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Abstract

We developed a quantitative microbiological risk assessment (QMRA) of haemolytic uremic

syndrome (HUS) associated with Shiga toxin-producing Escherichia coli (STEC)-contami-

nated beef (intact beef cuts, ground beef and commercial hamburgers) in children under 15

years of age from Argentina. The QMRA was used to characterize STEC prevalence and

concentration levels in each product through the Argentinean beef supply chain, including

cattle primary production, cattle transport, processing and storage in the abattoir, retail and

home preparation, and consumption. Median HUS probability from beef cut, ground beef

and commercial hamburger consumption was <10−15, 5.4x10-8 and 3.5x10-8, respectively.

The expected average annual number of HUS cases was 0, 28 and 4, respectively. Risk of

infection and HUS probability were sensitive to the type of abattoir, the application or not of

Hazard Analysis and Critical Control Points (HACCP) for STEC (HACCP-STEC), stx preva-

lence in carcasses and trimmings, storage conditions from the abattoir to retailers and

home, the joint consumption of salads and beef products, and cooking preference. The

QMRA results showed that the probability of HUS was higher if beef cuts (1.7x) and ground

beef (1.2x) were from carcasses provided by abattoirs not applying HACCP-STEC. Thus,

the use of a single sanitary standard that included the application of HACCP-STEC in all

Argentinean abattoirs would greatly reduce HUS incidence. The average number of annual

HUS cases estimated by the QMRA (n = 32) would explain about 10.0% of cases in children

under 15 years per year in Argentina. Since other routes of contamination can be involved,

including those not related to food, further research on the beef production chain, other food

chains, person-to-person transmission and outbreak studies should be conducted to reduce

the impact of HUS on the child population of Argentina.
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1. Introduction

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens associated with a

wide spectrum of human diseases, from mild diarrhea to hemorrhagic colitis, thrombocytope-

nia and haemolytic uremic syndrome (HUS), which can lead to death [1]. Information about

HUS cases around the world is scarce, particularly primary studies and notifiable disease data

from different World Health Organization (WHO) regions, and population estimates on expo-

sure, age distribution and clinical course of illness [2].

An estimated 2.5 million new STEC annual cases from different sources, including food-

borne, have been reported globally, which have been responsible for 3,330 HUS cases, 269

deaths and 27,000 disability-adjusted life years [3]. In Argentina, STEC are the primary etio-

logical agent of post-enteric HUS, and serotype O157:H7 is most frequently associated with

HUS confirmed cases [4]. Between 2011 and 2015, 1,953 HUS cases were reported in Argen-

tina, 70.7% of which corresponded to E. coli O157:H7 [5]. However, the food vehicle (ground

beef and dry sausage) was identified in only four cases [6]. The last available report confirmed

290 HUS cases in 2019 [7].

Unlike Argentina, notification of HUS cases is not mandatory in most countries [8]. The

annual HUS incidence rate in the general population of Argentina (0.6 cases per 100,000

inhabitants) [7] is similar to that reported in Canada (1.9) [9], Uruguay (0.4) (G. Varela, pers

comm) and Australia (0.07) [10]). The Argentinean surveillance network has allowed the iden-

tification of most HUS cases, either in outbreaks or as sporadic cases [11], reporting one of the

highest HUS incidence rates in populations younger than 5 and 1 year (6.3 and 12.9 per

100,000 children, respectively) [7]. In other countries, HUS incidence rates per 100,000 chil-

dren under 5 years are 5.4 in Uruguay (G. Varela, pers comm), 4.2 in Canada [9] and 1.4 in

USA [12]. Despite the high incidence rate, HUS-associated mortality rate in Argentina is

higher (1.7%) [6] than that reported in Uruguay (1.2%) [G. Varela, pers comm] and lower

than that reported in the USA (2.5%) [12], Chile (2.7%) [13] and Australia (12.0%) [10].

Cattle are the main animal reservoir of STEC currently known [14]. Recent reports have

also pointed out the role of asymptomatic carriers in person-to-person STEC transmission

(fecal-oral route) [6,15–17]. A study conducted in Argentina also showed that living in a farm

or being in contact with farm animals and the presence of children <5 years of age in the fam-

ily attending daycare or kindergarten were among the highest risk factors for STEC infection

[18].

It has been recently shown that around 60.0% of all STEC reported cases worldwide cannot

be attributed to a food source [19], despite 40.0% of cases were associated with food, mainly

beef (18.2%), vegetables (15.6%) and dairy products (5.5%) [19]. In Argentina, beef per capita

consumption is 51.0 kg/person [20]. Beef abattoirs can be classified into two main categories,

namely, abattoirs with a Hazard Analysis and Critical Control Point (HACCP) system, that

defines STEC as hazardous (hereinafter referred to as “applying HACCP-STEC”), and abat-

toirs with no HACCP plans or HACCP plans that do not define STEC as a hazard (hereinafter

referred to as “not applying HACCP-STEC”) [21]. Abattoirs applying HACCP-STEC (38.0%)

include cattle from arrival up to the production of vacuum-packaged beef cuts, commercial

hamburgers and ground beef for supermarkets (with health authority permission), all within

the abattoir plant. In abattoirs classified as “not applying HACCP-STEC” (62.0%), half car-

casses are transported to retailers for cutting and deboning to produce beef cuts and for minc-

ing to produce ground beef. In the case of butcher shops, they do not apply HACCP plans and

they exceptionally apply good manufacturing practices (GMP) [22], considering that they

should mince ground beef in the presence of the consumer according to the Argentine Food

Code [23].
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Beef can be cross-contaminated with STEC at different stages of the supply chain, from the

abattoir to retail and the home environment [24–27]. In intact beef cuts, contamination is

superficial, so that STEC can be easily destroyed by cooking [28]. Ground beef is not only con-

sidered a high-risk product due to the contamination spread during production, but it is nor-

mally associated with eating undercooked meat [29,30]. Additionally, home-made ground

beef and commercial hamburgers have also been associated with STEC cases [31]. The preva-

lence of STEC in different beef products varies globally, ranging from 1.8–57.6% in Argentina

to 0.7–60.6% in the rest of the world (S1 Table).

The use of risk analysis has been accepted internationally as a logical sequence of steps that

contributes to the implementation of risk management measures based on scientific evidence.

Risk assessment, the scientific process component, is the most relevant tool for assessing the

association between existing foodborne hazards and public health risks [32]. Several quantita-

tive microbial risk assessment (QMRA) models have been developed to link the presence of

STEC in beef products with the risk of developing HUS in a certain population [25,27,30,33–

36]. In 2009, a QMRA was developed in Argentina to model STEC contamination of beef ham-

burgers, using a farm-to-table risk approach [37]. More recent studies about STEC prevalence

and contamination levels have been performed in other beef commodities, including ham-

burger, ground beef and beef cuts [38–43]. In this context, an updated QMRA including this

new information would provide an accurate estimate of the incidence of HUS attributed to

beef consumption in different age groups.

The aim of this study was to perform a quantitative risk assessment of HUS associated with

the consumption of STEC-contaminated beef (intact beef cuts, ground beef and commercial

hamburgers) from two abattoir systems in children under 15 years of age from Argentina.

2. Materials and methods

2.1. Study design

A probabilistic risk assessment model was developed to characterize STEC prevalence and

contamination levels through the beef supply chain (Fig 1). The beef supply chain was divided

into five production modules: cattle primary production, cattle transport, processing and stor-

age in the abattoir, retail and home preparation, and consumption. Three beef products were

modelled using the production modules described in Fig 1: 1) ground beef (any foodstuff con-

taining ground meat, excepting commercial hamburgers), 2) commercial hamburgers, and 3)

intact beef cuts.

The model was implemented in Microsoft Excel 2016 with the @Risk add-on package (ver-

sion 7.5, Palisade Corporation, New York, USA) using inputs derived from data collected in

Argentina and information gathered from experts, whenever possible. A Monte Carlo simula-

tion with Latin Hypercube Sampling was used to assess all potential scenarios. Each simulation

performed 5,000 iterations of the model, which allowed to achieve an adequate level of conver-

gence (<1%). Model outputs were estimated as risk per serving of contaminated beef and pop-

ulation risk (median and 95.0% confidence intervals). To analyze the validity of the model, the

predicted number of HUS cases was compared with data reported in the Argentinean Epide-

miological Surveillance System [44].

2.2. Hazard identification

For the purpose of this study, all STEC were included in the model, assuming a similar patho-

genic potential. Data of STEC prevalence at different production stages of the beef supply

chain in Argentina were obtained by screening results of stx genes and/or STEC isolation

reported in the literature (S2–S5 Tables).
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2.3. Hazard characterization

A dose-response model was used to describe the relationship between the ingested dose of

STEC from beef consumption and the probability of health endpoints of interest. The proba-

bility of illness (Pill) was estimated using a Beta-Poisson model relating the ingested dose of the

pathogen and the probability of illness [45,46]. The variability in α and β parameters was mod-

elled using PERT distributions based on the 5%, 50% and 95% percentiles estimated by Teunis

et al. [45].

