 and 26 features. The PCA score
plots displayed in Figure 3E,F exhibited an improved sample
class discrimination compared to the original 386-feature
matrix (Figure 3A,B). In addition, permutation test results
supported robustness of each model’s performance, discarding
overfitting. The permutation test accuracy scores were 0.95
and 0.74 for the control versus tumor and the early versus late
ccRCC stage binary comparisons, respectively (p < 0.001).
Panel A, selected to optimize the discrimination of ccRCC

patients from controls, was also used to evaluate sample
classification for other RCC subtypes despite the potential
limitation of this strategy. That is, samples from chRCC and
papRCC patients were tested for classification with the
decision function obtained for the first binary classification
problem. As a result, samples were randomly classified as
ccRCC or controls, thus revealing that the developed SVM
model built and trained with the ccRCC lipid fingerprint
cannot effectively classify other RCC histological subtypes.
Although this result was a possible outcome, it simultaneously
highlights the specificity of the model for the most frequent
RCC subtype. Additionally, the one-class SVM model, trained
with ccRCC or control samples, provided similar results as the
binary classification-based model, since approximately 50% of
chRCC and papRCC samples were classified as either ccRCC
or control, suggesting that the signature defined by panel A
does not represent the phenotype of either chRCC or
papRCC.

Lipid Identification

Structural elucidation of lipids is crucial to understand the
disease biochemistry since different isomers can exhibit specific
roles. Compound identification was attempted for all of the
discriminant features in panels A and B (Tables 3 and S5−S7).
Adduct ion analysis was performed considering the following
ionic species: [M − H]−, [M + Cl]−, [M + CH3COO]

−, [M +
HCOO]−, [M + Na − 2H]−, [M + K − 2H]−, [M − H2O −
H]−, [M − CO2 − H]−, [M − CH3]

−, [M + nNaCl + Cl]−, [M
+ nNaCl − H]−, [M + NaCH3COO − H]−, and [M +
NaHCOO − H]−. Tandem MS experiments also suggested the
presence of [M + nNaCH3COO − H]− and [M +
NaCH3COO + CH3COO]

− ions being associated with mobile
phase composition, since adduct ions with CH3COO−,
CH3CN, NaCH3COO, and a combination of them were
proven to be generated by LC-ESI-MS in negative ion mode.75

Considering the huge overlap of isobaric species provided by
the lipidome,76 the identification process was based on exact
mass, isotopic pattern analysis, diagnostic and characteristic
product ions, and neutral losses identified in MS/MS
experiments, as well as retention time and fragmentation
pattern matching with chemical standards for all possible cases
(Figures 4 and S5). Comparison with chemical standards also
contributed to discard four putatively annotated compounds
(Figure S5). When poor MS/MS information was obtained,
and molecular formulas were not generated with a high score,
the detected features were reported as unknown (Tables S6
and S7). Similarly, when tentative identifications did not match
with experimental or in silico MS/MS spectra from databases,
only molecular formulas were informed (Tables S6 and S7).

Figure 3. Principal component analysis (PCA) score plot of serum
samples from controls and ccRCC patients (left) and from ccRCC
patients with early (SI + SII) and late (SIII + SIV) stages (right),
using the 386-feature matrix. The model consisted of (A) two PCs
with 33% total captured variance and (B) two PCs with 33% total
captured variance. Classification plot based on the SVM coupled with
LASSO models for (C) ccRCC versus control, which yielded 95.7%
accuracy, 91.3% sensitivity, and 91.3% specificity in the training set
under cross-validation and 77.1% accuracy, 100% sensitivity, and
75.0% specificity in the test set and exhibited an area under the curve
(AUC) of 0.90, and for (D) SI + SII (early) versus SIII + SIV (late)
ccRCC stages, which yielded 84.5% of the total accuracy in the
training set and 82.1% accuracy in classifying the test set consisting of
samples from SI ccRCC patients. PCA score plot of samples from
ccRCC patients and controls (E) using the 16-discriminant feature
panel and consisted of two PCs with 34% total captured variance.
PCA score plot of samples from patients with SI + SII (early) and SIII
+ SIV (late) ccRCC stages (F), using the 26-discriminant feature
panel, and consisting of two PCs with 30% total captured variance.
Controls (blue triangles); ccRCC samples (magenta circles); full
symbols were used for the training set and empty symbols for the test
set; samples from stage I + stage II ccRCC patients (yellow circles);
stage III + stage IV ccRCC patients (red circles); and stage I ccRCC
patients in the test set (gray triangles).
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For most fatty acids (FAs) and their derivatives, tandem MS
spectra provided limited specific information for structural
interpretation.69 The [M − H]− ion was identified as the base
peak of their mass spectra69 and corresponded to the
monoisotopic peak of discriminant features for the following
compounds validated with chemical standards: undecylenic
acid (C11:1), cis-5-dodecenoic acid (C12:1), lauric acid
(C12:0), and cis-13-docosenoic acid (C22:1). The discrim-
inant feature #1153 (1.74 min_m/z 385.2358) was identified
as the [M + NaCH3COO − H]− adduct ion of arachidonic
acid (C20:4), which was highly correlated with feature #1150
(1.74 min_m/z 303.2330) that was assigned as the [M − H]−

