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+e Cloud Computing paradigm is focused on the provisioning of reliable and scalable virtual infrastructures that deliver execution
and storage services. +is paradigm is particularly suitable to solve resource-greedy scientific computing applications such as
parameter sweep experiments (PSEs). +rough the implementation of autoscalers, the virtual infrastructure can be scaled up and
down by acquiring or terminating instances of virtual machines (VMs) at the time that application tasks are being scheduled. In this
paper, we extend an existing study centered in a state-of-the-art autoscaler called multiobjective evolutionary autoscaler (MOEA).
MOEAuses amultiobjective optimization algorithm to determine the set of possible virtual infrastructure settings. In this context, the
performance ofMOEA is greatly influenced by the underlying optimization algorithm used and its tuning.+erefore, we analyze two
well-known multiobjective evolutionary algorithms (NSGA-II and NSGA-III) and how they impact on the performance of the
MOEA autoscaler. Simulated experiments with three real-world PSEs show that MOEA gets significantly improved when using
NSGA-III instead of NSGA-II due to the former provides a better exploitation versus exploration trade-off.

1. Introduction

Cloud Computing [1] dynamically provides on-demand and
scalable resources to support scientific application execu-
tion.+e existence of Clouds allows scientists to facilitate the
execution of large-scale computational experiments by
exploiting existing hardware resources. A representative
example of these experiments is parameter sweep experi-
ments (PSEs) [2, 3]. An example of PSE is the one discussed
in [2] where a plane strain plate with a central circular hole
under imposed displacements stretching the plate was
studied. In the study, the authors considered different vis-
cosity values and other constitutive model parameters to
adjust the model response. +en, through the variation of
the parameters, a lot of study cases were obtained, which was
necessary to run in parallel. +erefore, to achieve an efficient

execution of the PSE tasks, infrastructures such as Cloud are
necessary.

A Cloud enables for the acquisition of computing re-
sources through different types of virtual machine (VM)
instances [4] that are provided with a wide spectrum of
hardware and software configurations under a pay-per-use
scheme. Moreover, VM prices differ according to the type of
instance acquired, where the type is in turn a combination of
the number of available virtual CPUs and maximum RAM/
disk space that can be allocated. In addition, instance prices
may also vary according to the pricing model of the Cloud
provider. First, there are on-demand VMs that can be
accessed for a fixed price. +e price is usually charged by the
hour of use. Second, the spot instances have fluctuating
prices over time. +e prices tend to decrease during low-
demand periods. On-demand instances are more expensive
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than spots, but spot instances are subject to abrupt termi-
nations by the provider. +e user, for acquiring a spot in-
stance, must bid the maximum price that he/she is willing to
pay. +en, if the spot price overcomes such bid, an out-of-
bid (OOB) error occurs and the executing VM instances are
terminated after a short period. Moreover, it is important to
mention that, when the instances are unexpectedly finished,
this negatively impacts the task execution times, which
causes delays in the whole PSE.

Since the workloads in a Cloud are very often caused
by the coexistence of applications with different com-
puting requirements, autoscaling strategies [5–7] become
necessary. Cloud autoscaling is a strategy that is re-
sponsible, on the one hand, for determining the appro-
priate number/type of instances to use and, on the other
hand, for scheduling in an online fashion the PSE tasks on
the running infrastructure represented by the acquired
instances. +ese are two interdependent problems that
must be solved simultaneously. It is important to mention
that since the applications usually comprise a large
number of tasks and that a wide spectrum of VM instance
types and pricing models are available, determining be-
forehand the right amount and type of necessary in-
stances for an application is not a trivial problem. For
solving this problem, it is necessary to consider the dy-
namic resource availability variations on the virtual
infrastructure.

Concretely, in this work, we address the autoscaling
problem for PSEs, to determine the right number of each
VM instance type and pricing model as well as the bid prices
for the spot instances. Specifically, we rely on a formulation
of our problem that involves minimizing the makespan, i.e.,
the total execution time of all tasks in a PSE, while also
minimizing the monetary cost of this set of PSE tasks and the
OOB errors, while focusing on the algorithm that best
optimizes the formulated problem.

From the related works, most Cloud autoscaling
strategies have been proposed for executing workflow
applications and are mainly subject to deadline constraints
[8–10]. However, these approaches are not appropriate for
managing PSEs because workflows are applications that
have different computational requirements. +e main
difference is that in a PSE, tasks are independent (i.e., there
are no intertask dependencies) and somewhat homoge-
neous [3], which determines a completely different
autoscaling scenario. Besides, from the surveyed works,
only in the work in [11], the authors have addressed a
multiobjective minimization problem aiming at reducing
the makespan, the monetary cost, and the potential impact
of OOB errors for different PSEs. Such autoscaler is called
multiobjective evolutionary autoscaler (MOEA) and is
based on the multiobjective evolutionary algorithm called
nondominated sorting genetic algorithm II (NSGA-II). +e
key idea of this work is to propose a variant of the MOEA
autoscaler based on NSGA-III to solve the autoscaling of
PSEs for scenarios where the availability of the virtual
infrastructure varies constantly throughout the applica-
tions execution. +erefore, this article brings in the fol-
lowing contributions:

(i) A new and improved multiobjective Cloud
autoscaler of the autoscaler proposed in [11] for
executing PSEs: the new autoscaler is based on the
nondominated sorting genetic algorithm III (NSGA-
III). Specifically, the key idea of this article is to
provide a new and improved Cloud autoscaler for
PSEs capable of determining the right amount of VM
instances for each VM type for minimizing the
makespan, the monetary cost, and the impact of
OOB errors. As far as we know, autoscalers based on
the NSGA-III have not been proposed in the liter-
ature. Besides, this algorithm has demonstrated to be
very efficient with respect to other known similar
algorithms, such as NSGA-II, for solving various
NP-hard problems [12–14]. +e mathematical for-
mulation of the problem and the MOEA autoscaler
are described in Sections 2 and 3, respectively. +en,
Section 4 describes the NSGA-II and NSGA-III
algorithms.

(ii) +e proper parameterization values for the NSGA-II
and NSGA-III: we present an experimental valida-
tion demonstrating that by using NSGA-III, the
performance of the MOEA autoscaler can be greatly
boosted considering the results already obtained in
[1], w.r.t. relevant metrics, particularly makespan,
economic cost, number of tasks failures derived from
OOB errors, and the L2-norm [15] of such metrics.
+e experiments were performed considering nine
study cases, derived from two real-world PSEs, in-
volving a viscoplastic and an elastoplastic problem
from the computational mechanics domain, and an
ensemble of the two PSEs, over simulated Cloud
environments [16]. Such applications and the actual
characteristics of the instances used and their prices,
extracted from the popular Amazon EC2 Cloud
service, are described in Section 5. Section 6 dis-
cusses the experiments and presents the results,
while also discussing the statistical significance tests
that back up the strength of our claims.

Finally, Section 7 surveys relevant related work focused
on addressing the autoscaling problem, and Section 8
concludes this work.

2. Multiobjective Autoscaling Problem

In this paper, we address the problem of autoscaling PSEs
in public Clouds (e.g., Amazon EC2 and Google Cloud)
with the help of evolutionary algorithms. +is general
problem involves determining the number and type of
VM instances to be acquired to execute the tasks in a
given PSE, and scheduling these tasks on the instances, so
that the predefined optimization objectives are reached.
In this respect, we consider three relevant optimization
objectives: the minimization of the makespan, the
minimization of the monetary cost, and the minimiza-
tion of the impact of out-of-bid (OOB) errors. +is
problem is recognized as a multiobjective NP-hard
problem [11].
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A PSE model is a numerical experiment which involves a
large number of tasks to be executed and usually needs
several hours or days to be completed. In practice, when a
PSE is executed, the execution, duration, and cost of the
tasks differ according to the instances used to execute these
tasks.