The probability of evolution to HUS (PHUSǀill) of all STEC cases (3.0–9.0%) and HUS mor-

tality rate (PmortǀHUS) (2.6% in children and 12.0% in adults) were estimated from the data

reported by Exeni in Argentina [46].

2.4. Exposure assessment

The five production modules of the beef supply chain were characterized by inputs (Fig 1).

They were connected so that output distributions from each module served as inputs to the

next module or as final outputs of the estimated ingested STEC dose (CFU) per serving por-

tion (Table 1).

2.4.1. Cattle primary production. The prevalence of STEC in cattle was estimated

according to three categories: a) season (spring-summer; fall-winter) [47,83], b) age of the ani-

mals (young,<18 months; adult,>18 months) [48], and c) production system (semi-intensive,

feedlot) [48]. This classification resulted in eight different production scenarios (Table 1).

The proportion of animals in each age group (PAge) and season (PSe) was modelled using

cattle census data corresponding to 2018 [51] (S2 Table). The probability that a slaughtered

animal belonged to a feedlot or semi-intensive production system (PPS) was modelled using

slaughter data from feedlot animals (S2 Table). Slaughter data from 2018 showed that the

majority of animals were young (59.6%), slaughtered in spring-summer (50.1%) and from

Fig 1. Beef supply chain conceptual model and relevant input variables. 1 S2 and S3 Tables, 2 S4 Table, 3 S5 Table, 4

Table 2 and S6 Table, 5Tables 2 and 3 and S6 Table.

https://doi.org/10.1371/journal.pone.0242317.g001
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Table 1. Input parameters used in the risk assessment model of STEC due to beef consumption.

Variable Symbol Unit Equation/Distribution Reference

1. Cattle primary production
Proportion of animals slaughtered

in different seasons (autumn-

winter vs. spring-summer)

P(Se) Probability ~Beta[(6751434+1);(13468819−6751434+1)] [47]

Proportion of animals slaughtered

according to age (<18 months vs.
>18 months)

P(Age) Probability ~Beta[(8037782+1);(13468819−8037782+1)] [48]

Proportion of animals slaughtered

according to the production system

(feedlot vs. semi-intensive system)

P(PS) Probability ~Beta[(3651421+1);(13468819−3651421+1)] [48]

stx prevalence in animals

slaughtered in autumn-winter, <18

months and from feedlot

production systems

P(1) Probability ~Beta(38+1;95−38+1) [38,49–51]

stx prevalence in animals

slaughtered in autumn-winter, <18

months and from semi-intensive

production systems

P(2) Probability ~Beta(36+1;166−36+1) [38,51,52]

stx prevalence in animals

slaughtered in autumn-winter, >18

months and from feedlot

production systems

P(3) Probability ~Beta(0+1;6−0+1) [38,51]

stx prevalence in animals

slaughtered in autumn-winter, >18

months and from semi-intensive

production systems

P(4) Probability ~Beta(592+1;1980−592+1) [38–40,47,49,51,53]

stx prevalence in animals

slaughtered in spring-summer, <18

months and from feedlot

production systems

P(5) Probability ~Beta(7+1;61−7+1) [38,49,51]

stx prevalence in animals

slaughtered in spring-summer, <18

months and from semi-intensive

production systems

P(6) Probability ~Beta(145+1;238−145+1) [38,51,52]

stx prevalence in animals

slaughtered in spring-summer, >18

months and from feedlot

production systems

P(7) Probability ~Beta(3+1;18−3+1) [4,38,51]

stx prevalence in animals

slaughtered in spring-summer, >18

months and from semi-intensive

production systems

P(8) Probability ~Beta(401+1;1865−401+1) [38–40,47,49,51]

2. Cattle transport
Change in stx prevalence due to

transport

Ef(Tr) Odds Ratio ~PERT(0,561;1,028;1,882) [54–61]

stx prevalence in beef cattle after

transport from farm to abattoir

P(Tr) Prevalence ðPrevalence�Ef ðTrÞÞ
ðð1� PrevalenceÞþðPrevalence x Ef ðTrÞÞÞ Where “Prevalence” is P(1), P(2), . . ., or P(8)

3. Processing and storage in the abattoir
Type of abattoir (applying

HACCP-STEC vs. not applying

HACCP-STEC)

Abatt ~Bernoulli(0,38) [62]

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Change in stx prevalence due to

slaughter in abattoirs not applying

HACCP-STEC

TT(A-noH) Odds ratio �BETAð217þ1;401� 217þ1Þ

PTr
[24,43,63,64]

stx prevalence in beef carcasses

slaughtered in abattoirs not

applying HACCP-STEC

P(c-noH) Prevalence ðPðTrÞ�TTðA� noHÞÞ
ðð1� PðTrÞÞþðPðTrÞ�TTðA� noHÞÞÞ

Change in stx prevalence due to

slaughter in abattoirs applying

HACCP-STEC

TT(A-H) Odds ratio �BETAð625þ1;3027� 625þ1Þ

PTr
[38,41,42,65]; Brusa et al.

(unpublished work)

stx prevalence in carcasses

slaughtered in abattoirs applying

HACCP-STEC

P(c-H) Prevalence ðPðTrÞ�TTðA� HÞÞ
ðð1� PðTrÞÞþðPðTrÞ x TTðA� HÞÞÞ

STEC concentration in carcasses

slaughtered in abattoirs not

applying HACCP-STEC

C(A-noH) Log cfu/

100cm2
~Normal(3,1;0,71(Truncated(1,4;5,0))) [43]

STEC concentration in carcasses

slaughtered in abattoirs applying

HACCP-STEC

C(A-H) Log cfu/

100cm2
~Normal(2,367;0,89(Truncated(0,18;5,06))) [42]

Storage temperature in abattoirs

not applying HACCP-STEC

Temp(A-

noH)

˚C ~PERT(1;4;11) [43]

Storage temperature in abattoirs

applying HACCP-STEC

Temp(A-H) ˚C ~PERT(0;1;3) Industry communication

Storage time in abattoirs not

applying HACCP-STEC

Ti(A-noH) h ~Triangular(24;52;192) [43]

Storage time in abattoirs applying

HACCP-STEC

Ti(f-H) h ~Triangular(24;27;30) Industry communication

STEC growth during the storage

period

C(stg) Log cfu/

100cm2
cðstgÞ ¼ CðAÞ þ aðtÞ � ln 1 � 1� eaðtÞ

eYm� CðAÞ

h i
[66]

where: aðtÞ ¼ m� TempðAÞ þ m

k � ½e
� kTempðf Þ � 1�

k ¼ 0; 00658þ 1:941

1þexp½� 0:8137�ðTempðAÞ� 22:4Þ�

Ym = 8.53×[1−exp(−0.108×Temp(A))]
ffiffiffi
m
p
¼� Normalð0:0901; 0:004Þ � ðTðfAÞ � ð� Normalð6; 1ÞÞÞ

Change in stx prevalence due to

deboning process

OR(deb) Odds ratio BETAð178þ1;2683� 178þ1Þ

Pðc� HÞ or Pðc� no� HÞ
[41]

stx prevalence in beef cuts P(bcA) Prevalence ðPðcHÞ�ORðdebÞÞ
ðð1� PðcHÞÞþðPðcHÞ�ORðdebÞÞÞ

Storage temperature Temp(bc) ˚C ~PERT(0.2;0.4;0.5) Industry communication

Storage time Ti(bc) Hours ~Uniform(7;15)×24 Industry communication

STEC growth in beef cuts during

storage

C(bc) Log cfu/

cm2
Growth equation reported by Huang et al. [66]

Surface area per gram of beef cuts Sa cm2/g ~Uniform(0,1;0,5) [67]

Grams in 100 cm2 of beef cuts Gcm2 Grams 100

Sa

STEC concentration in beef cuts in

the abattoir

C(bcA) cfu/g CðbcAÞ
Gcm2

3.b.- Commercial hamburger
Change in stx prevalence due to

trimming process

OR(trm) Odds ratio �BETAð45þ1;638� 45þ1Þ

�BETAð42þ1;806� 42þ1Þ
[41]

stx prevalence in trimmings P(trm) Prevalence ðPðcHÞ�ORðtrmÞÞ
ðð1� PðcHÞÞþðPðcHÞ�ORðtrmÞÞÞ

Storage temperature Temp(h) ˚C ~PERT(−25;−20;−10) Industry communication

Storage time Ti(h) Hours ~Uniform(2;5)×24 Industry communication

STEC growth during storage C(h) Log cfu/

cm2
Growth equation reported by Huang et al. [66]

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

STEC concentration at abattoir C(hA) cfu/g CðhÞ
Gcm2

4.Retail
4.a.- Beef cuts

Probability of washing hands

(butchers)

P(wh) Probability ~Beta(1+1;86−1+1) [22]

Probability of washing the cutting

board and table

P(wcb) Probability ~Beta(19+1;86−19+1)

Concentration change due to hand

washing

R(wh) % 10~Normal(−0.2;1.42;Truncated(2))