ion (Table S5). Diagnostic fragments of this lipid included ions
at m/z 259 and 205, from the loss of CO2 and from the
cleavage of the double bond between C5 and C6,
respectively.69 Linoleic acid (C18:2) was detected as the [M
+ 2(NaCH3COO) − H]− ion, which was highly correlated
with two other features identified as [M + NaCH3COO − H]−

and [M − H]− (Table S5). Structural information obtained for
singly hydroxylated fatty acids from tandem MS experiments
was poor, since they yield the same mass loss for any position
of the hydroxyl group, except for 3-hydroxy fatty acids.69

Discriminant feature #928 (0.92 min_m/z 243.1955) was
assigned as 2-hydroxymyristic acid based on the retention time
match with the chemical standard. Nevertheless, the presence
of other n-hydroxy fatty acids cannot be excluded. Feature
#961 (0.97 min_m/z 355.2263) was putatively annotated as
(4Z,7Z,10E,12E,16Z)-18-(3-ethylcycloprop-1-en-1-yl)-14-hy-
droxyoctadeca-4,7,10,12,16-pentaenoate (14-HDoHE), a hy-
droxylated docohexanoic acid (DHA, C22:6)-derivative, based
on the HMDB search, since no endogenous compounds

matched with the molecular formula or with the exact mass in
LIPID MAPS.
Some discriminant features corresponding to compounds

eluting at low retention times were detected as [M + NaCl −
H]− adduct ions.77 This was the case for 3-hydroxydodecane-
dioic acid, which was putatively annotated, and for compounds
with the tentative molecular formulas of C47H82O2 and
C3H6O3. A complementary HILIC-MS analysis contributed
to discard lactic acid as a tentative ID for the latter and assisted
in validating the identity of other molecules that were not
retained in the reverse-phase chromatographic method. This
was the case for cholic acid, which was detected as the [M −
H]− ion, as expected for most bile acids and bile acid
conjugates in negative ESI mode.69 The HILIC-MS method
also contributed to identify two discriminant compounds
belonging to the steroid family. One of them corresponded to
the androgen steroid derivative 3α-hydroxy-5α-androstan-17-
one 3-sulfate. Since the chemical standard was not
commercially available, the compound was synthesized via a
hydrogenation reaction of dehydroepiandrosterone sulfate for
confirmation (see Materials and Methods in the Supporting
Information). As expected, the only observed product ion in
the MS/MS spectrum corresponded to HSO4

− at m/z
96.9596. The second steroid, detected as [M + CH3COO]