In public Clouds, instances of different types of VMs
have different characteristics with respect to operating
system, number of processors, processing power, memory
size, memory speed, disk size, and the like. Moreover, in-
stances of different types of VMs have different monetary
cost. In this respect, instances of VMs can be acquired under
different pricing models, which determine the cost of in-
stances and also their behavior.

In this paper, we consider that instances are charged for
every hour used under two possible pricing models, namely,
the on-demand model and the spots model, as in real public
Clouds (e.g., Amazon EC2). In the on-demand model, in-
stances are acquired at a fixed monetary cost by the hour of
computation.+emonetary cost of instances acquired under
this pricing model is usually higher than that of instances
acquired under the spots model. For the remainder of this
work, we will refer to instances acquired under the on-
demand model as on-demand instances.

In the spots pricing model, the monetary cost of in-
stances fluctuates mostly unpredictably over time and is
usually lower than that of the on-demand instances. To
acquire an instance under this pricing model, the user must
make a bid as in a stock market, indicating the maximum
amount of money he/she is willing to pay for the instance.
+en, while the current monetary cost of the instance is
lower than the bid of the user, the instance will remain
assigned to the user. Otherwise, when the current monetary
cost of the instance exceeds the bid of the user, an OOB error
happens. +is error forces the termination of the instance,
and therefore, the abrupt termination of the execution of the
tasks running on the instance. +us, OOB errors can impact
negatively on the execution of PSEs. For the remainder of
this work, we will refer to the instances acquired under the
spots model as spots instances.

+e PSE autoscaling problem addressed here is com-
posed of two well-defined interrelated problems. +e first
problem involves determining a scaling plan detailing the
number and type of on-demand and spot instances to re-
quest to the Cloud provider for the next hour and also the
bids corresponding to the spot instances (i.e., the virtual
infrastructure setting to request for the following hour). +e
second problem involves scheduling the tasks of the PSE on
both the on-demand and spot instances acquired.

+ese two problems need to be solved periodically (i.e.,
every one hour) during the execution of the PSE, in order to
update the infrastructure setting according to the workload
of the PSE (i.e., the tasks whose execution is pending) and
schedule this workload on the new infrastructure setting, so
that the considered optimization objectives are reached. It is
important to note that the autoscaler reevaluation condi-
tions are not the same in each autoscaling cycle. For ex-
ample, the price of spot instances varies because it is subject
to a supply and demand market, the Cloud provider may

suddenly finish some of the acquired spot instances, and
therefore, less computing power will be available, and finally,
it is possible that the set of running tasks and ready-to-run
tasks change (in each cycle, there may be tasks that have
already been completed and/or tasks that have been can-
celed). In Section 2.1, we present the mathematical for-
mulation of the addressed PSE autoscaling problem, which
sets the formal basis for these two interrelated problems.

2.1. Mathematical Formulation of the Problem. +is section
describes the mathematical formulation of the problem [11],
in order to make the paper self-contained. Given I, the set of
instance types considered for autoscaling, and n� | I |, the
number of instance types, a scaling plan X is formally de-
fined as a 3-tuple (xod, xs, and xb), where

(i) xo d � (xo d
1 , xo d

2 , . . . , xo d
n ) is a vector which de-

scribes the number of on-demand instances to be
acquired for each of the n instance types. Here, each
xo d

i is an integer value that ranges between 0 and the
maximum number of on-demand instances that
establishes the Cloud provider regarding the type i
for the current autoscaling stage (i.e., for the next
hour).

(ii) xs � (xs
1, xs

2, . . . , xs
n) is a vector which describes the

number of spot instances to be acquired for each of
the n instance types. Here, each xs

i is an integer value
that ranges between 0 and the maximum number of
spot instances that establishes the Cloud provider
regarding the type i for the current autoscaling
stage.

(iii) xb � (xb
1, xb

2, . . . , xb
n) is a vector which describes the

bid price for the spot instances of each of the n
instance types. Here, each xb

i is a real value that
ranges between the current spot price and the on-
demand price for the instance type i.

Given the set T of PSE tasks considered for the current
autoscaling stage (i.e., the tasks whose execution is pending,
including tasks that started in previous stages and are
running yet), the multiobjective autoscaling problem in-
herent to this autoscaling stage is defined as the minimi-
zation of the three objective functions shown in equation (1),
subject to a set of constraints.+is is the step we focus on this
paper, as this is tackled by a genetic algorithm:

min(makespan (X), cost (X), errorsImpact (X)). (1)

2.1.1. Objective Functions. +e three objective functions
considered as part of the problem are described below.

(1) Makespan. Equation (2) presents the definition of the
makespan (·) function. Makespan is computed as the exe-
cution time of the set T of tasks. For computing makespan,
the execution of tasks is simulated by scheduling the tasks in
T on the set of instances described by xod and xs. Tasks are
greedily scheduled using the earliest completion time (ECT)
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criterion, i.e., scheduling each task to the instance that
promises the earliest completion time.

Formally, the makespan is computed as

makespan(X) � max
t∈T

ST(t) + dt􏼈 􏼉 − min
t∈T

ST(t){ }, (2)

where dt is the duration of the task t. Here, such duration
corresponds to the expected execution time of the task t on
the instance chosen with the ECTcriterion. ST (t) is the start
time of the task t according to the schedule generated by the
ECT algorithm.

(2) Cost. Equation (3) presents the definition of the cost (·)
function, which represents the cost of running the instances
indicated in xod and xs for one hour of computation:

cos t(X) � 􏽘
n

i�1
x

o d
i × pricei + x

s
i × x

b
i . (3)

+e cost of on-demand instances is the sum of running
all the on-demand instances of each type i (xo d

i ) multiplied
by their corresponding on-demand price (pricei).+e cost of
spot instances is computed differently. +e model computes
such cost as the product of the number of spot instances of
type i (xs

i ) and their corresponding bid (xb
i ).

It is worth to point out that equation (3) computes a
pessimistic estimation of the overall cost because of two
reasons. First, the equation does not consider the occurrence
of OOB errors, therefore assuming that the instance is
charged for the whole interval. Second, by using the bid as a
proxy of the spot price, upper bounds of the actual spot
prices are considered.

(3) Potential Impact of OOB Errors. Equation (4) presents the
definition of the errorsImpact (·), function which measures
the potential impact of OOB errors on the execution of the
PSE tasks according to the number of spot instances and
their bids. As the occurrence of OOB errors depends on the
bid and evolution of spot prices, it is not possible to de-
termine beforehand if OOB errors will occur or when they
will occur. For such a reason, we use a function that models
the probability of OOB-error occurrences for different bids.
Formally, the impact of OOB errors on the tasks is computed
as

errors Impact (X) � 􏽘
n

i�1
x

s
i × vCPUi × Pi x

b
i􏼐 􏼑. (4)

+e potential impact of OOB errors is computed as the
sum of the total number of virtual CPUs of type i
(xs

i × vCPUi) weighted by the probability of OOB error
given the bid for such type (Pi(xb

i )).+e probability function
Pi(·) for the instance of type i can be easily computed offline
by counting the number of OOB occurrences for a number
of predefined bid levels over a history of spot prices. +e
probability function is computed as

Pi x
b
i􏼐 􏼑 �

1
w

Sij

􏼌􏼌􏼌􏼌􏼌∃s
(k)
ij ∈ Sij, s

(k)
ij > x

b
i􏼚 􏼛

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 1≤ k≤m (5)

where Sij � s
(1)
ij , . . . , s

(m)
ij􏽮 􏽯 is the jth function of w subseries

of spot prices obtained from the available historical data for
the VM type i (in Section 5.2, we provide details about the
historical data considered). +en, the formula computes the
average number of series for which at least one value is
greater than the bid price xb

i . +ese subseries of spot prices
have duration of 1 hour, which is the minimum charge unit
of any VM. Note that the bid price xb

i is constrained to take
the same values described as part of the autoscaling problem
definition. In this study, these are 10 values for each VM
type.