Transfer rate of STEC from beef

cuts to butcher´s hands

T(bcH) % 10~PERT(−0.44;0.59;2) [68]

STEC concentration change in

unwashed hands

p(nonWH) cfu (C(bc)×T(bcH))/100

STEC concentration change in

washed hands

p(WH) cfu (p(nonWH)×R(wh))/100

Transfer rate of STEC from hands

to faucet

T(HF) % 10~PERT(−2.59;−1.08;1.09)

Number of STEC in faucet p(F) cfu (p(nonWH)×T(HF))/100

Transfer rate of STEC from faucet

to hands

T(FH) % 10~PERT(−1.7;0.169;2)

Number of STEC in washed hands p(WH) cfu [(p(F)×T(FH))/100]+p(WH)

Transfer rate of STEC from hands

to beef cuts

T(Hbc) % 10~PERT(−2.54;0.21;2)

Number of STEC in beef cuts p(bc) cfu In washed hands: ((p(WH)×T(Hbc))/100)

In unwashed hands: ((p(nonWH)×T(Hbc))/100

Transfer rate of STEC from beef

cuts to cutting board and table

T(bcCB) % 10~PERT(0.48;1.05;1.49) [68]

Number of STEC in unwashed

cutting board and table

p(CB) cfu (C(CB)×T(bcCB))/100

Transfer rate of STEC from cutting

board and table to beef cuts

T(CBbc) % 10~PERT(−0.79;−0.43;1.73)

Number of STEC in unwashed

cutting board and table

p(bcnonW) cfu (p(CB)×T(bcnonW))/100

Final number of STEC in beef cuts

at butcher shops

C(bcB) cfu C(bc)+p(bc)+p(bnonW)

Storage temperature at butcher

shops

Temp(B) ˚C ~Trianagular(0;4.8;14.5) C Adriani pers. comm

Storage time at butcher shops Ti(B) Hours ~Uniform(2;5)×24 C Adriani pers. comm

STEC concentration in beef cuts

after storage

C(stg) cfu/100cm2 Growth equation reported by Huang et al. [66]

4.b.- Ground beef
Change in the stx prevalence due to

beef grinding

OR(bc-gb) Odds ratio �BETAð176þ1;636� 173þ1Þ

�BETAð8þ1;66� 8þ1Þ
[22,63,69–73]; Lopez et al.

(unpublished work)

Number of STEC in ground beef P(gb) Prevalence ðPðbcAÞ�TTðbc� gmÞÞ
ðð1� PðbcAÞÞþðPðbcAÞ x TTðbc� gmÞÞÞ

Probability of washing mincing

machine

P(Wmm) Probability ~BETA(0+1;86−0+1)

Transfer rate of STEC from beef

cuts to mincing machine

T(bc-mm) % 10(~PERT(0.48;1.05;1.49))

Number of STEC in unwashed

mincing machine

p(nonwmm) cfu ðCðstgÞ�Tðbc� mmÞÞ
100

Transfer rate of STEC from

mincing machine to ground beef

T(mm-gb) % 10(~PERT(−0.79;−0.49;1.72))

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Number of STEC in ground beef p(gb) cfu In washed mincing machine: 0 [22,68]

In unwashed mincing machine:
ðpðnonwmmÞ�ðmm� gmÞÞ

100

Final number of STEC in ground

beef (cm)

C(cm) cfu c(stg)+p(gm)

STEC concentration in ground beef C(gb) cfu/g CðcmÞ
100=�Uniformð0:1;0:5Þ

4.c.- Commercial hamburger
Type of retail where hamburgers

are sold

Ret(Hamb) ~Discret{(supermarket;minimarket,butcher); (1636;27;1069)} S6 Table. Survey of

Argentinean beef

consumption habitsType of storage in each retail Stg(Ret) Supermarket: ~Discret{(refrigerated;freezing);(195;1001)}

Minimarket: ~Discret{(refrigerated;freezing);(26;92)}

Butcher: ~Discret{(refrigerated;freezing);(411;276)}

Storage time Ti(Ret) Hours Freezing: ~Discret{(0,1,2,4,6,14); (228;37;602;543:385;737)}×24

Refrigerated: ~Discret{(0,1,2,4,6,14); (195;22;231:34;23;26)}×24

STEC concentration in commercial

hamburgers at retail

C(HRet) cfu Growth equation reported by Huang et al. [66]

Final STEC concentration in

commercial hamburgers at retail

C(Hg) cfu/g CðcmÞ
100=�Uniformð0:1;0:5Þ

5. Home and consumption
5.a.- Beef cuts

Storage at home Stg(Hom) ~Beta(2832+1;5466−2832+1) S6 Table. Survey of

Argentinean beef

consumption habits

Temperature of household

refrigerators

Temp(re) ˚C ~Trinagular(−1.5;6.1;16.1) [74,75]

Temperature of household freezers Temp(fr) ˚C ~Trinagular(−41,1;−20,1;−2)

STEC concentration in beef cuts at

home

C(bchome) cfu/g Growth equation reported by Huang et al. [66]

Probability of eating salad with beef

cuts

Salad ~Beta(5430+1;5494−5430+1) S6 Table. Survey of

Argentinean beef

consumption habitsProbability of preparing beef cuts

before salad

P(bc-Sa) ~Beta(1079+1;3748−1079+1)

Probability of washing hands

(consumers)

P(WH) ~Beta(4485+1;5493−4485+1)

Probability of washing cutting

board

P(Wcb) ~Beta(3418+1;4468−3418+1)

Change in STEC concentration due

to washing hands

R(WH) % 10~Normal(−0.2;142;Truncated(2))

Transfer rate of STEC from beef

cuts to hands

T(bc-H) % 10~PERT(−0.44;0.59;2) [68,76]

STEC concentration in unwashed

hands

p(nonWH) cfu (C(bcHome)×T(nonWH))/100

Number of STEC in washed hands p(WH) cfu (p(nonWH)×R(WH))/100

Transfer rate of STEC from hands

to faucet

T(HF) % 10~PERT(−2.59;−1.08;1.09) [68,76]

Number of STEC in the faucet p(F) cfu (p(nonWH)×T(HF))/100

Transfer rate of STEC from faucet

to hands

T(FH) % 10~BERT(−1.7;0.169;2) [68,76]

Number of STEC in washed hands p(WH) cfu [(p(F)×T(FH))/100]+p(WH)

Transfer rate of STEC from hands

to salad

T(HSal) % 10~PERT(−2.54;0.21,2) [68,76]

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Number of STEC in salad p(Sal) cfu In washed hands: ((p(WH)×T(HSal))/100)

In unwashed hands: ((p(nonWH)×T(HSal))/100

Transfer rate of STEC from beef

cuts to cutting board

T(bc-cb) % 10~PERT(0.48;1.05;1,49) [68,76]

Number of STEC in unwashed

cutting board

p(nonWcb) cfu (C(bcHome)×T(bccb))/100

Transfer rate of STEC from cutting

board to salad

T(cbSal) % 10~PERT(−0.79;−0.43;1.73) [68,76]

Number of STEC in salad p(SanonWl) cfu (p(nonWcb)×T(cbSal))/100

Final number of STEC in salad FC(Sal) cfu C(Sal)+p(Sal)+p(SalnonW)

Cooking preference P(cooking) ~Discret({1,2,3,4,5};{0.003; 0.068; 0.179;0.174; 0.576}) S6 Table. Survey of

Argentinean beef

consumption habits

Cooking temperature Temp(cook) ˚C ~Uniform(75;90) [77]

Cooking time Ti(cook) Minutes According to the cooking preference and the beef cut thickness:

Red: ~Triangular(6;7;15)

[78]

Medium-Red: ~Triangular(8;12;16)

Medium-Well: ~Triangular(10;12;17)

Medium-Well done: ~Triangular(14;16;25)

Well done: ~Triangular(15;20;30)

Decimal reduction D(BC) 10(11.22+0.18×Temp(cook))

Number of decimal reductions ND(BC)
TiðcookÞ

D
[79]

STEC concentration in ready-to-

eat beef cuts

C(bccons) cfu/g 10(c(bchome)−ND)

5.b.- Ground beef
Probability of eating salad with

ground beef

SaladGB Probability ~Beta(3651+1;4149−3651+1) S6 Table. Survey of

Argentinean beef

consumption habits

Probability of preparing ground

beef before salad

Gb-Sal Probability ~Beta(1079+1;3748−1079+1) S6 Table. Survey of

Argentinean beef

consumption habits

Probability of washing hands

(consumers)

P(WH) Probability ~Beta(4485+1;5493−4485+1) S6 Table. Survey of

Argentinean beef

consumption habits

Probability of washing cutting

board

P(Wcb) Probability ~Beta(5286+1;5549−5286+1) S6 Table. Survey of

Argentinean beef

consumption habits

Change in STEC concentration due

to washing hands

R(WH) % 10~Normal(−0.2;1.42;Truncated(2))

Transfer rate of STEC from ground

beef to hands

T(gbH) % 10~PERT(−0.44;0.59;2) [68,76]

