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Abbreviations

AV atrio-ventricular
bpm beats per minute
ECG electrocardiogram
HR heart rate
LI Lead I
LII Lead II
LIII Lead III
PRi PR interval
QTi QT interval
QTc corrected QT interv
SSL southern sea lion
STS ST segment
Abstract Objectives: The goal of this study was to characterize for the first time
the electrocardiogram (ECG) of the southern sea lion (SSL) Otaria flavescens.
Animals, materials and methods: Thirteen wild SSL females were captured at Isla
de Lobos (Uruguay) and anaesthetized with isoflurane. Electrocardiographic record-
ing was performed on anaesthetized animals at ventral recumbence following stan-
dardized procedures.
Results: The ECG recordings showed normal sinus rhythm. Amplitude and duration
of P and T waves, QRS complex, PR interval, QT interval and ST segment (STS) were
determined for all animals in all leads. QT corrected was determined in lead II. P
wave polarity was consistent among animals (positive in LI, LII, LIII and AVF leads
and negative in AVL and AVR leads for all animals), but T wave polarity did not pre-
sent any constant pattern among animals, being either positive, negative or bipha-
sic in different leads and different animals. The PR interval (0.15 � 0.2 s) was
similar to the allometric prediction for most of mammalian species including hu-
mans. The STS were normal in 10 of the SSL but showed STS depression in three
of the animals. Almost all animals had a negative electrical axis (�30� to �120�),
with one exception that showed a positive electrical axis (120�). Mean eupnoeic
heart rate was 104.61 � 10.06 (range ¼ 88e120) beats per minute.
Conclusions: This study was the first ECG description for this species, and provides
valuable information for cardiac monitoring during anaesthesia.
ª 2015 Elsevier B.V. All rights reserved.
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Introduction

Electrocardiographic (ECG) recording has been
widely used in cardiac studies of terrestrial mam-
mals. However, its use with marine mammals has
been very limited and includes only four seal spe-
cies,1e5 one otariid species,6 two subspecies of
manatees7 and six cetaceans species.8e13 Because
of the logistical challenge of working with marine
mammals in the wild, most of these studies have
been conducted on captive animals or, in a few
studies, used harpoon lead electrodes. The ECG
recording in free ranging animals using less inva-
sive techniques has become possible only recently,
with the use of waterproof heart rate (HR)/ECG
recorders attached to wild animals.14e16 Although
these instruments are now allowing ECG recordings
on more pinnipeds16 and cetaceans,14 they use
only two leads and do not enable four limb-leads
ECG tracings precise enough to determine the
normal range of values typically recorded in rest-
ing, terrestrial mammals.

The resulting low availability of aquatic mam-
mal’s ECG information has pointed out the appli-
cation of ECG recording as a priority area of
research in the cardiac physiology study of these
species. In parallel to this scenario, and asso-
ciated to current conservation issues affecting
many worldwide extended populations of marine
mammals, the study of their ecology and behav-
iour through the application of animal-borne
technology (i.e., GPS or ARGOS satellite tele-
metry) have highly increased during the last dec-
ades.17 In consequence, it has also increased the
need to anaesthetize wild animals during the
procedure of device attachment, which at the
same time has prompted a need of reliable infor-
mation of physiological parameters required for
anaesthesia monitoring, such as the ECG range
values.

The southern sea lion (SSL), Otaria flavescens, is
a pinniped species that ranges and breeds
throughout the coastal temperate waters of South
America. Its annual cycle combines terrestrial
periods for breeding and molting with at-sea for-
aging phases. It was heavily exploited, and despite
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receiving legal protection, many populations have
never recovered from intense harvesting during the
first half of the 20th century.18,19 Although its life
history, ecology and physiology have been broadly
studied, there are no previous studies of cardiac
physiology and no ECG values have been yet pub-
lished. In this context, the aim of the present study
was to characterize the electrocardiogram of the
SSL, determining temporal and amplitude values for
all waves, intervals and segments. The study was
focused on wild adult females, which constitutes a
key component to be studied in decreasing pop-
ulations. All animals used in the present study were
captured in their natural environment, temporarily
held in captivity and anaesthetized with isoflurane.
The results obtained here represented valuable
information for comparative electrophysiology
analysis in relation to other aquatic and terrestrial
mammals including humans.
f RG-401 Plus, Cardiotécnica Argentina S.R.L and Bio-
desarrollos equipamiento médico.
Materials and methods

The study was performed during May 2010 on Isla
de Lobos (35�010 S 54�520 W; Uruguay), which is
located in the La Plata River estuary and repre-
sents a significant portion of the world population
for this species. Animal capture and handling was
performed at the former sealing facility currently
administered by the Uruguayan government
(Dirección Nacional de Recursos Acuáticos de
Uruguay, DINARA) following local and international
ethic regulations for manipulation of wild animals
(DINARA permit A/009/2006, Ministerial Resolution
001/1383/2007). Sea lions from this study were
also used to deploy telemetry devices for foraging
behaviour studies.20

Thirteen wild SSL females (body mass ¼ 80.7 �
27.9 kg; total length ¼ 159.8 � 17.5 cm) were cap-
tured by DINARA staff and held in a corral under
veterinary observation for 24 h. Animals were
physically restrained using a squeeze cage and
anaesthetizedwith isofluraneusing amask and later
with an endotracheal tube.21 Mask anaesthesia
induction lasted 14� 7min (range¼ 7e43min) with
a constant oxygen flow of 5e10 L/min and 5% of
isoflurane. After intubation, anaesthesia was
maintained with 3e5 L/min oxygen and an iso-
flurane concentration of 0.75e1.5%. Total anaes-
thesia duration ranged between 0.5 and 2 h.
Anaesthetized animals breathed constantly and
regularly by themselves, but one assisted ven-
tilation with a bag was performed every 5e7 min to
expand the lungs, with particular care of not
exceeding normal lung inflation. All physical signs,
including head movement, jaw tone, palpebral
reflex, eye position, iris appearance, respiratory
character, and capillary refill, weremonitored from
the time of the first approach. Once intubation was
established, these physical signs plus the electronic
readings (veterinary monitor Guoteng) were moni-
tored constantly by the anaesthetist and recorded
at 5 min intervals.