+e image of the errorsImpact (·) function is [0,
􏽐

n
i�1x

s
i × vCPUi], where 0 corresponds to the cases in which

there are no tasks affected by OOB errors (i.e., there are no
task failures), and 􏽐

n
i�1x

s
i × vCPUi corresponds to the cases

in which all the tasks have a probability of 1 of being affected.

2.1.2. Constraints. +e set of constraints considered as part
of the problem is described below.

(1) Budget Constraint. Equation (6) presents the budget
constraint which limits the cost of the scaling plan to be
below the maximum monetary budget B:

cos t(X)≤B. (6)

(2) Instance Constraints. Equation (7) presents the set of n
constraints that set the minimum and themaximum number
of instances for each type. In this equation, Xmin

i and Xmax
i

are, respectively, the minimum and maximum number of
allowed instances regarding the instance type i for the
current autoscaling stage. +e minimum amount of in-
stances (Xmin

i ) refers to the amount of running instances of
type i that are currently processing at least one task:

X
min
i ≤x

o d
i + x

s
i ≤X

max
i . (7)

+e constraint in equation (8) forces that the scaling plan
must contain at least one instance:

􏽘

n

i�1
x

o d
i + x

s
i ≥ 1. (8)

(3) Bid Constraints. Equation (9) presents the set of n
constraints aimed at circumscribing bids to be between the
current spot price and amaximum spot price allowed. In this
equation, Scurrent Pricei is the current spot price for the in-
stances of type i, and pricei is the on-demand price for the
instances of type i:

S
current Price
i ≤x

b
i ≤ pricei. (9)

3. The MOEA Autoscaler

As described in Section 2, throughout the execution of a PSE,
different autoscaling stages need be addressed periodically
(i.e., every one hour), which means that the multiobjective
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autoscaling problems inherent to these different stages need
be solved.

To solve each of these multiobjective autoscaling
problems, the MOEA autoscaler [11] develops three se-
quential steps. In the first step, the algorithmNSGA-II [17] is
used in order to obtain an approximation to the optimal
Pareto set. In the second step, the best solution of the Pareto
set obtained by the first step is selected. In the third step, the
scaling plan represented by the selected solution is applied,
and the scheduling of the tasks is developed.

3.1. First Step. +is step is concerned with solving the
multiobjective autoscaling problem described in Section 2.1.

In the MOEA autoscaler, this step is developed by ap-
plying the NSGA-II and, therefore, obtaining a Pareto set
(i.e., set of nondominated solutions) where each solution
represents a feasible scaling plan and is encoded like the 3-
tuple (xod, xs, and xb) detailed in Section 2.1.

In the study performed in this paper, this step is carried
out by using the two optimization algorithms object of our
analysis, i.e., NSGA-II as used in MOEA and NSGA-III [18].
In Section 4, we present the main characteristics of these
algorithms and also the differences between them.

3.2. Second Step. From the Pareto set provided by the first
step, one solution is selected to solve the addressed multi-
objective autoscaling problem, by applying a predetermined
selection criterion. +is is meant in order to obtain one
solution in a fully autonomous way, without relying on a
human decision maker.

+e selection criterion calculates the distance of each
solution of the Pareto set to an ideal solution, by applying the
well-known L2-norm [15]. +en, the criterion selects the
solution which minimizes the distance to the ideal solution.
In this case, the ideal solution corresponds to the solution
with makespan, cost, and task failure probability equal to 0.
+us, the criterion considers the trade-off of each solution of
the Pareto set among the optimization objectives of the
addressed problem. Note that the makespan, cost, and task
failure probability of each solution of the Pareto set are
calculated by equations (2)–(4), respectively.

3.3. 6ird Step. From the solution selected by the second
step, the autoscaler builds the scaling plan. Specifically,
the autoscaler acquires the number of on-demand in-
stances detailed in the solution and the number of spot
instances with the corresponding bid prices detailed in the
solution. +en, the autoscaler schedules the tasks in T on
the on-demand and spot instances acquired, by applying
the ECTcriterion. Note that T refers to the set of PSE tasks
considered for the current autoscaling stage, as mentioned
in Section 2.1.

4. Optimization Algorithms

+is section describes the multiobjective optimization al-
gorithms studied to solve the multiobjective autoscaling

problem that takes place in the first step of the execution of
the MOEA autoscaler.

4.1. NSGA-II. NSGA-II [17] is a known multiobjective
evolutionary algorithm which has been widely applied in the
literature [15]. +is algorithm begins creating a random
initial population with s solutions, where s is a given number.
In this case, each solution represents a feasible scaling plan
and is encoded as detailed in Section 4.3.

In each generation, the algorithm selects s solutions from
the current population to compose the mating pool, by
applying the traditional binary tournament selection pro-
cess. +is process considers the nondomination level of the
solutions which is defined by applying the nondominated
sorting [15] to the current population. +e process also
considers the crowding distance of the solutions which
represents the distance between a solution and its neighbors.
+en, the process considers the following criterion to de-
termine the best solution of each of the s tournaments.When
a tournament involves two solutions with different non-
domination levels, the solution with the lower (better) level
is preferred and selected for the mating pool. Otherwise,
when the two solutions of a tournament have the same
nondomination level, the solution with the higher crowding
distance is preferred and selected, in order to promote the
selection of diverse nondominated solutions for the mating
pool.

After the mating pool is composed, the algorithm creates
an offspring population from the mating pool, by applying
the known simulated binary crossover operator [15] and
then the known polynomial mutation operator [15]. +e
crossover operator is applied with a crossover probability Pc

and a crossover distribution index Dc, and the mutation
operator is applied with a mutation probability Pm and a
mutation distribution index Dm.

Once the offspring population is created, the algo-
rithm combines the current and offspring populations and
then selects the best s solutions from this combined
population, to create a new population for the next
generation. To select these s solutions, the algorithm
applies the nondominated sorting [15] to the combined
population. After that, the solutions in this population are
grouped according to their nondomination levels as {F1,
F2, . . .}. +en, each nondomination level is selected one at
a time to create the new population, beginning from F1,
until the size of the new population is equal to s or higher
than s. When the size of the new population is equal to s,
additional selection operations are not needed, and the
next generation starts from this population. When the size
of the new population is higher than s, the last non-
domination level selected Fl is not fully included in this
population. In this respect, the solutions from level Fl to
level Fl − 1 are included in this population, and the r
remaining solutions (r � s − |F1∪ . . .∪Fl− 1|) are selected
from level Fl.

To select the r remaining solutions from the level Fl, the
algorithm utilizes a selection process which considers the
crowding distances of the solutions in Fl. +is process
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calculates the crowding distance of each solution in Fl. +en,
the process sorts the solutions in Fl based on their distances
in descending order and selects the r solutions with the
highest distances. +us, this process aims to promote the
selection of diverse nondominated solutions, with the aim of
preserving the diversity of the new population.

+e algorithm ends its execution once a predefined
termination criterion is achieved (i.e., a given number of
evaluations for the generated solutions), providing the
Pareto set (i.e., the set of nondominated solutions) of the
population corresponding to the last generation.

4.2. NSGA-III. NSGA-III [18] is an extension of the
framework of NSGA-II, which has been proposed with the
aim of improving the performance of NSGA-II (i.e, the
Pareto sets provided by NSGA-II) for many objective
problems (i.e., problems with 3 or more objectives).

NSGA-III has the same general behavior as NSGA-II and
uses the same procedures used by NSGA-II to develop some
stages of the evolutionary cycle. In this respect, NSGA-III
applies the same procedure used by NSGA-II to create the
initial population with s solutions. In this case, each solution
in this population represents a feasible scaling plan and is
encoded as detailed in Section 4.3. +en, NSGA-III applies
the same crossover and mutation operators applied by
NSGA-II, to create an offspring population from the current
population.