STEC concentration in unwashed

hands

p(nonWH) cfu (C(Stg)×T(gbH))/100

Number of STEC in washed hands p(WH) cfu (p(nonWH)×R(WH))/100

Transfer rate of STEC from hands

to faucet

T(HF) % 10~PERT(−2.59;1.08;1.09) [68,76]

Number of STEC in the faucet p(F) cfu (p(nonWH)×T(HF))/100

Transfer rate of STEC from faucet

to hands

T(FH) % 10~PERT(−1.7;0.169;2) [68,76]

Number of STEC in washed hands p(WH) cfu [(p(F)×T(FH))/100]+p(WH)

Transfer rate of STEC from hands

to salad

T(HSal) % 10~PERT(−2.54;0.21;2) [68,76]

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Number of STEC in salad p(En) cfu In washed hands: ((p(WH)×T(Hsal))/10

In unwashed hands: ((p(nonWH)×T(HSal))/100

Transfer rate of STEC from ground

beef to cutting board

T(gb-cb) % 10~PERT(0.48;1.05;1.49) [68,76]

Number of STEC in unwashed

cutting board

p(nonWcb) cfu (C(gb)×T(gbcbCmT))/100

Transfer rate of STEC from cutting

board to salad

T(cbSal) % 10~PERT(−0.79;−0.42;1.72) [68,76]

Number of STEC in salad p(SalnonWcb) cfu (p(cb)×T(TcbSal))/100

Final number of STEC in salad FC(Sal) cfu C(Sal)+p(Sal)+p(SalnonWcb)

Cooking preference P(cookgb) ~Discret({1,2,3,4,5);0.003; 0.011; 0.109;0.086; 0.791}) S6 Table. Survey of

Argentinean beef

consumption habits

Cooking temperature Temp(cookgb) ˚C Red: 54.4˚C [80]

Medium-Red: 58.6˚C

Medium: 62.7˚C

Medium-Well done: 65.6˚C

Well done: 68.3˚C

Number of decimal reductions ND(gb) 10.165+(0.211×Temp(cookgm) [81]

STEC concentration in ready-to-

eat ground beef

C(gbcons) 10(c(cgm)−D(gm))

5.c.- Commercial hamburger
Probability of eating salad with

hamburger

SaladH Probability ~Beta(3539+1;3858−3539+1) S6 Table. Survey of

Argentinean beef

consumption habitsProbability of preparing

hamburger before salad

H-Sal Probability ~Beta(1079+1;3748−1079+1)

Probability of washing hands

(consumers)

P(WH) Probability ~Beta(4485+1;5493−4485+1)

Probability of washing cutting

board

P(Wcb) Probability ~Beta(5286+1;5549−5286+1)

Change in STEC concentration due

to washing hands

R(WH) % 10~Normal(0.2;1.42;Truncated(2))

Transfer rate of STEC from

hamburger to hands

T(HH) % 10~PERT(0.44;0.59;2) [68,76]

STEC concentration in unwashed

hands

p(nonWH) cfu (C(Hg)×T(HH)/100

Number of STEC in washed hands p(WH) cfu (p(nonWH)×R(WH))/100

Transfer rate of STEC from hands

to faucet

T(HF) % 10~PERT(−2.59;−1.08;1.09) [68,76]

Number of STEC in the faucet p(F) cfu (p(nonWH)×T(HF))/100

Transfer rate of STEC from faucet

to hands

T(FH) % 10~PERT(−1.7,0.169;2) [68,76]

Number of STEC in washed hands p(WH) cfu [(p(F)×T(FH))/100]+p(WH)

Transfer rate of STEC from hands

to salad

T(HSal) % 10~PERT(−2.54,0.21;2) [68,76]

Number of STEC in salad p(Sal) cfu In washed hands: ((p(WH)×T(HSal))/100

In unwashed hands: ((p(nonWH)×T(HSal))/100)

Transfer rate of STEC from

hamburger to cutting board

T(Hcb) % 10~PERT(0.48;1.05;1.49) [68,76]

Number of STEC in unwashed

cutting board

p(nonWcb) cfu (C(Hg)×T(Hcb))/100

(Continued)
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Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Transfer rate of STEC from cutting

board to salad

T(cbSal) % 10~PERT(−0.79;−0.43;1.73) [68,76]

Number of STEC in salad p(SalnonWcb) cfu (p(nonWcb)×T(cbSal))/100

Final number of STEC in salad FC(Sal) cfu C(Sal)+p(Sal)+p(SalnonWcb)

Cooking preference P(cookH) DISCRET{(1,2,3);(0.011;0.183;0.806 S6 Table. Survey of

Argentinean beef

consumption habits

Cooking temperature Temp(cookH) ˚C Medium-Red: ~UNIFORM(54.4;58.6) [80]

Medium-Well done: ~UNIFORM(62.7;65.6)

Well done: 68.3

Number of decimal reductions ND(H) 10.165+(0.211×Temp(CookH)) [81]

STEC concentration in ready-to-

eat hamburgers

C(Hcons) 10(C(Hg)−D(H))

6.Consumption
6.a.- Beef cuts

Portion size PS(bc) Grams Children< 23 months: ~LogNormal(65.9;45.8) Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: ~LogNormal(83.54;50.26)

Children 6–15 years: ~LogNormal(120.8;68.7)

Ingested dose of STEC from beef

cut consumption

Dose(bc) cfu With salad: (C(bccons)×PS(bc))+C(Sal)
Without salad: (C(bccons)×PS(bc))

6.b.- Ground beef
Portion size PS(gb) Grams Children< 23 months: ~LogNormal(43.8;30.9) Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: ~LogNormal(69.52;52.08)

Children 6–15 years: ~LogNormal(91.9;69.3)

Ingested dose of STEC from

ground beef consumption

Dose(gb) cfu With salad: (C(gbcons)×PS(gb))+C(Sal)
Without salad: (C(gbcons)×PS(gb))

6.c.- Commercial hamburger
Portion size PS(H) Grams Children< 23 months: ~LogNormal(58.4;32.1) Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: ~LogNormal(83.54;50.26)

Children 6–15 years: ~LogNormal(135.9;72.2)

Ingested dose of STEC from

hamburger consumption

Dose(H) cfu With salad: (C(Hcons)×PS(H))+C(Sal)
Without salad: (C(Hcons)×PS(H))

7. Dose-response module
Probability of illness P(ill) 1 � 1þ DoseÞ=

b

� �� a
g

n
[45,46]

where: α~PERT(0.000262;0.373;398.9)

β~PERT(0.056;39.71;39600)

Probability of HUS P(HUS) ~UNIFORM(0.03;0.09)

Probability of death P(dth) ~Beta(35+1;1302−35+1)

Probability of HUS | illness P(HUSǀill) P(ill)×P(HUS) [46]

Probability of death | HUS P(dthǀHUS) P(HUS|ill)×P(dth)

7.a.- Beef cuts
Number of portions N(porbc) Number Children< 23 months: {(2.029.712×0.5176)×365} Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: {(1.984.070×0.6451)×365}

Children 6–15 years: {(6.927.170×0.60058)×365}

Number of cases of HUS per year

due to beef cut consumption

N(HUSbc) Number N(porbc)×P(HUS|ill)

7.b.- Ground beef

(Continued)
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feedlots (70.4%). The probability of occurrence of the three variables (PAge, PSe and PPS) was

modelled using Beta distributions.

Data describing stx prevalence in cattle feces were available from several peer-reviewed

studies performed in Argentina (S3 Table). The combination of the three variables (PAge, PSe

and PPS) allowed to model stx prevalence considering potential risk factors. A syllogism was

used to combine the probability of occurrence of the eight level combinations (P1, P2, P3, P4,
P5, P6, P7, and P8). Applying the method of moments [84], these data were used to determine

parameters α and β of Beta distributions and to estimate stx prevalence in each combination of

factors.

2.4.2. Cattle transport. Cattle transport to abattoirs generates stress and increases cross-

contamination, which could in turn modify stx prevalence. A systematic review and meta-

analysis search of parameters related to the effect of transport on stx prevalence was carried

out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) (Fig 2) [85]. Scopus, PubMed and Science Direct databases were searched for scien-

tific papers unrestricted by language and published from 1980 to 2019. The research question

was: “Is there evidence from the scientific literature that transport of beef cattle from farm to

abattoir modifies STEC prevalence?” Search terms included “transport” AND “STEC” OR

“O157:H7” OR “non-O157 STEC” OR “stx” AND “cattle” OR “beef cattle”. Initially, 8639 arti-

cles were identified. Abstracts and titles were assessed, selecting articles that met the a priori
inclusion criteria. Random effect meta-analysis was performed using the Comprehensive

Meta-Analysis software 2.2.064 version. Differences in stx prevalence in beef cattle before and

after transportation were incorporated in the meta-analysis and used in the model as odds

ratio (OR) values. Mean OR and 95.0% confidence interval (95.0% CI) values were used as

parameters and included in a PERT distribution to model the effect of transport on STEC

prevalence.