−,
was tentatively identified as 18-hydroxycorticosterone. The
HILIC-MS method contributed to discard cortisol as an
alternative candidate for this discriminant feature; both
compounds are found in biological fluids, have a similar
structure, and lead to common product ions in the MS/MS
spectra.
Phospholipids (PLs) were also identified as discriminant

compounds through tandem MS experiments in negative and

Table 3. Discriminant Features from Panels A and B Identified with a High Confidence Levela

feature
no. panel

Rt
(min) m/z ion type

elemental
formula

Δm
(mDa) T/C L/E p-value

compound
identificationb

200 B 0.62 369.1736 [M − H]− C19H30O5S 0.0 +1.11 −1.31 4.2 × 10−2 3α-hydroxy-5α-
androstan-17-one 3-
sulfate

795 A 0.74 407.2787 [M − H]− C24H40O5 1.0 −3.05 +1.05 1.4 × 10−3 cholic acid

928 A 0.92 243.1955 [M − H]− C14H28O3 0.5 −1.70 −5.22c 2.9 × 10−2 2-hydroxymyristic acid

940 A 0.94 183.1385 [M − H]− C11H20O2 0.0 −1.21 −1.19c 3.6 × 10−2 undecylenic acid

978 B 1.04 197.1542 [M − H]− C12H22O2 0.0 −1.03 −1.19 2.2 × 10−2 cis-5-dodecenoic acid

1021 B 1.15 500.2779 [M − H]− C25H44NO7P 0.2 −1.09 −1.01 NSd LPE(20:4/0:0)

1042 A 1.23 199.1698 [M − H]− C12H24O2 0.0 −1.38 −1.10 1.6 × 10−5 lauric acid

1068 A 1.35 554.3472 [M + CH3COO]
− C24H50NO7P −1.4 −1.55 −1.21c 3.4 × 10−13 LPC(16:0/0:0)

1072 A 1.35 636.3474 [M + NaCH3COO + CH3COO]
− 1.5 −1.32 −1.10 8.5 × 10−8

1153 B 1.74 385.2358 [M + NaCH3COO − H]− C20H32O2 0.3 −1.14 +1.05 NS arachidonic acid

1185 A 1.86 443.2398 [M + 2(NaCH3COO) − H]− C18H32O2 −1.2 +1.32 −1.01 9.7 × 10−4 linoleic acid

1480 B 4.09 337.3099 [M − H]− C22H42O2 −0.8 −1.05 +1.19 NS cis-13-docosenoic acid

1552 B 5.30 864.5742 [M + CH3COO]
− C46H80NO8P −1.3 −1.24c −1.16 1.1 × 10−2 PC(18:2/20:4)

1597 A 5.57 766.5408 [M − CH3]
− C44H80NO8P −2.1 −1.36 −1.14 5.6 × 10−4 PC(18:2/18:2)

1604 A 5.60 922.5782 [M + NaCH3COO + CH3COO]
− 0.3 −1.35 −1.15 5.9 × 10−4

1651 B 6.10 835.5348 [M − H]− C43H81O13P 1.1 −1.10 −1.21 NS PI(16:0/18:1)

1733 B 6.81 898.5778 [M + NaCH3COO + CH3COO]
− C42H80NO8P −0.7 +1.04 1.13 9.2 × 10−3 PC(16:0/18:2)

1804 B 7.54 826.5970 [M + CH3COO]
− C44H82NO7P 0.8 −1.02 −1.05 NS PC(O-16:0/20:4)

1820 B 7.71 722.5110 [M − H]− C41H74NO7P −1.5 +1.04 −1.34 6.0 × 10−3 PE(P-16:0/20:4)
aΔm values were calculated as the mass difference between the m/z values obtained from Progenesis QI and the theoretical mass for the
monoisotopic peaks. Fold changes were calculated as the ratio of median peak areas between samples from ccRCC patients and controls (T/C),
and between samples from ccRCC patients with late- and early-stage tumors (L/E). The p-values reported for the binary comparison associated
with each panel were calculated with the Mann−Whitney U test. Statistical significance was evaluated after correcting p-values using the
Benjamini−Hochberg procedure for multiple comparisons with an FDR of 0.1. bCompounds identified with MSI level 1 are highlighted in bold.
The diagnostic ions that assisted in lipid identification and the corresponding structure codes (SMILE) are listed in Table S8. cIndicates that p-
values <0.05 were obtained with the Mann−Whitney U test for both binary comparisons. dNS: non-significant.
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positive ESI modes. Two quadrupole-mass windows were used
to gain confidence in annotation, especially for those cases in
which validation with the corresponding chemical standard was
not possible. As expected, the most abundant ionic species in
negative mode were the [M − H]− ion for phosphoethanol-
amines (PEs) and phosphoinositols (PIs) and the [M +
CH3COO]