However, NSGA-III differs from NSGA-II in terms of
the selection process utilized to create a new population
with s solutions for the next generation, from the com-
bined current and offspring population. +e process
utilized by NSGA-III starts as that utilized by NSGA-II,
grouping to the solutions in the combined population
according to their nondomination levels as {F1, F2, . . .}
and then selecting the nondomination levels once at a
time to build the new population, until the size of this
population is greater or equal than s. However, when the
size of the new population exceeds s and thus the last
nondomination level selected Fl cannot be fully included
in this population, NSGA-III uses a different selection
process to that used by NSGA-II to decide which r so-
lutions from Fl will be included in this population.

To select the remaining r solutions from level Fl,
NSGA-III applies a selection process based on reference
points. +e process considers a set of reference points
widely and uniformly distributed on the normalized
hyperplane inherent to the optimization objectives of the
problem addressed by the algorithm. +en, the process
emphasizes the selection of solutions from Fl which are
associated with each of these reference points. +us, this
process promotes the selection of diverse and well-dis-
tributed nondominated solutions, with the aim of pre-
serving the diversity and distribution of the new
population.

NSGA-III considers the same termination criterion used
by NSGA-II to finish its execution. After such criterion is
achieved, NSGA-III provides the Pareto set of the pop-
ulation corresponding to the last generation.

4.2.1. Determination of Reference Points. +e algorithm
NSGA-III utilizes the knownDas and Dennis [19] systematic
approach to determine the set of reference points to be used
in each generation, as described exhaustively in [18].

+is approach defines reference points on a normalized
hyperplane that is equally inclined to all objective axes and
has an intercept of one on each objective axis. +e total
number of reference points R in problems withM objectives
is calculated by equation (10), where d is a given integer value
which refers to the number of divisions considered along
each objective axis. For example, in problems with three
objectives (M� 3), the reference points are defined on a
triangle with the apex at (1, 0, 0), (0, 1, 0), and (0, 0, 1). If
twelve divisions (d� 12) are considered for each objective
axis, 91 reference points will be created, according to
equation (10). +us, the reference points created by this
approach are widely and uniformly distributed on the entire
normalized hyperplane:

R �
M + d − 1

d
􏼠 􏼡. (10)

4.3. Encoding of Solutions. In the algorithms NSGA-II and
NSGA-III studied, each solution of the population repre-
sents a feasible scaling plan for the current autoscaling stage.

Each solution is encoded as a vector with a size equal to
3 × n, where n is the number of instance types (i.e., the
number of VM types) considered for autoscaling, as was
mentioned in Section 2.1. In this vector, the positions (1, n)
indicate the number of on-demand instances to be acquired
for each of the n instance types. +ese positions contain
integer values that range between 0 and the maximum
number of available on-demand instances for each of the n
instance types.+en, the positions (n + 1, 2× n) indicate the
number of spot instances to be acquired for each of the n
instance types. +ese positions contain integer values that
range between 0 and the maximum number of available
spot instances for each of the n instance types. Finally, the
positions ((2 × n) + 1, 3 × n) indicate the bid price for the
spot instances of each of the n instance types. +ese po-
sitions contain real values that range between the current
spot price and the on-demand price for each of the n in-
stance types. Note that this vector is like the 3-tuple (xod, xs,
and xb) presented in Section 2.1 to formally define a scaling
plan.

4.4. Crossover Operator. +e algorithms NSGA-II and
NSGA-III apply the known simulated binary crossover
operator [15] to generate offspring encoded solutions from
pairs of parent encoded solutions in the mating pool. +e
operator is applied on each pair with a crossover probability
Pc and a crossover distribution index Dc.

To generate the offspring solutions p1′ and p2′ from a
given pair of parent solutions p1 and p2, the operator uses
equations (11) and (12). In these equations, p1i

′ and p2i
′ refer

to the values for the position i of the solutions p1′ and p2′,
where i� 1, . . ., n. +e terms p1i and p2i refer to the values of
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the position i of the solutions p1 and p2. +e term Bi is
calculated by equation (13), using polynomial probability
distribution. In this equation, ui is a random real number
generated between 0 and 1. Dc is a given nonnegative real
number. A large value ofDc provides a higher probability for
generating offspring solutions near to parent solutions,
allowing a focused search. A small value of Dc generates
offspring solutions distant from parent solutions, allowing a
diverse search:

p1i
′ � 0.5 1 + Bi( 􏼁 p1i + 1 − Bi( 􏼁 p2i􏼂 􏼃, (11)

p2i
′ � 0.5 1 − Bi( 􏼁 p1i + 1 + Bi( 􏼁 p2i􏼂 􏼃, (12)

Bi �

2ui( 􏼁
(1/(Dc+1))

, if ui ≤ 0.5,

1
2 1 − ui( 􏼁

􏼠 􏼡

(1/(Dc+1))

, if ui > 0.5.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

4.5. Mutation Operator. +e algorithms NSGA-II and
NSGA-III apply the known polynomial mutation operator
[15] on the encoded solutions generated by the crossover
operator. +is mutation operator is applied with a mutation
probability Pm and a mutation distribution index Dm, on
each position i of the encoded solutions, where i� 1, . . ., n.

To generate a mutated value pi
′ for the position i of a

given encoded solution p, the operator uses equation (14). In
this equation, ui is a random real number generated between
0 and 1.+e term pi refers to the value of the position i of the
solution p. +e terms Li and Ui correspond to the lower and
upper bounds of the position i of the solution p, respectively.
+ese terms are used to guarantee that no value outside the
range (Li and Ui) is created by the mutation operator. +e
term d is calculated by equation (15), using polynomial
probability distribution. In this equation, the value of ui
corresponds to that used in equation (14). Dm is a given
nonnegative real number:

pi
′ �

pi + d pi − Li( 􏼁, if ui ≤ 0.5,

pi + d Ui − pi( 􏼁, if ui > 0.5,
􏼨 (14)

d �
2ui( 􏼁

(1/(Dm+1))
− 1, if ui ≤ 0.5,

1 − 2 1 − ui( 􏼁( 􏼁
(1/(Dm+1))

, if ui > 0.5.

⎧⎨

⎩ (15)

4.6. Differences between NSGA-II and NSGA-III. As was
mentioned in Section 4.2, the algorithms NSGA-II and
NSGA-III have a similar general behavior. Both algorithms
start from a random initial population, where each solution
represents a feasible scaling plan. In each generation, these
algorithms use the same crossover and mutation operators
to generate an offspring population from the current pop-
ulation. Nevertheless, these algorithms differ in relation to
the selection process utilized to determine which solutions
from the combined current and offspring population will
compose the new population for the next generation.

In the NSGA-II, the selection process considers first the
nondomination level of the solutions in the combined
population and then the crowding distance of these solu-
tions. +e crowding distance represents the distance of a
solution to its neighboring solutions. +en, the process
emphasizes the selection of nondominated solutions with
larger crowding distances. +us, the process promotes the
selection of diverse nondominated solutions. However, this
process does not guarantee the selection of well-distributed
nondominated solutions.

In contrast to NSGA-II, in NSGA-III, the selection
process considers first the nondomination level of the so-
lutions in the combined population and then the association
of these solutions to the reference points. In this sense, the
process utilizes a set of well-spread reference points (i.e., a
set of widely and uniformly distributed reference points).
+en, the process emphasizes the selection of nondominated
solutions which are associated with each of these reference
points. +us, this process promotes the selection of diverse
and well-distributed nondominated solutions, in order to
preserve the diversity and distribution of the new
population.