The new stx prevalence after transport was estimated using the transfer rate equation as fol-

lows:

P ¼
Pi� OR

1 � Piþ Pi� OR
Eq1

where P is the new stx prevalence after a specific scenario (e.g., beef cattle in the abattoir after

transport) and Pi is the stx prevalence before the specific scenario (e.g., beef cattle in the farm)

Table 1. (Continued)

Variable Symbol Unit Equation/Distribution Reference

Number of portions N(porgb) Number Children< 23 months: {(2.029.712×0.1097)×365} Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: {(1.984.070×0.1516)×365}

Children 6–15 years: {(6.927.170×0.12788)×365}

Number of cases of HUS per year

due to ground beef consumption

N(HUSgb) Number N(porgm)×P(SHUS|ill)

7.c.- Commercial hamburger
Number of portions N(porH) Number Children< 23 months: {(2.029.712×0.015)×365} Table 2. Food consumption by

the Argentine population (6

months to 15 years of age) [82]
Children 2–5 years: {(1.984.070×0.0264)×365}

Children 6–15 years: {(6.927.170×0.03681)×365}

Number of cases of HUS per year

due to hamburger consumption

N(HUSH) Number N(porH)×P(HUS|ill)

https://doi.org/10.1371/journal.pone.0242317.t001
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Fig 2. Flowchart of the cattle transport literature search according to PRISMA.

https://doi.org/10.1371/journal.pone.0242317.g002
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and OR is the odds ratio value between the scenarios compared. An OR less than 1 means a

reduction in stx prevalence and an OR greater than 1 indicates an increase in stx prevalence

[21]. This methodology was used to model the change in stx prevalence along the beef supply

chain.

2.4.3. Processing and storage in the abattoir. The prevalence of stx and STEC levels was

modelled at various stages along the slaughtering process, from arrival of live cattle to carcass

storage in the cold chamber (Fig 1, Table 1). As already mentioned, abattoirs were classified as

“applying HACCP-STEC” (38.0%) and “not applying HACCP-STEC” (62.0%) [62]. The prob-

ability of slaughter in each type of abattoir was modelled using the Bernoulli distribution

model (Abatt). Each abattoir type was modelled differently: HACCP-STEC included the pro-

duction of vacuum-packaged beef cuts and commercial hamburgers all within the abattoir

plant, whereas abattoirs not applying HACCP-STEC were modelled from the production of

half carcasses within the plant to the transport to retail for the production of beef cuts and

ground beef.

The prevalence of stx in carcasses varied according to the type of abattoir and was modelled

using scientific publications conducted in Argentina (S4 Table). The OR value from cross-con-

tamination during slaughtering was calculated using stx prevalence in carcasses and live cattle

jointly for abattoirs applying HACCP-STEC (TTA-H) and not applying HACCP-STEC (TTA-

noH) (S4 Table), using the previously mentioned Eq 1.

Enumeration levels of STEC were estimated by using generic E. coli counts in carcasses

from abattoirs applying HACCP-STEC (C(A-H)) [42] and not applying HACCP-STEC (C(A-

noH)) [43]. This was considered as the most conservative scenario as is expected STEC enumer-

ation levels to be much lower than generic E coli counts. The levels of STEC during cold cham-

ber storage (C(stg)) were estimated using the growth equation reported by Huang et al. [66].

The growth of STEC in beef cuts, commercial hamburgers and ground beef in the cold cham-

ber and at retail was estimated using the same equation. Cold chamber temperature (TempA-H)

and storage times (Tif-H) of HACCP-STEC abattoirs were provided by the participating plants

(Industry communication). Temperature (TempA-noH) and storage times (TiA-noH) of abattoirs

not applying HACCP-STEC were obtained from the work by Costa et al. [43] (Table 1).

Beef cuts. Operators, equipment, the environment and beef are sources of STEC contami-

nation during cutting and deboning. Both operations were modelled in HACCP-STEC abat-

toirs only because abattoirs not applying HACCP-STEC provided half-carcasses to retails,

where they were thus modelled. The OR value due to cross-contamination during deboning to

obtain beef cuts (OR(deb)) was modelled with data obtained in Argentina by Brusa et al. [41] in

HACCP-STEC abattoirs. The stx prevalence in beef cuts (P(bcA)) was calculated from the stx
prevalence in carcasses stored in cold chambers (P(c-H)) and the OR value due to deboning

(ORdeb) (Table 1). The STEC concentration was estimated per 100 cm2 of beef cuts and consid-

ered as superficial contamination. To convert load per cm2 (log CFU/cm2) to load per gram of

product (log CFU/g) (CbcA), the relationship between the two measures was estimated.

According to previous estimates, a gram of beef corresponds to 0.1–0.5 cm2 cut surface (Sa)

[37].

Commercial hamburgers. The transfer rate (OR) from carcasses to trimmings (OR(trm))

was estimated using data published by Brusa et al. [41] in HACCP-STEC abattoirs (Table 1).

The prevalence of stx in trimmings (P(trm)) was estimated by combining the prevalence in car-

casses stored in cold chambers and the contamination resulting from cutting and deboning.

The growth of STEC in commercial hamburgers (C(hA)) was modelled using the storage tem-

perature (Temph) and storage time (Tih) values provided by abattoirs (Table 1) (Industry

communication).
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2.4.4. Retail. Beef cuts. The cross-contamination rate during deboning to obtain beef

cuts at retail was estimated using the same equation as in abattoirs applying HACCP-STEC.

To incorporate cross-contamination due to retail handling, the probability of occurrence of

certain practices was estimated from behavioral surveys conducted in Argentina, which

included the probability of hand washing (Pwh) and cutting board washing (Pwcb) during beef

handling [22]. Bacterial transfer rate from beef to hands (T(bcH)) and to cutting boards and

tables (T(bcCB)) and reduction rate by hand washing (R(wh)) were estimated according to Mont-

ville and Schaffner [68] (Table 1, Fig 3). The growth of STEC at retail was modelled using the

temperature (Temp(B)) and storage time (Ti(B)) values at retail provided by the Sanitary

Authority of the city of Berisso, Buenos Aires, Argentina (C Adriani pers. comm).

Ground beef. The stx transfer rate (OR) from beef cuts to ground beef (ORbc-gb) at retail

was estimated based on the stx prevalence in beef cuts and ground beef reported in Argentina

(Table 1, S5 Table). The stx prevalence in ground beef (Pgb) was estimated from the prevalence

in beef cuts (PbcA), modified according to the estimated transfer rates resulting from handling

scenarios at retail (S5 Table). The STEC concentration in ground beef (Cgb) was estimated by

the probability of washing the mincing machine (P(Wmm)) [22] and the bacterial transfer rate

(T(bc-mm)) [68].

Commercial hamburgers. The proportion of commercial hamburgers (Ret(Hamb)) and con-

ditions (Stg(Ret)) (frozen, chilled, other) in each retail outlet (mini-markets, supermarkets and

butcher shops) was modelled according to consumer preferences (S6 Table). The STEC con-

centration in hamburgers at retail (C(HRet)) was modelled considering the storage temperature

(Temp(h)) of each outlet with data from Evans and Redmond (2015) and James et al. (2017).

The storage period at retail (Ti(Ret)) was modelled considering the answers provided by Argen-

tinian consumers (S6 Table) [74,75].

2.4.5. Home and consumption. Beef consumption habits in Argentina were surveyed (S6

Table) using a descriptive epidemiological design. The survey was anonymous and self-admin-

istered. It consisted of 16 closed questions with different options to evaluate frequency and

preference of beef consumption, place of acquisition, habit of beef storage and preparation.

Informed consent was attached regarding anonymity, non-mandatory participation and use of

research results.

The growth of STEC on each beef product (beef cuts, ground beef and hamburger) during

storage at home (Stg(Hom)) was modelled using the temperature values of household refrigera-

tors (Temp(re)) and freezers (Temp(fr)) from Evans and Redmond [74] and James et al. [75].

Fig 3. Cross-contamination scenarios at retail and home.

https://doi.org/10.1371/journal.pone.0242317.g003
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Cross-contamination at home was modelled using the bacterial transfer rates among the

different surfaces (cutting boards, hands, faucet) reported by Montville and Schaffner [68] and

Chen et al. [68,76]. The probability that consumers prepared salads together with beef (Salad),

hand washing (P(WH)) and cutting board washing (P(Wcb)) was estimated from the survey of

Argentine consumers (S6 Table).

The effect of cooking at home on STEC concentration in beef cuts was modelled considering

five cooking preferences (red, medium-red, medium-well, medium-well done, well done) (S6

Table). For each cooking preference (Pcooking), cooking time (Ticook) was estimated taking into

account the time to achieve the desired beef doneness and cut thickness [78]. Cooking tempera-

ture (Tempcook) at the surface of beef cuts (where bacterial contamination is present) was estimated

to vary between 75 to 90˚C [77]. Log STEC reduction during cooking of beef cuts (ND(BC)) (log

CFU/g) was estimated by dividing cooking time by the D-value (D(BC)) at each cooking tempera-

ture, using the D-values obtained from several E. coli O157:H7 strains isolated from beef [79]. The

STEC concentration after cooking (C(bccons)) (CFU/g) was estimated by the difference between the

concentration in raw beef cuts (C(bchome)) and the log reduction due to cooking (ND(BC)).