− ion for phosphocholines (PCs), the latter being
identified by the loss of (CH3 + CH3COO

−; Δm = 74)
corresponding to PC demethylation. Alternative ion types
detected for PLs were [M − CH3]

−, [M + NaCH3COO +

CH3COO]
−, [M + H]+, and [M + Na]+,69 the former being

produced through in-source fragmentation of PCs. Adduct ion
analysis and tandem MS experiments contributed to avoid
incorrect assignment of PCs as PEs.78,79 For candidates with
no chemical standards, tentative identification was provided
based on the polar head attached to the sn-3 carbon position
that defined the PL class and considering the abundance ratio
of the lyso-form ions arising from the neutral loss of the sn-1 or
sn-2 moiety as a free fatty acid as [M − H − RxCOOH]

− or as
a ketene [M − H − RxCHCO]

−. Hou et al. showed that these

Figure 4. Identification of LPC(16:0/0:0). (A) Extracted ion chromatograms for the [M + CH3COO]
− ion at m/z 554.3472 ± 0.0500 generated

from a pooled sample (green), a 15 μM spiked pooled sample (red), and a 15 μM LPC(16:0/0:0) standard solution (blue). (B) Mass spectrum of
[LPC(16:0/0:0) + CH3COO]

− ion with m/z 554.3472 in a pooled sample (green), and its simulated isotopic pattern (blue). (C) Product ion mass
spectra of [LPC(16:0/0:0) + CH3COO]

− precursor ion for a pooled sample (green) and for a 6 μM LPC(16:0/0:0) standard solution (blue) using
collision cell voltages of 20 V and 10 V, respectively. (D) Mass spectrum showing the range of m/z 210−270. (E) Mass spectrum of [LPC(16:0/
0:0) + H]+ ion with m/z 496.3403 in a pooled sample (green), and its simulated isotopic pattern (blue). (F) product ion mass spectra of
[LPC(16:0/0:0) + H]+ precursor ion for a pooled sample (green) and for a 6 μM LPC(16:0/0:0) standard solution (blue) using a collision cell
voltage of 20 V. The 100% intensity in the MS/MS spectrum of the sample corresponds to absolute intensity values of 5.03 × 105 and 3.79 × 105

for (C) and (E), respectively. The diagnostic ions for LPC(16:0) detected in negative ion mode are: m/z 255.2330 (FA − H, 16:0) and m/z
480.3085 (M − CH3COO − CH3) and in positive ion mode are m/z 184.0733 (protonated phosphocholine, C5H15O4P), m/z 104.1075
(protonated choline), and m/z 478.3292 (LPC16:0 − H2O + H).
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fragments exhibited higher abundances when the loss
corresponds to the fatty acyl moieties attached to the sn-2
position.68 Also, it has been shown that for most abundant PCs
in biological systems, the loss of the sn-2 carboxylic acid is the
most favorable, with the same trend being observed for
PEs.69,80,81

Two highly correlated features from panel A (Tables 3 and
S5) were identified as PC(18:2/18:2) (Figure S5). Also,
PC(16:0/18:2) was identified with MSI level 1, while
PC(18:2/20:4) was putatively annotated based on several
characteristic ions that suggested this lipid as the unique
candidate. Other annotated PCs included PC(38:5), putatively
annotated as PC(18:1/20:4) and PC(16:0/22:5), and
PC(37:4), where arachidonate-related product ions were
detected, suggesting the presence of an acyl substituent with
17 carbon atoms at the sn-1 position, such as n-
methylpalmitate or heptadecanoate. For a tentatively identified
PC in panel B, the adduct type remains unidentified (feature
#1892: 8.60 min_m/z 926.6041, Figure S5). However, the
characteristic product ions detected at m/z 283.2643 and
303.2324 corresponding to the acyl substituents and the
product ion detected at m/z 508.3398 associated with the