By using this selection process based on well-spread
reference points, the algorithm NSGA-III has the possibility
of reaching better Pareto sets in terms of both diversity and
distribution of the nondominated solutions, these solutions
represent feasible scaling plans for the multiobjective
autoscaling problem addressed in the first step of the
autoscaler. +is represents the rationale of applying NSGA-
III to the problem at hand. From now on, we empirically
evaluate this claim.

5. Study Cases

In this Section, we detail the experimental setting used to
evaluate the autoscaler based on each of the studied mul-
tiobjective genetic algorithms, i.e., NSGA-II and NSGA-III.
First, Section 5.1 describes the three PSEs employed and how
we derived from these PSEs the tasks to feed the CloudSim
simulator to run the experiments. +en, Section 5.2 shows
the characteristics of the VM instances used.

5.1. PSE Applications. PSEs are a very popular way of
conducting simulation-based experiments, used by scientists
and engineers, through which the same application code is
run several times with different input parameters resulting in
different output data. +e first PSE in this paper consists of a
classical benchmark problem [2] that involves studying a
plane strain plate with a central circular hole. +e dimen-
sions of the plate were 18×10m, with R� 5m.+e geometry
of the plate, the spatial discretization scheme, and boundary
conditions used in the numerical simulations are shown in
Figure 1. +e 3D finite element mesh employed had 1,152
elements. To generate the PSE tasks, a material parameter,
viscosity η, was selected as the variation parameter. +en, 25
different viscosity values for the η parameter were consid-
ered, namely, x10yMpa, with x� 1, 2, 3, 4, 5, and 7 and y� 4,
5, 6, and 7, plus 1.108Mpa. In particular, the variation of a
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material parameter in a parametric study may be useful to
other disciplines such as design, where it is important that
the specialists to know the strength, flexibility, and other
characteristics of materials used in the design of certain
components.

+e second PSE is the study of the elastoplastic buckling
behavior of cruciform columns [20], often used in seismic
protection of structures as part of energy dissipators. +is
problem has been taken as a case study to compare the total
deformation and incremental theories of plasticity [20, 21].
+e geometry of the column used in the numerical simu-
lations is shown in Figure 2. To generate de PSE tasks, 30
different angle values for the α parameter were considered,
namely, αn � αn − 1 + 0.25, with α0 � 0.5 and n� 1, 2, . . ., 30.
+e variation of an angle parameter in a parametric study
may be useful to other disciplines such as seismic protection,
where it is important to know the sensitivity to the size of the
imperfection.

+e third PSE is derived from the two above described
PSE applications. We called this application as ensemble of
PSEs and consists of sending to execute a set of tasks be-
longing to both PSEs at the same time, which is a realistic
Cloud usage scenario.

For evaluating the performance of the autoscaler based
on each studied algorithm, we have defined three PSE ap-
plications named Plate3D, Cruciform, and Ensemble, each
one with three different sizes small, medium, and large
according to the number of tasks to execute. For Plate3D and
Cruciform, the sizes are 30, 100, and 300 tasks, and for the
Ensemble PSE, the number of tasks is 60, 200, and 600. +e
more the tasks, the deeper the parameter exploration per-
formed by the different PSEs.

5.2. On-Demand and Spot Instances. Characteristics of each
type of on-demand instance considered during the experi-
mentation are described in Table 1 and correspond to actual
characteristics of Amazon Elastic Compute Cloud (EC2) on-
demand instances. Second column shows the number of
(virtual) CPUs available for such instance type (vCPU).
+en, ECUtot (acronym for EC2 Compute Units) and ECU
are the relative computing power of the instances consid-
ering all the virtual CPUs and the relative performance of
one of the CPUs, respectively. Last column denotes the price

in US dollars (USD) of an hour of computation. +ese
instance types were selected to provide a diverse spectrum of
performance and price configurations.

Spot instances used were set using actual data of Amazon
EC2 spot prices corresponding to the US-west region
(Oregon) in a tree-month period (between March 7th and
June 7th of 2016.). To compute the probabilities of OOB
errors, we used the first two months of data by counting the
number of times a sliding time window of 1 h (minimum
purchase unit in EC2) presented spot prices over the set of
possible bid values in xb. +en, the data corresponding to the
last month of the history were kept for the experiments
presented in Section 6.+is allows us to evaluate the bidding
methods and the performance of the autoscaler completely
ignoring future evolutions of spot prices, which is the real
scenario for any EC2 user.

6. Computational Experiments

We have developed computational experiments to evaluate
the autoscaler based on each of the studied algorithms, i.e,
NSGA-II and NSGA-III. To perform the experiments, we
run the autoscaler endowed with both optimization algo-
rithms. In this section, we describe the procedure used to
identify the best parameter setting for NSGA-III. +en, we
present the parameterization for NSGA-II. +en, we de-
scribe the experimental settings utilized to evaluate the
performance of the autoscaler based on each of the studied
algorithms. Finally, we present and then analyze the ex-
perimental results obtained.

6.1. Parameter Settings for NSGA-III. We developed a sen-
sitivity analysis to identify the best parameter setting for

10m

18m

5m

Δx

Figure 1: Geometry of the plane strain plate.

t L

Figure 2: Geometry of the cruciform column.

Table 1: Characteristics of the on-demand instances considered.
+e data correspond to instances belonging to the US-west region.

VM type vCPU ECUtot ECU Price (USD)
t2.micro 1 1 1 0.013
m3.medium 1 3 2 0.07
c3.2xlarge 8 28 3.5 0.42
r3.xlarge 4 13 3.25 0.35
m3.2xlarge 8 26 3.25 0.56

8 Scientific Programming



NSGA-III, regarding each studied application and size. In
this analysis, we considered 303 different parameter settings.
+ese settings were generated by the Saltelli sampling
method [22], considering the sampling ranges defined for
the parameters of NSGA-III, which are presented in Table 2.
+en, the NSGA-III was run 30 times for each parameter
setting. After each run, the algorithm provided the Pareto set
of the last generation. +en, the average value of the
hypervolume (HV) measure was calculated on the Pareto
sets obtained for each parameter setting. Finally, the pa-
rameter setting which maximized the average value of the
HV measure was selected as the best setting for NSGA-III.
We considered the HV measure since it simultaneously
accounts for the closeness of the obtained Pareto sets to the
optimal Pareto set and the distribution of the solutions in the
obtained Pareto sets.

Table 3 presents the parameter setting selected for
NSGA-III regarding each studied application and size, and
the corresponding average value of HV. +ese parameter
settings are considered in Section 6.3.

6.2. Parameter Settings for NSGA-II. In relation to the best
parameter setting for NSGA-II, regarding each studied
application and size, we considered the settings recom-
mended in [11], which were obtained by a sensitivity analysis
similar to that developed for NSGA-III. Nevertheless, we
defined a new value (i.e., a higher value) for the parameter
evaluations of NSGA-II in relation to each studied appli-
cation and size. In this respect, we set the parameter eval-
uations of NSGA-II with the value used for the parameter
evaluations of the algorithm NSGA-III, for each studied
application and size. +us, the algorithms consider the same
termination condition (i.e., the same number of evaluations)
in relation to each studied application and size. +is was
made to guarantee a fair performance comparison between
the autoscaler based on NSGA-II and the autoscaler based
on NSGA-III.

Table 4 presents the parameter setting for NSGA-II
regarding each studied application and size, and the cor-
responding average value of HV. +ese parameter settings
are considered in Section 6.3.

6.3.Experimental Settings. +e autoscaler based on NSGA-II
and also the autoscaler based on NSGA-III were evaluated
on all the studied applications and sizes. To do that, we used
the CloudSim [16], which is heavily utilized by the research
community to carry out Cloud experiments.

As NSGA-II and NSGA-III are nondeterministic, each of
the mentioned autoscalers was run 30 times on each studied
application and size, with the aim of guaranteeing the sta-
tistical significance of the results. For each run, the results
obtained regarding different metrics including makespan in
seconds, cost in USD, and number of task failures were
recorded.