The effect of cooking during the preparation of commercial hamburgers and ground beef was

modelled as a function of the final internal product temperature (Tempcook) in ground beef

(Pcookgb) and hamburgers (PcookH) for each cooking preference of Argentinean consumers (S6

Table). In order to compare our results with previous studies reporting the preference of con-

sumption of ground beef and hamburgers as "pink" in the center of the mass, the categories "red"

and "medium-red" of our survey were considered jointly as "pink". Each cooking preference was

related to an internal temperature using the approach reported by Jackson et al. [80]. Within-

variability of internal temperatures for each cooking preference was modelled using a uniform

distribution. Log STEC reduction during cooking of ground beef (ND(gb)) and hamburgers

(ND(H)) was estimated using the linear model reported by Juneja el al. [81]. Final STEC concen-

tration was estimated using the same approach as explained in beef cuts.

2.5. Risk characterization

The QMRA model used the specific conditions for the production of each type of beef product

(beef cuts, ground beef and hamburgers) under two abattoir systems in Argentina, considering

the intrinsic variability and uncertainties of each process. Risk characterization was expressed

as probability of illness (diarrhea due to STEC infection) and number of HUS cases after con-

suming STEC-contaminated beef products.

Children aged 6 months to 15 years were considered the target population of this study as they

represent the age group with the highest HUS incidence in Argentina [7]. Final exposure to STEC

was estimated as the combination of the ingested dose (CFU) in a beef serving (beef cuts, ground

beef, hamburger) and the dose ingested during salad consumption in case both were consumed

together. Portion sizes, frequency of consumption of each beef product (Nporbc, Nporgb, NporH)

and population stratum were obtained from the National Nutrition and Health Survey of Argen-

tina [82] (Table 2). Population estimates of each stratum were assessed in accordance with the

2010 National Census of Population, Households and Housing [86]. The number of annual HUS

cases due to beef consumption (N(HUSbc), N(HUSgb), N(HUSH)) was estimated considering the proba-

bility of acquiring the disease (P(HUSǀill)) and the frequency of beef consumption (Table 2).

2.6. Sensitivity analysis

Sensitivity analysis was performed using @Risk (Palisade Inc.) to identify the processing steps

with the greatest impact on the risk of acquiring STEC infection and thereby identify the risk

management strategies that would generate the greatest impact on public health.
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3. Results

3.1. Cattle primary production

The stx prevalence during primary production for all production scenarios (season, age of the

animals and production system) was 25.1% (6.2–64.4, 95.0% CI). Results differed when stx
prevalence was calculated for each specific scenario, as follows: 26.2% (7.3–43.1) in fall-winter

and 36.2% (9.3–64.6) in spring-summer; 36.9% (10.8–64.1) in young and 22.9% (5.1–31.5) in

adult cattle; and 35.0 (3.6–45.2) and 22.4% (18.8–64.1) in semi-intensive and feedlot produc-

tion systems, respectively. As it can be observed, spring-summer, young cattle and semi-inten-

sive production system showed the highest prevalence.

3.2. Cattle transport

The systematic literature search yielded 30 scientific studies using the terms “transport”, “beef
cattle”, “STEC prevalence” and “stx prevalence”. Reviews and prevalence studies in other ani-

mals or animals not producing food and reports with limited data to estimate stx prevalence

before and after transport were excluded (n = 18). Twelve articles were used to estimate the

impact of transport on stx prevalence. The estimated pooled OR was 1.0 (0.6–1.9), showing a

significant heterogeneity (Q-statistic: P< 0.0001; I2-statistic = 91.6%).

3.3. Processing and storage in the abattoir

The prevalence of stx on carcass surfaces in abattoirs applying and not applying HACCP-STEC

was 23.3 (18.8–41.6) and 42.7% (36.2–63.8), respectively. The enumeration of STEC levels was

1.7 (0.3–3.4) and 2.7 (1.3–4.2) log CFU/100 cm2, respectively.

3.4. Retail

3.4.1. Beef cuts. The prevalence of stx and STEC concentration in beef cuts was estimated

considering whether the carcass supplier applied HACCP-STEC or not. Thus, stx prevalence

was 28.4 (19.9–49.4) and 48.8% (37.3–70.1), respectively and STEC concentration was -2.9

(-5.0 and 0.4) and -0.2 (-3.4 and 3.6) log CFU/g, respectively.

3.4.2. Ground beef. Both stx prevalence and STEC concentration were estimated consid-

ering the available information from abattoirs applying or not HACCP-STEC and the effect of

handling beef at retail. Accordingly, stx prevalence was 73.6% (55.8–89.3) and STEC concen-

tration was -2.82 log CFU/g (-3.4–2.5).

3.4.3. Commercial hamburgers. The model incorporated information of Argentinean

abattoirs applying HACCP-STEC. Thus, stx prevalence in trimmings was 30.1% (20.3–52.2)

and STEC concentration in hamburgers was -2.9 log CFU/g (-5.0 and 0.4).

Table 2. Beef consumption by the Argentine population (6 months to 15 years of age) [82].

Age (Population) 6–23 months (2,029,712) 2–5 years (1,984,070) 6–15 years (6,927,170)

Foodstuff Beef cuts Ground

beef

Commercial

hamburger

Beef cuts Ground

beef

Commercial

hamburger

Beef cuts Ground

beef

Commercial

hamburger

Daily consumption

frequency

0.52 0.11 0.01 0.64 0.15 0.03 0.60 0.13 0.04

Mean portion size

(g) (SD)

65.9 (45.8) 43.8 (30.9) 58.4 (32.1) 83.5 (50.3) 69.5 (52.1) 83.5 (50.3) 120.8 (68.7) 91.9 (69.3) 135.9 (72.2)

Total portions

consumed

383,461,310 81,270,683 11,112,673 467,172,098 109,786,529 19,118,499 1,518,516,712 323,333,972 93,071,032

https://doi.org/10.1371/journal.pone.0242317.t002
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3.5. Home and consumption

A total of 5,658 surveys from 23 jurisdictions in Argentina were collected in April 2019 (S6

Table). Regarding beef cuts, 89.7% of surveyed consumers acquired this product chilled at

retail and 56.7% stored beef cuts frozen at home. Most consumers (99.7%) preferred levels of

cooking that ensured STEC removal from the surface of beef cuts. The most preferred levels of

cooking were "well-done" (57.6%), “medium-well done” (17.4%) and “medium-well” (17.9%).

In the case of ground beef, 46.6% of people acquired the product chilled at retail and 49.8%

stored ground beef frozen at home. The preferred level of cooking was “well-done” (79.1%) fol-

lowed by “medium-well” (10.9%). Finally, commercial hamburgers were obtained frozen at

retail (56.9%), stored at home once frozen (78.0%), and people preferred them “well-done”

(80.6%) and “medium-well” (9.9%).

According to the type of side dish, 45.1–66.8% of surveyed individuals preferred the con-

sumption of any beef product along with fresh vegetables; 51.8% reported having two separate

tables to prepare beef and vegetables, whereas 15.8% used the same table for both, always wash-

ing the table with detergent in between handling these foods. After handling beef, 16.2% of

consumers reported to wash their hands and 4.2% reported to wash the utensils.

The STEC concentration in raw beef cuts, ground beef and commercial hamburgers was

1.3 (-3.4–3.4), -2.7 (-3.4–3.9) and -2.8 (-3.4–3.0) log CFU/g, respectively. The STEC transfer

rates from beef cuts, ground beef and commercial hamburgers to salad was -5.0 (-5.0–3.9), -5.0

(-5.0–0.5) and -5.0 (-5.0–0.9) log CFU/g, respectively.

3.6. Risk characterization

Median HUS probability from consumption of beef cuts, ground beef and commercial ham-

burgers was<10−15 (<10−15–6.0x10-3, 90.0% CI), 5.4x10-8 (3.5x10-10–3.9x10-4) and 3.5x10-8

(3.0x10-10–2.0x10-4), respectively (Table 3). The expected average annual number of HUS

cases from consumption of beef cuts, ground beef and commercial hamburgers was 0, 28 and

4, respectively. The expected annual number of deaths due to ground beef and commercial

hamburger consumption was 2 and 0, respectively.

3.7. Sensitivity analysis

3.7.1. Beef cuts. The risk of STEC infection from beef cut consumption and subsequent

outcomes correlated with abattoirs applying HACCP-STEC, stx prevalence in carcasses at

retail, storage temperature in cold chambers of abattoirs not applying HACCP-STEC or at

retail, joint consumption of salad and beef cuts, hand washing after handling raw meat, trans-

fer of STEC from hands to salad, refrigeration temperature at home, STEC concentration in

carcasses from abattoirs not applying HACCP-STEC, and bacterial transfer from beef cuts to

hands (Fig 4(A)).