LPC(18:0)−CH3 fragment suggest PC(20:4_18:0) as the
discriminant lipid (Figure S5). Another discriminant PL in
panel B was identified based on the lyso-form ions68 as
PI(16:0/18:1), which was confirmed with a chemical standard.
Two features were identified as compounds belonging to

other PL subclasses, mostly found in PC and PE, and known as
plasmanyl- and plasmenyl-PLs, in which the sn-1 position is
linked to alkyl or vinyl ethers, respectively, and a fatty acyl
group is linked to the sn-2 position by an ester bond, even if
counterparts were also reported.82 The discriminant com-
pound PC(O-16:0/20:4) that was further confirmed with a
chemical standard exhibited, as expected,69,83 a fragmentation
pattern for the [M + H]+ precursor ion identical to that
observed for the PC. The other feature that corresponded to
these PL subclasses was putatively annotated as PE(P-16:0/
20:4) based on the detected product ions in the tandem MS
spectrum and the loss of the sn-2 fatty acid as a ketene, as
described for ether PEs.84 The product ions were identical to
those expected from a PE, except for the singly generated
carboxylate anion.
An oxidized PL was also identified in the discriminant panel

B through manual interpretation of MS/MS spectra (Table

Figure 5. Box plots and overlapped data distribution curves for discriminant lipids identified with a high confidence level. Comparisons of controls
versus ccRCC patients, and SI + SII (early) versus SIII + SIV (late) ccRCC stages are shown. Data are represented by a gray circle and overlap with
the boxes. Mean values are represented by a filled square in the box; median values are represented by a line in the box; the upper and lower edges
of the box are the 25th and 75th percentiles, respectively; and the whisker extends to the most extreme values in the data, not including outliers
defined as 1.5 of the interquartile range. A symmetrical Kernel smooth curve type was selected for representing the data distribution. Fold changes
were calculated as the ratio of median peak areas between the classes (i) ccRCC and control and (ii) early and late ccRCC stages. The p-values
reported for binary comparisons were calculated with the Mann−Whitney U test. Statistical significance was evaluated after correcting p-values with
the Benjamini-Hochberg procedure for multiple comparisons with an FDR of 0.1.
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S7). Feature #1540 (5.11 min_m/z 832.5702) was tentatively
annotated as PC(16:0(OH)_18:2) based on two product ions
detected at m/z 279.2307 and 271.2247; the former
corresponded to the linoleate acyl anion and the latter to the
hydroxylated palmitate acyl anion. Recognition and annotation
of oxidized PLs is a challenge itself due to the limited tools
available for data analysis.85−88 Annotation of oxidized LPCs
was recently addressed through the comparison of native and
oxidized LPCs, showing that the only difference in the MS/MS
spectra relies on the presence of an −OH group in the acyl
chain,89 as it was observed for feature #1540 (5.11 min_m/z
832.5702).
Lyso-glycerophospholipids (LPLs) were also identified in

the discriminant panels. LPLs are characterized by having only
one acyl chain linked to the sn-1 or the sn-2 position of
glycerol and a polar head at the sn-3 position. The enzymes
phospholipase A (PLA) 1 and PLA 2 are capable of cleaving
diacyl-PLs, producing 2-acyl-1-lysophospholipids (2-acyl-1-
LPLs) and 1-acyl-2-LPLs, respectively. It has been reported
that acyl chains at the sn-2 position of 2-acyl-1-LPLs readily
move to the sn-1 position by a nonenzymatic intramolecular
acyl migration; thus, most of the LPLs detected in serum are 1-
acyl-2-lyso isomers.90 In high-energy positive mode fragmen-
tation experiments, the intensity ratio between product ions at
m/z 184.1 and 104.1 allows discriminating between sn-1 and
sn-2 isomers, the ratio being >1 for the sn-1 isomer,91 and the
ions corresponding to the aliphatic chain are typically
identified in negative ion mode. Figure 4 illustrates the
identification process for LPC(16:0/0:0), which was selected
by the SVM and LASSO model as two discriminant features in
panel A, corresponding to the highly correlated [M +
CH3COO]

− and [M + NaCH3COO + CH3COO]
− ions

(Table S5). The product ions detected in the MS/MS
spectrum followed the expected intensity ratio for the sn-1
isomer, which was confirmed by the analysis of a chemical
standard that eluted after its counterpart (2-acyl-1-LPC).92