In order to develop the runs of the autoscaler based on
NSGA-III, we used the parameter settings described in
Table 3 for NSGA-III. To develop the runs of the autoscaler

based on NSGA-II, we used the parameter settings described
in Table 4 for NSGA-II.

6.4. Experimental Results. Table 5 presents the results ob-
tained from the computational experiments. +e rows
present the results per autoscaler regarding all the studied
applications and sizes. For simplicity, in this table and also in
this section, the autoscaler based on NSGA-III is called
NSGA-III, and the autoscaler based on NSGA-II is called
NSGA-II. Columns 4–6 present the average values for the
makespan in seconds, cost in USD, and number of task
failures, respectively. Column 7 presents the average value
for the L2-norm which considers the makespan, cost, and
number of task failures resulting from the experiments. +is
L2-norm jointly analyzes the metrics which are interesting
for the multiobjective autoscaling problem addressed in this
paper.

From Table 5, the following can be mentioned. In re-
lation to the makespan, NSGA-III has obtained a better
average performance than NSGA-II in seven of the nine
studied applications and sizes, reaching good makespan
savings (around 20% in most cases). Regarding the cost,
NSGA-III has obtained a much better average performance
than NSGA-II in all the studied applications and sizes,
reaching very good cost savings (around 50% in some cases
and 70% in some other cases). With respect to the average
number of task failures, NSGA-III has outperformed NSGA-
II in two of the nine studied applications and sizes. However,
NSGA-III has obtained an average number of task failures
higher than that of NSGA-II in seven of the studied ap-
plications and sizes. +is is mainly because NSGA-III only
used spot instances in such applications and sizes.

Finally, in relation to the L2-norm, NSGA-III has ob-
tained a much better average performance than NSGA-II in
the nine study cases. +is is mainly because NSGA-III
outperformed NSGA-II in the nine studied cases in terms of
cost and outperformed NSGA-II in seven of the studied
cases in terms of makespan.

To ascertain the significance of the improvements
reached by NSGA-III regarding NSGA-II, we applied a
statistical significance test on the results obtained from the
experiments for the L2-norm. Given that the L2-norm jointly
analyzes the makespan, cost, and number of task failures
resulting from the experiments, we consider that the L2-
norm is appropriate and useful to develop the statistical
significance test. In relation to the results obtained from the
experiments for the L2-norm, each of the autoscalers was run
30 times on each studied application and size. +us, each
autoscaler obtained 30 results for the L2-norm regarding
each studied application and size. We applied the normality
Shapiro–Wilk test on the results obtained by each autoscaler
regarding each studied application and size, to determine if
these results follow a normal distribution or not and decide
the statistical significance test to be applied. According to the
Shapiro–Wilk test, which was applied with a strong confi-
dence level of α� 0.001, the results obtained by each
autoscaler regarding each studied application and size do not
follow a normal distribution. For this reason, a

Scientific Programming 9



nonparametric statistical significance test is required in this
case. In this respect, we applied the Mann–Whitney U test
[23] on the results obtained by the two autoscalers regarding
each studied application and size. According to the Man-
n–Whitney U test, which was applied with a strong confi-
dence level of α� 0.001, NSGA-III reached significant
improvements in terms of the L2-norm, in all the studied
applications and sizes.

In addition to the results presented in Table 5 and
previously analyzed, Table 6 presents the computation time
(in seconds) required by each one of the autoscalers, re-
garding each of the studied applications and sizes. In this
table, columns 3 and 6 present the average computation time
required by the autoscalers NSGA-II and NSGA-III, re-
spectively. +en, columns 4 and 7 detail the maximal
computation time obtained by the autoscalers NSGA-II and
NSGA-III, respectively. Finally, columns 5 and 8 present the
minimal computation time obtained by the autoscalers
NSGA-II and NSGA-III, respectively.

As shown in Table 6, the average computation time
required by the autoscaler NSGA-III has not exceeded to

that of the autoscaler NSGA-II, in most applications and
sizes studied. It is worth mentioning that the average
computation time required by the first step of the autoscalers
(i.e., computation time required by the algorithms NSGA-III
and NSGA-II) is a small percentage (i.e., no more than 8%)
of the computation time corresponding to each autoscaling
stage. As was mentioned in Section 2, each autoscaling stage
requires 1 hour. It is necessary to mention that all com-
putational experiments were developed on a computer AMD
Ryzen 5 2600X Six-Core Processor, clock speed of 2022Mhz

Table 2: Sampling ranges for the parameters of NSGA-III.

Parameter Description Sampling range
Evaluations Maximal number of solutions to be evaluated [500, 20000]
Population Number of solutions of the population [90, 200]
Reference points Number of reference points [90, 200]
Pc Crossover probability [0.8, 1]
Dc Crossover distribution index [0, 60]
Pm Mutation probability [0.01, 0.6]
Dm Mutation distribution index [0, 60]

Table 3: Parameter setting selected for NSGA-III regarding each application and size.

Application Size Eval. Pop. Reference points Pc Dc Pm Dm HV

Plate3D
30 18400 92 91 0.81 3.8 0.59 14.6 0.95
100 18400 92 91 0.92 1.9 0.24 3.1 0.94
300 18400 92 91 0.83 46.9 0.26 1.5 0.94

Cruciform
30 18400 92 91 0.90 20.7 0.45 5.2 0.81
100 18400 92 91 0.90 56.3 0.39 7.1 0.80
300 18400 92 91 0.98 13.3 0.24 3.1 0.80

Ensemble
60 18400 92 91 0.92 13.3 0.24 3.1 0.88
200 18400 92 91 0.87 46.9 0.26 1.5 0.88
600 18400 92 91 0.87 28.3 0.09 1.5 0.87

Table 4: Parameter setting considered for NSGA-II regarding each
application and size.

Application Size Eval. Pop. Pc Dc Pm Dm HV

Plate3D
30 18400 116 0.88 18.9 0.55 10.8 0.87
100 18400 116 0.88 18.9 0.55 10.8 0.90
300 18400 172 0.89 13.3 0.57 12.7 0.90

Cruciform
30 18400 116 0.88 18.9 0.55 10.8 0.38
100 18400 136 0.88 18.9 0.55 10.8 0.57
300 18400 116 0.88 18.9 0.55 10.8 0.68

Ensemble
60 18400 116 0.88 18.9 0.55 10.8 0.72
200 18400 116 0.88 18.9 0.55 10.8 0.79
600 18400 116 0.88 18.9 0.55 10.8 0.80

Table 5: Results obtained from the computational experiments.
+e rows present the results per autoscaler regarding all the studied
applications and sizes. For the average makespan, cost, number of
task failures, and L2-norm, lower values represent better results.

Application Size Autoscaler Makespan Cost Task
failures

L2-
norm

Plate3D

30 NSGA-III 1142.11 0.06 5.80 0.26
NSGA-II 1381.02 0.23 4.53 0.44

100 NSGA-III 1910.03 0.12 12.05 0.17
NSGA-II 1836.50 0.36 25.77 0.28

300 NSGA-III 2894.53 0.39 62.32 0.23
NSGA-II 2720.12 0.98 82.17 0.37

Cruciform

30 NSGA-III 3011.33 0.26 44.75 0.30
NSGA-II 3599.30 0.47 15.80 0.42

100 NSGA-III 2925.29 0.77 146.33 0.29
NSGA-II 3602.92 0.91 59.92 0.46

300 NSGA-III 4223.02 2.22 309.80 0.18
NSGA-II 5118.21 4.74 219.83 0.30

Ensemble

60 NSGA-III 5095.71 0.26 35.32 0.30
NSGA-II 5504.60 0.69 23.33 0.46

200 NSGA-III 5868.27 0.91 147.00 0.34
NSGA-II 6912.26 1.78 118.07 0.54

600 NSGA-III 5840.39 2.80 372.86 0.31
NSGA-II 7401.15 4.59 281.16 0.40
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per physical core, 16GB of RAM memory, Solid State Disk
120GB, and operative system Manjaro (kernel 4.19.6). Be-
sides, the autoscalers were implemented in Java program-
ming language.