Table 3. Probability of illness, HUS and death and annual number of HUS cases from consumption of beef cuts, ground beef and commercial hamburgers contami-

nated with STEC.

Foodstuff Probability� Expected median HUS cases per year

Illness HUS Mortality

Beef cuts <10−15 (<10−15–8.0x10-2) <10−15 (<10−15–6.0x10-3) <10−15 (<10−15–7.9x10-4) 0

Ground beef 9.0 x 10−7 (6.3x10-9–7.0x10-3) 5.4x10-8 (3.5x10-10–3.9x10-4) 6.4 x 10−9 (4.2x10-11–4.7x10-5) 28

Commercial hamburgers 5.8x10-7 (8.2x10-9–4.1x10-3) 3.5 x 10−8 (3.0x10-10–2.0x10-4) 4.2x10-9 (5.4x10-11–2.9x10-5) 4

�Median (90% CI).

https://doi.org/10.1371/journal.pone.0242317.t003
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The most significant input for the risk of STEC infection was the type of abattoir for beef

production. This model input negatively correlated with the risk of infection (the higher the

percentage of abattoirs applying HACCP-STEC, the lower the probability of illness). Such

effect may be explained by the lower stx prevalence and STEC concentration in carcasses pro-

duced in abattoirs applying HACCP-STEC (28.4%; mean concentration, -2.9 log CFU/g) as

compared with abattoirs not applying HACCP-STEC (48.8%; mean concentration, -0.2 log

CFU/g). Thus, consumers eating beef cuts produced in an abattoir not applying HACCP--

STEC had 1.7 times higher probability of being exposed to STEC as compared with abattoirs

applying HACCP-STEC.

Likewise, hand washing negatively correlated with the probability of infection, proving the

impact of this practice on disease occurrence. Storage temperature in the abattoir, at retail and

home had a great influence on the probability of infection, with a 3.5 and 7.4 times increased

risk of HUS if beef cuts were stored at 8 and 10˚C, respectively.

3.7.2. Ground beef and commercial hamburgers. The risk of STEC infection from

ground beef and commercial hamburger consumption and subsequent outcomes correlated

positively with stx prevalence in carcasses at retail and trimmings in the abattoir, storage tem-

perature at home, storage type at home, carcass STEC concentration in abattoirs not applying

HACCP-STEC (ground beef) and applying HACCP-STEC (commercial hamburgers), transfer

of STEC from the mincing machine to ground beef, and joint consumption of salad and

ground beef (Fig 4(B) and 4(C)). The probability of HUS was 1.2 times higher if ground beef

was elaborated with beef provided by abattoirs not applying HACCP-STEC. Ground beef

cooking preference was the only input with a negative correlation, i.e., the higher the

Fig 4. (A-C). Sensitivity analysis of model inputs on the probability of developing HUS.

https://doi.org/10.1371/journal.pone.0242317.g004
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percentage of consumers who preferred a higher degree of beef doneness (well-done was

selected by 79.1% of consumers), the higher the STEC reduction after cooking and the lower

the probability of infection. The positive correlation between STEC transfer from the mincing

machine to ground beef and the probability of acquiring HUS due to ground beef consump-

tion evidenced the impact of good hygiene practices (GHP) at retail.

4. Discussion

This risk assessment study allowed to shed light into the potential role of beef consumption in

the development of HUS cases in the Argentinean child population, considering the very lim-

ited epidemiological information on food sources in the country [6]. The QMRA included all

the available information throughout the Argentinean beef production chain, from primary

production to home consumer habits [38–43,50]. Although a risk assessment of HUS from

hamburger consumption had already been carried out in Argentina [37], the relevance of the

current QMRA is concerned with the inclusion of new information that responds to the uncer-

tainties identified in the previous risk assessment [37], such as a) risk factors associated with

the presence of STEC in primary production, b) effect of the transport of live animals, c) iden-

tification of abattoirs with different risk levels, d) evaluation of the effect of cross-contamina-

tion in butcher shops, e) application of a survey to assess beef consumption habits at home at

national level, not just regional, and f) consideration of other meat matrices. Despite the quan-

tity and quality of the information used in the current QMRA were better, the risk of HUS

from hamburger consumption was very similar in both models (3.5x10-8 vs. 4.6x10-8).

4.1. Cattle primary production

Cattle are the major STEC reservoir, and beef has been essentially identified as the main vehi-

cle associated with the transmission of this group of microorganisms [52]. The mean stx preva-

lence in cattle estimated by the QMRA (25.1%, 6.2–64.4%, 95.0% CI) was in the range of that

reported in Brazil, USA, Italy and Spain (21.3–36.2%) [87–91]. The STEC prevalence reported

in studies conducted in Argentina is also within the same range (11.8–38.9%) [38,39,52,53].

However, other authors have reported higher mean STEC prevalence in cattle feces in Para-

guay, Canada, Germany, Ireland, UK, France and Australia (44.8–84.8%) [92–99]. Interna-

tional studies have identified differences in cattle stx prevalence according to season, cattle age

and feeding practices [48,83,87,97,100,101]. However, the QMRA model did not show any sta-

tistical association between these primary production variables and the risk of developing

HUS from any beef product. More detailed prevalence studies including different production

scenarios in Argentina could validate the model conclusions.

4.2. Cattle transport

The impact of transport on STEC prevalence in cattle is controversial. In this study, the pooled

OR impact of transport on STEC prevalence in cattle was 1.0 (0.6–1.9). Other studies have

observed an increase [57,102,103], a reduction [58], no change [60,61,101] and even contradic-

tory results [54,104] in the prevalence and spread of STEC in bovine faeces caused by

transport.

4.3. Processing and storage in the abattoir

Carcass contamination with STEC can occur during the slaughtering process in the abattoir,

and STEC-contaminated carcasses can carry over the contamination to beef cuts and trim-

mings [41,42,63]. The prevalence of stx in carcasses was 23.3% (18.8–41.6) in HACCP-STEC
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abattoirs and 42.7% (36.2–63.8) in abattoirs not applying HACCP-STEC. A similar or higher

prevalence has been reported in the USA (23.0 and 60.6%) and UK (27.0%) [95,105,106]. In

Canada, the proportion of STEC confirmed by isolation from carcasses was 5.4% [107]. In

Argentina, the isolation rate of STEC strains was 5.8 to 9.0% in abattoirs applying HACCP--

STEC [24,38,41].

The concentration of STEC in carcasses was also associated with the type of abattoir. The

probability of developing HUS from beef cut consumption was lower (1.7x) if carcasses were

provided by abattoirs applying HACCP-STEC, evidencing the impact of targeting the food

safety mitigation strategies against STEC. In these abattoirs, beef cuts are vacuum-packaged,

avoiding later product contamination until consumption. On the other hand, abattoirs not

applying HACCP-STEC do not cut and debone carcasses; these processes are performed in

butcher shops that do not even apply GMP [22]. As the type of abattoir was one of the most

influential model inputs on the risk of HUS, the use of a single sanitary standard (application

of HACCP-STEC) in all Argentinean abattoirs and during transportation of packaged beef

cuts would have the greatest impact on HUS reduction.

4.4. Retail

The prevalence of stx in beef cuts at retail was also higher if carcasses were produced in abat-

toirs not applying HACCP-STEC (48.8 vs. 28.4%). Studies conducted in Uruguay and the USA

have reported 28.0% and 36.0% stx detection in beef cuts, respectively [105,108]. In Argentina,

stx detection in retail beef cuts was 12.1% [63], and even lower in Chile, Brazil, Canada and

Italy (0.7–8.4%) [109–111].

Food products elaborated with ground beef are considered an epidemiologically important

source of STEC infections due to contamination spread during mincing [22,112]. Although

the stx prevalence estimated by the QMRA in ground beef at retail (73.6%) was similar to that

reported in Chile, Brazil, USA, Italy, Spain and Australia (2.1–49.3%) [113–120], studies con-

ducted in Argentina have reported a lower prevalence (6.1–45.3%) (S5 Table). Differences may

be due to true differences in STEC shedding rates in cattle, GMP and HACCP practices in the

abattoir and storage conditions at retail. It is important to note that the laboratory methodolo-

gies or criteria (screening or isolation) to consider positivity for STEC differed, which may

also account for differences in prevalence levels between studies.

Commercial hamburgers are elaborated with beef trimmings obtained from deboning in

abattoirs applying HACCP-STEC. The stx prevalence in trimmings was 30.1%, including

activities that could lead to cross-contamination (slaughtering, quartering, deboning). In this

regard, the only study conducted in Argentina reported 1.4% stx prevalence in trimmings [41],

whereas studies in New Zealand, Australia, USA and Uruguay informed a higher stx preva-

lence (9.7–30.0%) [108,121].