Based on results from tandem MS experiments in both ion
modes, another LPL was annotated as LPE(20:4/0:0).
Overall, a total of nine features were successfully identified

as seven lipids with MSI level 1 in the discriminant panel A
aimed at ccRCC detection. In addition, five features were
putatively annotated, and four features remained with no ID
(Table S6). Considering only the seven compounds that were
identified with high confidence (Tables 3 and S8), the SVM
model yielded AUC values of 0.95 and 0.82 for the training
and test sets, respectively, highlighting the good performance
of this subpanel for discriminating ccRCC patients from
controls (Table S9A). Regarding panel B, which was selected
to discriminate early- from late-stage ccRCC patients, 7 out of
the 26 discriminant features were identified with MSI level 1.
In addition, three features were tentatively identified with high
confidence based on tandem MS experiments conducted in
both ion modes; eight features were putatively annotated, and
eight features remained with no ID (Table S7). Thus, the
subpanel consisting of 10 compounds identified with high
confidence (Tables 3 and S8) was evaluated for classification of
early versus advanced ccRCC stages. This new model yielded
accuracy values of 72.6% for the training set and 75.0% for the
SI ccRCC samples in the test set (Table S9B). These results
are promising considering that this subpanel included only 10
out of the 26 discriminant features. It is worth mentioning that
this work is the first serum study on ccRCC that challenges the
performance of multivariate models with large independent

test sets, supporting the power of SVM coupled with LASSO
for biomarker discovery.

Biological Relevance of Identified Discriminant Lipids

The trends obtained for the discriminant lipid levels according
to the binary classification problems contribute to understand
the altered mechanisms in ccRCC (Figure 5; Tables 3, S6, and
S7). Even if each discriminant compound may not be
considered a unique biomarker for the disease, the lipid
signature provided by each panel can be used for ccRCC
detection and early diagnosis.
Most discriminant features in panel A, i.e., 13 out of 16,

exhibited significantly decreased levels in samples from ccRCC
patients compared to controls, whereas two of them were
detected with significantly increased levels in ccRCC (Figure 5
and Table S6). In agreement with our results, other authors
reported decreased lipid levels in RCC.40,43,51 Moreover, most
features of panel A presented decreased levels along the disease
progression (Figure 5 and Table S6). Regarding the analysis of
samples from chRCC and papRCC patients, serum levels of
the discriminant features in panel A were, in general, lower
than those from controls but higher compared to ccRCC
patients (Table S10).
Among the 13 compounds that exhibited decreased levels in

the samples from ccRCC patients, 4 belonged to the fatty acyl
class (Table 3), i.e., undecylenic acid, lauric acid, 2-
hydroxymirystic acid, and 3-hydroxydodecanedioic acid. The
metabolism of FAs is mainly regulated by their synthesis via
the fatty acid synthase (FAS) and through their β-oxidation.
Levels of most enzymes involved in the β-oxidation pathway
were reported to be decreased in high-grade RCC tissue,
suggesting the lack of acyl-CoAs oxidation.19,30 In addition,
overexpression of FAS has been associated with ccRCC
aggressiveness and poor patient survival.93,94 The pattern
observed in this study may result from an imbalanced synthesis
and impaired β-oxidation of FAs. Interestingly, the latter has
also been described in prostate cancer.95,96 Short-chain free
FAs, including lauric acid, have been reported to exhibit
decreased levels in RCC tissue in a grade-dependent fashion
and coupled with increased levels of carnitines and
acylcarnitines.30 The decreased expression reported for the
very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme in
RCC tissue15 may explain the lower levels of short-chain FAs
detected in serum samples in this study.
Increased levels of linoleic acid, an essential FA, were

detected in serum samples from ccRCC patients, with similar
levels in samples from different ccRCC stages, chRCC and
papRCC. This trend suggests that the alteration of linoleic acid
metabolism may occur in the early stage of the disease and may
be common to the different RCC tumors. Linoleic acid levels
were also found increased in ccRCC tissue97 and decreased
with disease progression.98 Recently, increased plasma levels of
linoleic acid were found in RCC and bladder cancer patients,
suggesting a common alteration in both genitourinary
tumors.44 A mechanism of lipid deposition was suggested in
ccRCC based on carnitine palmitoyltransferase 1A (CPT1A),
acting as a rate-limiting enzyme of the FA transport into the
mitochondria, which was found as a direct target gene of the
hypoxia-inducible factor 1α (HIF1α) and HIF2α complexes.99