From the analysis of the results in Tables 5 and 6, NSGA-
III reached significant improvements regarding NSGA-II in
all the studied applications and sizes, without exceeding the
computation time of NSGA-II in most applications and sizes
studied.

6.4.1. Pareto Sets. In this section, we analyze the quality of
the Pareto sets obtained by the autoscalers for each of the
studied applications and sizes. We focus the attention on the
Pareto sets obtained by the autoscalers during the first
autoscaling stage (the first hour). +is is because the fol-
lowing reason. For each of the studied applications and sizes,
during the first autoscaling stage, the autoscalers address
exactly the samemultiobjective problem and generate Pareto
sets for such problem.+us, it is appropriate and valuable to
compare these Pareto sets. In each of the next autoscaling
stages (after the first hour), the autoscalers usually address
different multiobjective problems.+is is mainly because the
problems inherent to each of these stages vary according to
the state of the PSE’ tasks execution and the state of the
virtual infrastructure. +erefore, it is not appropriate to
compare the Pareto sets obtained for such problems.

To analyze the quality of the Pareto sets, we use two well-
known measures which are usually utilized to evaluate
Pareto sets obtained by evolutionary algorithms. One of
these measures is the hypervolume [15], which calculates the
percentage of the objective space volume that is dominated
or covered by a given Pareto set and simultaneously accounts
for the proximity to the optimal Pareto set and the distri-
bution of the solutions in the Pareto set on the objective
space. +e other measure is the coverage [15], which cal-
culates the percentage of solutions in a given Pareto set that
are dominated by one or more solutions in other given
competing Pareto sets.

Table 7 presents the hypervolume (average hypervolume
value) and the coverage (average coverage value) of the
Pareto sets obtained by NSGA-III and NSGA-II for each one
of the studied applications and sizes. Note that the coverage
value corresponding to the Pareto sets obtained by NSGA-III

refers to the percentage of solutions in these sets that are
dominated by solutions in the Pareto sets obtained by
NSGA-II. Unlike this, the coverage value corresponding to
the Pareto sets obtained by NSGA-II refers to the percentage
of solutions in these sets that are dominated by solutions in
the Pareto sets obtained by NSGA-III. For the coverage
measure, lower values represent better results.

As shown in Table 7, NSGA-III has obtained an average
hypervolume value higher than that obtained by NSGA-II,
for each of the studied applications and sizes. +is means
that the objective space volume dominated by the Pareto sets
obtained by NSGA-III is larger than that of the Pareto sets
obtained by NSGA-II. In this case, the objective space
volume is bounded by a reference point which is composed
of the maximum value (i.e., the worst value) of each one of
the three objectives considered (i.e., makespan, cost, and task
failures). Figures 3–5 show the evolution of the average
hypervolume value of the Pareto sets obtained by NSGA-III
and NSGA-II over the generations, for each application and
size. +ese figures indicate that the Pareto sets obtained by
NSGA-III reached better hypervolume values in a less
number of generations (i.e, less computation time), for all
the studied applications and sizes.

Table 7 also shows that NSGA-III has obtained an av-
erage coverage value significantly lower than that obtained
by NSGA-II, for each of the studied applications and sizes. In
this respect, most solutions in the Pareto sets obtained by
NSGA-III (more than 75% of the solutions) are not dom-
inated by solutions in the Pareto sets obtained by NSGA-II,
for all applications and sizes. Unlike this, a good number of
solutions in the Pareto sets obtained by NSGA-II (more than
50% of the solutions) are dominated by solutions in the
Pareto sets obtained by NSGA-III, for all applications and
sizes. Figures 6 and 7 show examples of Pareto sets obtained
by NSGA-III and NSGA-II for Plate3D with 30 tasks and
Ensemble with 60 tasks, respectively. In both cases, as in-
dicated by the average coverage values obtained, most so-
lutions in the Pareto set obtained by NSGA-III (more than
80% of the solutions) are not dominated by solutions in the
Pareto set obtained by NSGA-II, and a significant number of
solutions in the Pareto set obtained by NSGA-II are dom-
inated by solutions in the Pareto set obtained by NSGA-III.
+us, the solutions in the Pareto set obtained by NSGA-III
are distributed closer to the optimal Pareto set than those of
the Pareto set obtained by NSGA-II.

+e results detailed in Table 7 and previously analyzed
indicate that the Pareto sets obtained by NSGA-III have
outperformed to those obtained by NSGA-II, in terms of
both closeness to the optimal Pareto set and distribution of
the solutions on the objective space, for all studied appli-
cations and sizes.

7. Related Work

Cloud autoscaling involves solving two different complex
optimization problems known as scaling and scheduling.
+e efficient management of scientific applications on the
Cloud via autoscaling techniques is an important problem
[21], and hence, many approaches have tackled the tasks

Table 6: Computation time (in seconds) required by each
autoscaler regarding all the studied applications and sizes.

Application Size
NSGA-II NSGA-III

Average Max Min Average Max Min

Plate3D
30 6.50 9 4 5.13 8 4
100 21.13 25 14 19.79 28 15
300 92.63 115 60 86.06 119 62

Cruciform
30 6.14 10 5 5.60 7 5
100 24.00 31 17 24.00 32 16
300 128.14 154 82 101.38 121 75

Ensemble
60 13.00 17 9 11.00 16 8
200 52.40 65 39 64.30 75 45
600 203.86 235 187 209.56 282 182
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scheduling part of the problem via single-objective [24–26]
and multiobjective scheduling approaches [27, 28]. How-
ever, there are few efforts that deal with the autoscaling
problem as a whole, scaling and scheduling, by using
strategies based on a multiobjective metaheuristic which
consider the use both of on-demand and spot instances
while minimizing the makespan and the monetary cost of
PSE applications. Only in a previous work of some of the
authors of this work [11], an autoscaler called MOEA which
considers spot instances was proposed. Although one of the
objectives in [11] was to minimize the failures produced for
the use of spot instances, they were not completely reduced.
+e unexpected completion of certain instances impacts
their associated task finish time since these tasks must be
scheduled in other instances. A major distinction of this
paper with respect to [11] is that MOEA implements the
NSGA-II algorithm, while in this work we perform the
scaling and scheduling stages using NSGA-III, obtaining as
reported earlier noticeable performance gains.

+ere are other works where spot instances were also
considered. Among them, we can mention the work in [5]
where the authors proposed an autoscaler called SIAA for
workflow applications with the aim of minimizing the
makespan subject to budget constraints. +e main dif-
ference concerning this work is that in [5], the monetary
cost was not considered.+en, in [9], a cost-efficient based
scheduling algorithm that allows leasing instances from
Clouds for executing scientific workflows while meeting
the required deadlines of tasks was proposed.+e tasks are
scheduled according to the spot instance pricing. On the
other hand, the work in [29] is focused on running large-
scale computational applications on Clouds, especially for
on-demand and spot instances offered by Amazon EC2. In
[29], after analyzing the characteristic of the spot price
and the effect of spot instances disturbance, the authors
proposed a dynamic approach to reduce cost, increasing
the reliability and reducing the complexity of fault tol-
erance without affecting the overall performance and
scalability. +e main difference between the works [9, 29]
and ours is that we focus on a budget-constrained

autoscaling problem while the mentioned works focus on
solving scheduling problems subject to task deadline
constraints; thus, they are useful in different scenarios.
Another important distinction is that we are focused on
scientific PSEs and not workflow applications.