4.5. Risk characterization

4.5.1. Beef cuts. In the present study, the mean probability of illness, HUS and death from

beef cut consumption in children under 15 years was <10−15, with an expected number of

zero HUS cases per year (95.0% CI 0–0). In a risk assessment carried out in Canada [30], the

mean probability of illness (2.9x10-9) from beef cut consumption was six orders of magnitude

greater than in our study. In our QMRA, storage temperature at retail (>5˚C) was a risk vari-

able for HUS development due to beef cut consumption, as identified in the sensitivity analy-

sis. Application of GMP along the beef chain and storage of beef at temperatures below 5˚C

were identified as protective factors against HUS. Since microbial contamination in beef cuts

is superficial and STEC are not heat-resistant, exposure to recommended cooking
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temperatures eliminates STEC [122]. In Argentina, children prefer beef cuts to ground beef

and commercial hamburgers (Table 2) [82]. Even though most Argentinean consumers

(99.7%) prefer eating beef cuts "medium-red" to "well-done", the sensitivity analysis did not

identify the level of cooking as a factor that impacted on HUS risk.

4.5.2. Ground beef and commercial hamburgers. The mean probability of illness, HUS

and death from ground beef consumption in Argentine children under 15 years was 9.0x10-7,

5.4x10-8 and 6.4x10-9, respectively, and 5.8x10-7, 3.5x10-8 and 4.2x10-9, respectively, from com-

mercial hamburger consumption. The expected annual number of HUS cases from ground

beef and commercial hamburger consumption was 28 and 4, respectively. The present HUS

QMRA is similar to other risk assessments developed in Canada [30,33], Australia [34], the

Netherlands [123], USA [35,124], Ireland [27] and Argentina [37], all of which considered pri-

mary production conditions, distribution, storage and consumption. The probability estimates

reported in those studies (Pillness, 6.0×10−7–1.8×10−4), (PHUS, 4.2×10−9–6.4×10−5) and (Pdeath

5.9×10−10–2.3×10−6) were within the values informed here. In a previous risk assessment car-

ried out in Argentina [37], the probability of HUS from home-made and commercial ham-

burger consumption was 4.6x10-8 (95.0% CI, 7.4x10-11–1.6x10-4), similar to the one obtained

with the present QMRA. In agreement with a study conducted in Canada, home storage con-

ditions were a protective factor against HUS from ground beef consumption [30]. On the

other hand, cross-contamination at retail, specifically the transfer of STEC from the mincing

machine to ground beef due to lack of standardized sanitation operating procedures (SSOP)

and GHP, significantly increased bacterial loads and the public health risk associated with

ground beef consumption [22,125]. In Argentina, most consumers (70.0%, S6 Table) purchase

ground beef in butcher shops, the majority of which do not apply SSOP, GHP or GMP [22].

The probability of HUS was 1.2 times higher if ground beef was elaborated with carcasses pro-

vided by abattoirs not applying HACCP-STEC. Thus, applying HACCP-STEC in all abattoirs

could help reduce HUS incidence. In this context, it would be interesting to evaluate the

impact of HACCP-STEC from ground beef production to immediate packaging after

processing.

The stx prevalence in trimmings was also associated with higher risk of HUS from commer-

cial hamburger consumption. Storage at refrigeration temperatures (<5˚C) at retail and home

were protective factors against HUS. In agreement with other risk assessments, cooking was

the most influential model input for ground beef and hamburgers [27,30,33–36]. Opposite to

other survey studies conducted in Ireland and Norway reporting 65.0% and 45.7% of consum-

ers eating hamburgers well-done [126,127], most consumers in Argentina preferred eating

ground beef (79.1%) and commercial hamburgers (80.6%) well-done. Such preference for a

higher degree of meat doneness was seen as a protective factor against the risk of acquiring

HUS.

Differences in the probabilities estimated by the different models worldwide reflected the

diverse conditions of food production, distribution, storage and preparation [36]. However, all

models were markedly similar in terms of the factors having the highest risk impact. The prev-

alence and concentration of the pathogen in faeces and carcasses and the cooking temperature

of beef were the most influential variables in all the published models.

The cross-contamination module “at home” regarding Argentinean habits was incorpo-

rated to capture the effect of food preparation practices on disease transmission. Storage tem-

perature was identified in the sensitivity analysis of all beef products of our model. This

coincided with other authors [123] and reinforced the idea of the impact of storage and pro-

cessing practices at home on the risk of HUS. Cross-contamination has been previously pro-

posed as a factor associated with illness and increased HUS risk [27,36,67]. Vegetables have

been associated with STEC cases and outbreaks worldwide [19,128–133], and STEC cross-
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contamination from beef to vegetables as well as the effect of hygiene measures have also been

studied [134–136]. In our QMRA, the joint consumption of salads with beef was identified as a

risk factor for HUS due to improper hygiene practices at home and vegetable contamination

from meat, although the effect of the possible level of STEC contamination of vegetables was

not included. Other QMRA did not consider or identify the joint consumption of salads with

beef as a risk factor for HUS. The sensitivity analysis of all foodstuffs in our model estimated

that the impact of consumers´ habits during food preparation at home was lower than that of

variables such as type of abattoir, stx prevalence in carcasses or storage of beef at retail. How-

ever, their influence on the probability of HUS should not be underestimated.

4.6. Is beef consumption the only responsible for endemic HUS in

Argentina?

Haemolytic-uremic syndrome is considered a multifactorial disease [18] and, for this reason,

HUS endemicity in Argentina cannot be explained only by beef consumption. Although the

consumption of raw beef, raw milk, lettuce, sprouts, fruit juices and vegetables is recognized as

a potential source of STEC infection in human beings [137], environmental exposure, direct

contact with animals and person-to-person transmission have also been identified as impor-

tant risk factors [18,138–141]. In Argentina, information on potential food sources and trans-

mission routes other than beef is scarce. However, an epidemiological study showed that

eating undercooked beef outside home, living or visiting a place with pets and being in contact

with children <5 years old with diarrhoea were risk factors for HUS [142]. The routes of trans-

mission have expanded from direct or indirect contact with cattle or animal food products to

include direct contact with infected people that may be actively shedding STEC [18].

The rate of HUS cases reported in Argentina ranges from 300 to 500 new cases per year,

with a median of 349 cases in the period 2010–2016 [6]. The average number of annual HUS

cases in this study was 32, all related to the consumption of beef products. On average, 10.0%

of HUS cases reported in children under 15 years in Argentina would be due to beef consump-

tion, especially ground beef. Official reports of the period 2002–2015 only attributed 0.1–

0.06% of cases to beef consumption [6]. The last epidemiological report in Argentina has

shown a slight decrease in HUS cases, totalling 290 cases [7]. Such tendency could be explained

by consumers’ habits, the improvements implemented along the beef production chain and

specific legislation on beef products. However, HUS primarily affects 1-year-old children. The

annual rate slightly increased from 12.3 cases per 100,000 in 2018 [44] to 12.9 cases in 2019 [7].

According to the Argentinian National Nutrition and Health Survey [82], beef cuts are the

beef food most consumed by this sub-population. In the present evaluation, no HUS cases

from beef cut consumption would be expected. In this context, other potential sources of infec-

tion should be included to implement actions tending to reduce HUS in the affected sub-popu-

lation. For example, in 2011–2015, 39 HUS outbreaks were reported in Argentina; 30 were

associated with home origin, 5 with kindergarten and 4 with the community [6]. Fernandez

Brando et al. [17,143] reported that 75.0% of children in urban and suburban areas and 68.7%

of healthy adults working in kindergartens from Buenos Aires had antibodies against Shiga-

toxins. Also, it was recognized that human beings can be carriers and eliminate STEC in faeces,

without presenting disease symptoms [6]. These findings allowed us to hypothesize about the

role of person-to-person transmission, particularly if we consider that more than 54.0% of dis-

ease outbreaks caused by STEC worldwide were not associated with any specific food source

[32,140,144].

Cooking preference impacted on the probability of HUS among Argentine consumers, but

the responsibility cannot rest exclusively on consumers and their consumption habits. The
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origin of beef (abattoirs applying or not HACCP-STEC) was also associated with HUS risk. It

would be very important to continue working in the beef production chain and to deepen the

knowledge of other food production chains and sources of water supply. Additionally, person-

to-person transmission should be evaluated and epidemiological studies strengthened to iden-

tify the origin of HUS cases in order to reduce the impact of HUS on the child population of

Argentina.

5. Conclusion

In summary, the QMRA developed in the present study did not find any statistical association

between primary production variables (cattle age, season and production system) and the

probability of developing HUS. The model predicted almost doble stx prevalence and higher

STEC enumeration levels in carcasses and beef cuts produced in abattoirs not applying

HACCP-STEC. The abattoir type (applying or not applying HACCP-STEC), storage tempera-

tures (higher temperatures from abattoir to home) and lack of hygienic practices at retail were

the most influential factors increasing significantly HUS probability. Beef consumption in the

Argentinian children population (mainly ground beef) was able to explain only about 10.0% of

the HUS median cases per year in children under 15 years. This study highlights the multifac-

torial nature of HUS disease and the plausibility of other STEC infection routes (other food

sources, animal contact, person-to-person) and the need to investigate the contribution of

these additional risk factors on the overall HUS disease burden in the children population of

Argentina.
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