Future studies focused on the analysis of paired data from
tissue and serum samples collected from the same patients
would probably contribute to understand linoleic acid
metabolism in ccRCC.
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Two identified and confirmed PLs in panel A, i.e., PC(18:2/
18:2) and LPC(16:0/0:0), exhibited decreased levels in
samples from ccRCC patients compared to controls (Figure
5 and Table 3). No correlation was observed between
PC(18:2/18:2) and linoleic acid in tumor or control samples
despite the fatty acyl chains present in this lipid. Previous
studies have also detected decreased levels of LPC(16:0/0:0)
in RCC serum samples.39,40 These works reported reduced
levels in the early stages of the disease, while the opposite
trend was observed for the ccRCC cohort investigated in this
work. This discrepancy may be associated with differences in
the sample cohort and the staging system applied for ccRCC
classification.1 Regarding the comparison with other RCC
histological subtypes, ccRCC exhibited the lowest LPC(16:0/
0:0) serum levels (Table S10).
Cholic acid, a primary bile acid, also presented decreased

levels in serum samples from ccRCC patients compared to
controls (Figure 5 and Table 3). However, no differences were
observed between ccRCC stages. Interestingly, samples from
chRCC patients exhibited the lowest levels compared to
controls. Bile acids play an important role in lipid absorption
and cholesterol catabolism; thus, altered levels may be
associated with the impaired cholesterol metabolism character-
istic of ccRCC.51 Bile acids are considered to be markers of
liver injury,100 and high levels have also been associated with
hepatocellular carcinoma.101 Also, a few reports have focused
on secondary bile acid alterations associated with gastric and
colon cancer and the microbiota role;102,103 however, their role
in RCC remains unclear.
A similar analysis was performed for the discriminant

features aimed at ccRCC staging. Twelve out of twenty-six
features in panel B exhibited significantly different levels, seven
being increased in the early stages and five being increased in
advanced stages of the disease (Figure 5 and Table S7). Only
eight features were significantly different between controls and
ccRCC patients, six being decreased in ccRCC samples.
Therefore, the best panel found for discriminating ccRCC
stages does not follow the same behavior in terms of lipid level
changes as the one selected for discriminating samples of
ccRCC patients from controls. That is, most lipids in panel A
exhibited lower levels in samples from advanced ccRCC
patients compared to early stages, but the fold changes of panel
B features presented a random pattern toward ccRCC staging
(Table S7). Therefore, the two-model scheme developed in
this work for disease detection and early ccRCC diagnosis may
not be simplified with a single-step strategy since the
combination of features that best distinguished early from
late ccRCC stages follows a different behavior than the panel
that best resembles the ccRCC phenotype for discriminating
ccRCC patients from controls.
Four FAs were identified in the discriminant panel for

ccRCC staging, including monounsaturated FAs (MUFAs)
and polyunsaturated FAs (PUFAs), i.e., cis-5-dodecenoic acid,
cis-13-docosenoic acid, arachidonic acid, and 14-HDoHE, the
latter being an autoxidation product of docosahexaenoic acid.
Interestingly, only the short-chain MUFAs exhibited signifi-
cantly lower levels in advanced ccRCC stages, following the
same trend as those FAs identified in panel A. Levels of
arachidonic acid and 14-HDoHE exhibited a nonsignificant
decrease trend in ccRCC patients compared to controls
(Figure 5 and Table 3). In this regard, decreased levels of
arachidonic acid were reported in ccRCC tissue by means of