+ere are other works that differ from ours because they
were proposed for addressing workflow autoscaling [6, 7, 10]
with deadline or budget constraints. First, in [6], the authors
proposed an autoscaling strategy for the efficient execution
of multiple workflow applications subject to deadline con-
straints. +e goal was to ensure that all tasks finish before
their respective deadlines by using the cheapest resources
whenever possible. Later, the same authors moved to the
problem of workflow autoscaling but considering budget
constraints [7]. +en, is the work presented in [10], where

Table 7: Hypervolume (average hypervolume value) and coverage
(average coverage value) of the Pareto sets obtained by each
autoscaler during the first autoscaling stage (first hour), for each
studied application and size. For hypervolume measure, higher
values represent better results. For coverage measure, lower values
represent better results.

Application Size
Hypervolume (%) Coverage (%)

NSGA-III NSGA-II NSGA-III NSGA-II

Plate3D
30 88 81 19.10 53.51
100 87 84 21.35 55.26
300 87 85 24.72 57.89

Cruciform
30 22 16 5.56 53.57
100 21 17 8.33 55.95
300 21 17 12.50 59.52

Ensemble
60 39 34 17.98 52.63
200 41 37 20.22 54.39
600 41 38 23.60 57.02
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Figure 3: Evolution of the hypervolume value of the Pareto sets
obtained by NSGA-III and NSGA-II over the generations, for
Plate3D with 30, 100, and 300 tasks.
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the main characteristics of the tasks in the workflow
structure are learned over time, i.e., the autoscaler dy-
namically adapts the number of allocated resources in order
to meet the deadlines of all tasks without knowing the
workflow structure itself and without any information of the
execution time. +e goal of this work was to minimize the
makespan and cost.

Other works are proposed in [30, 31]. In [30], a reliable
autoscaling algorithm for web applications using heteroge-
neous spot instances along with on-demand instances was
proposed. +e idea of this work was to take advantage of
different prices among various types of spot instances to reach
both high availability, monetary cost saving, and low response
time, even when some types of spot instances are terminated
unexpectedly by the Cloud provider. For this, the authors have

implemented a fault-tolerant mechanism to further over-
provision the same amount of capacity using another type of
spot instance. In this way, the application can tolerate the
termination of any involving type of VMs and remain fully
provisioned. +en, in [31], the authors proposed RLPAS, a
reinforcement learning approach to automatically scale vir-
tualized resources in the Cloud. +e purpose is to dynamically
scale the resources to minimize response time while maxi-
mizing resource utilization and throughput. +e RLPAS was
proposed for learning the environment in parallel where the
workloads are heterogeneous and fluctuating and the Cloud
instances are on-demand. As can be seen in [30, 31], the al-
gorithms were implemented for web applications where task
requirements are much lighter compared to the applications,
i.e., PSEs, which we consider in this work.
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On the other hand, in [32], a strategy that produces
elastic clusters from the computational resources provided
by multiple Clouds was presented. Particularly, the work is
focused on hybrid clusters across on-premises and public
Clouds and the use of Amazon spot instances to achieve
reliable low cost. In order to achieve these goals, the authors
implemented a check-pointing algorithm which allows tasks
to periodically save the progress made before the spot

instance is finished by the provider, thereby facilitating task
resumption from the last checkpoint. +e authors have
performed a case study based on a scientific application
implemented in MPI for the nonlinear dynamic analysis of
buildings.+en, in [8], the authors have proposed a dynamic
Cloud resource provisioning called delay-based dynamic
scheduling (DDS) to minimize the monetary cost while
meeting Bag-of-Tasks (BoT) workflow deadlines, i.e., new
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Figure 6: Pareto sets obtained by NSGA-III and NSGA-II for Plate3D with 30 tasks.
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VMs are dynamically rented by the DDS according to the
execution state and the estimated task execution times to
fulfill the application deadline. It is important to mention
that although the approaches consider applications with
independent tasks and the monetary costs, the algorithms in
[8, 32] are not based on metaheuristics as we propose in this
work.

+ere are also two works that propose the use of the
NSGA-III algorithm [33, 34]. In [34], the authors have

proposed a multiobjective optimization algorithm based on
NSGA-III for the execution of workflow applications in
Cloud. +e goal of this work is to minimize the cost and
makespan; at the same time, the VM utilization is maximized.
+en, in [33], a multiobjective scheduling algorithm based on
E-NSGA-III for workflow applications has been proposed. In
this approach, E-NSGA-III utilizes extreme solutions in the
population generation module in order to improve quality in
terms of makespan and cost. Although both works propose
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the use of algorithms based on NSGA-III, both approaches
focus only on task scheduling and do not take into account the
variations on the virtual infrastructure availability to
rescheduling the execution of tasks every certain periods of
time. In addition, both works focus on the execution of
workflow applications and not PSEs. Besides, in none of the
works [33, 34], the authors considered the use of spot in-
stances such we propose in this work.

It is worth noting that, from the related works found, most
of them have been proposed for workflows considering task
deadlines or budget constraints, and only in two works [10, 30],
in addition to our previous work [11], the authors have pro-
posed to minimize the makespan, rendering difficulty of their
applicability to execute scientific applications, such as PSEs, in
Clouds infrastructures. In this context, in [35], the approach
minimizes cost in Amazon infrastructure, regardless of spots.
In contrast to our approach, the authors consider task deadlines
instead of budget constraints. Moreover, the nonautoscaled
approach adopted optimizes resource usage by utilizing mixed
integer programming, instead of evolutionary algorithms. In
line with our approach, the authors in [36] minimize time and
cost, but they do not consider spot instances. Moreover, their
approach fails to be a pure autoscaler. Prepared to be useful for
workflows, the approach explores NSGA-II instead of NSGA-
III.

Besides, another distinction is that only in two of the
surveyed works [33, 34], the authors have considered the use
of the NSGA-III metaheuristic. However, both approaches
have been proposed for task scheduling without considering
the automatic, dynamic scaling of the infrastructure. Con-
cretely, in this work, the objectives are to minimize the
failure probability as well as the makespan and the monetary
cost when different types of on-demand and spot instances
are considered.

8. Conclusions

We addressed the problem of autoscaling PSEs in public
Clouds (e.g., Amazon EC2 and Google Cloud), considering
that the instances of VMs can be acquired under two possible
pricing models: the on-demand model and the spots model.
+is problem implies determining the number and type of on-
demand and spot instances to be acquired for executing the
tasks in a PSE, and the bid prices corresponding to the spot
instances, so that the predetermined optimization objectives
are reached. In this respect, three relevant optimization ob-
jectives were considered: the minimization of the makespan,
the monetary cost, and the impact of OOB errors which are
inherent to spot instances. To solve the resulting optimization
problem, the well-known multiobjective genetic algorithms
NSGA-II andNSGA-III were exploited as part of the autoscaler
MOEA, which is the focus of this paper.

+e autoscaler endowed with both algorithms was
evaluated on three different real-world PSEs, considering
three different sizes (i.e., numbers of tasks) for each PSE.
Moreover, different types of on-demand and spot instances
available in Amazon EC2 were considered. +ese different
instance types have different characteristics in relation to the
processing capacity and also differ regarding the monetary

cost. +ese PSE applications and instance types were con-
sidered in order to provide diverse realistic experimental
settings. +en, the performance of the autoscaler based on
NSGA-III was compared in detail with that of the autoscaler
based on NSGA-II.

According to the performance comparison carried out,
the autoscaler based on NSGA-III has significantly out-
performed the autoscaler based on NSGA-II in terms of the
L2-norm which jointly assesses makespan, cost, and number
of task failures caused by OOB errors, in all the PSE ap-
plications and sizes considered. +us, we can mention that
NSGA-III may be considered as a better alternative than
NSGA-II for solving different instances of the multiobjective
autoscaling problem addressed in this paper. Future work
will explore other realistic scenarios, including simultaneous
optimized autoscaling of PSEs belonging to different users,
as well as federated Clouds in addition to single Clouds.
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