MS imaging97 and GC-MS with lower levels in the late stages
of the disease.33

PLs can act as reservoirs of FAs. Interestingly, all identified
or annotated PLs in panel B contained arachidonic or palmitic
acid as substituents. Arachidonic acid is an essential precursor
of eicosanoids, which are regulatory lipids associated with
inflammatory processes,104 and palmitic acid has been related
with cell proliferation.105,106 Thus, both FAs are linked to
tumor progression. The relative abundance of PLs followed
different trends along disease stages (Table S7). Lower levels
of PC(18:2/20:4) and PE(P-16:0/20:4) and higher levels of
PC(20:4_18:0) and PC(16:0/18:2) and its oxidized form
PC(16:0(OH)_18:2) were detected in samples from advanced
ccRCC patients (Table S7). As expected, levels of the oxidized
form were lower than those observed for the native form in
each sample class.85 Serum levels of PC(18:2/20:4) were
significantly decreased in samples from ccRCC patients
compared to controls, whereas levels of PC(16:0(OH)
_18:2) were increased in tumor samples (Table 3). Higher
levels of oxidized PLs have been associated with cancer,
supporting this result.107

FAs with an odd number of carbon atoms are not
endogenous in humans. However, PC(17:0_20:4) was a
tentative identification for one of the discriminant lipids in
panel B (Table S7), without excluding the possibility of an
alternative compound with branched fatty acyl chains in the
molecule. Previous metabolomics studies using DI-MS and
LC-MS have suggested LPC(17:0) and LPC(15:0) as potential
serum biomarkers of RCC.39,40 In addition, Wettersten et al.
found increased levels of medium-chain FAs, including C15:0
and C17:0, in RCC tissues compared to adjacent normal
tissues,30 and higher levels of C17:0 were reported in
metastasized tumor tissues.33 Altogether, this evidence and
the observed trends for linoleic acid would suggest an altered
metabolism of FAs incorporated through the diet. In this
regard, several studies have addressed the role of fat diet in
cancer development.108

Two compounds belonging to the steroid lipid class also
contributed to ccRCC staging (Figure 5 and Table 3). Patients
with early ccRCC stages presented higher levels of 3α-hydroxy-
5α-androstan-17-one 3-sulfate than controls, whereas advanced
ccRCC patients exhibited lower levels. The putatively
identified steroid 18-hydroxycorticosterone exhibited de-
creased levels in serum samples from ccRCC patients.
Similarly, tetrahydrocorticosterone levels were found to be
decreased in serum samples from RCC patients.39,40 In
addition, metabolites involved in the steroid hormone
biosynthesis were reported to be increased in urine samples
from RCC patients, and a panel of three compounds, including
cortolone and testosterone, allowed for the discrimination of
patients with RCC from those with benign tumors.109 These
results suggest an impaired steroid metabolism in RCC that
may be further investigated considering the altered cholesterol
metabolism.51

Overall, results from this analysis suggest a marked
downregulation of serum lipid levels associated with the
disease. The alterations observed between ccRCC stages
cannot be generalized with a common pattern. Nevertheless,
it is worth noting that the best panel selected for early
diagnosis included up- and downregulated lipids from different
classes. Results are promissory for translation to the clinical
setting after validation in larger and different cohorts, entailing
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specific considerations for assuring the stability of each single
lipid class.110

■ CONCLUSIONS
This study highlights the power of coupling untargeted serum
lipidomic strategies with machine learning techniques to
identify reduced lipid panels that provide an accurate signature
for ccRCC diagnosis and to identify those patients in the early
stage of the disease. High classification performance was
achieved with training sets under cross-validation and with
independent test sets. In addition, the discriminant subpanels
that only included identified lipids with a high confidence level
still yielded good classification accuracy. Most lipid levels were
significantly decreased in serum samples from RCC patients,
with ccRCC being the most impaired RCC histology
compared to controls. All lipids exhibiting significant changes
at different stages of disease were discussed in relation to the
altered metabolic pathways to improve the current under-
standing of lipid-based ccRCC development and progression
and to identify new targets for future drug treatment design.
Results from this study are promissory for translating the
diagnostic lipid fingerprints to the clinical setting after
developing targeted assays to evaluate the panels in larger
cohorts, including individuals with different ethnicities, diets,
and lifestyles as well as patients with other tumor types and
renal pathologies.
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