Electrocardiographic recordings were performed
in ventral recumbence with standard bipolar and
unipolar limb leads (LI, LII, LIII, AVR, AVL and
AVF).22e25 Electrocardiographic recordings were
performed 30 min after intubation, when animals
reached a stable and profound anaesthetic stage.
Limb leads were secured to the lateral aspect of
the body wall using clip electrodes as follows: the
left and right forelimb leads were placed 5e7 cm
cranial to the pectoral flippers insertion, approx-
imately at the level of the scapular girth. The left
and right hind leads were placed 5e7 cm cranial to
the pelvic flippers insertion, approximately at the
level of the pelvic girth.

Clip electrodes were manufactured in an
appropriated size to clip sea lions peel (3.5 cm
length, 1 cm opening width). Skin areas of elec-
trode attachment were wetted with alcohol.
Electrocardiograms were recorded using a port-
able device.f The recording speed was 50 mm/s
and the sensitivity set at 1 cm ¼ 1 mV, using a
45 mm-wide paper. No filter was used during any
recording. LII was additionally recorded at 25 mm/
s to determinate the HR.

Amplitude in millivolts (mV) and duration in
seconds (s) of P and T waves, QRS complex, PR
interval (PRi), QT interval (QTi), and ST segment
(STS) were measured as defined in standard clin-
ical usage.22,24,26 Each measurement for each
wave, complex, interval or segment was per-
formed six times in every lead in each animal. All
measurements were made manually using a cal-
liper following standard clinical usage.22e24,27

The PRi was measured from the beginning of the
P wave to the beginning of the QRS complex and
compared to a predicted value estimated from sea
lions body mass and the allometric equation pro-
posed by Noujamin et al.28:

Predicted PRi ¼ 53 � Body Mass0:24

The QTi was measured from the beginning of the
Q wave to the end of the Twave. QTwas corrected
(QTc) for the HR using Bazett’s formula.29 The
STS was measured between the end of the S wave
and the beginning of the T wave. Following
Bolton22 and Lightowler,30 the ST was considered
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abnormal when it displayed more than 0.2 mV
below the baseline, an occurrence referred to as
ST depression. The heart rate in beats per minute
(bpm) was estimated from the LII recorded at
25 mm/s (small boxes between consecutive R
waves divided by 3,000). The mean electrical axis
was determined using the isoelectric method by
examining the QRS complexes in each of the six
basic leads following a standard procedure.22,24

Mean, standard deviation, coefficient of varia-
tion and 95% confidence intervals were calculated
for each measurement in every lead. The coef-
ficient of variation was calculated as the ratio
between the average and the standard deviation,
expressed as percentage. Statistic analyses were
performed using PROC MEANS y PROC TTEST pro-
cedures of the statistic software SAS V9.2.31

Results

Electrocardiographic recordings showed normal
sinus rhythm in all animals (Fig. 1).Wave amplitudes
were highly consistent for each animal in every
lead. P wave polarity was highly consistent among
animals: positive in LI, LII, LIII and AVF leads and
negative in AVL andAVR leads for all animals. Twave
polarity did not present a constant pattern among
animals, being either positive, negative or biphasic
in different leads and different animals.
Fig. 1 Typical ECG tracing in an
The PRi ranged from 0.12 � 0.06 to
0.18 � 0.03 s, with an overall value of 0.15 � 0.02 s
for all animals. The predicted PRi was highly con-
cordant (0.15 � 0.01 s), with minimal differences
ranging from 0 (complete concordance between
measured and predicted PR intervals) to a max-
imum of 0.03 s (average difference ¼ 0.01 � 0.01 s;
data of measured and predicted PR intervals for
each animal are available in Supplemental data on-
line, Table A).

Amplitude of P, Q, R, S and T waves in LII were
0.38 � 0.05, 0.05 � 0.07, 0.59 � 0.27, 1.10 � 0.28
and 0.56 � 0.12 mV, respectively (mean and con-
fidence intervals of amplitude measurements for
each lead are available in Supplemental data on-
line, Table B). Duration of P wave, T wave, QRS
complex, QTi and STS in lead II were 0.11 � 0.01,
0.11 � 0.03, 0.08 � 0.01, 0.31 � 0.02 and
0.14 � 0.02 s, respectively (mean and confidence
intervals of duration measurements for each lead
are available in Supplemental data on-line, Table
C). Corrected QT interval was 0.41 � 0.028 and the
difference with QTi was significant (t ¼ �0.095,
p < 0.0001). The STSs were normal (no evident
depression) in most of the sea lions studied
(n ¼ 10), but three exceptions were observed.
Animals 1, 5 and 6 showed STS depression in LII and
LIII (ST displayed more than 0.2 mV below the
baseline; Fig. 2a).
esthetized southern sea lions.



Fig. 2 (a) ECG of animal 1 in LII, showing an example of the ST segment depression observed in three of the animals
of the present study. (b) ECG of animal 11 in LII, showing the atypical notched P wave morphology.
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Almost all animals (n ¼ 12) had a negative
electrical axis ranging between �30� and �120�,
with one exception (animal 11) with a positive
electrical axis of 120� (electrical axis data for each
animal are available in Supplemental data on-line,
Table D). This animal also presented an unusual
notched P wave (Fig. 2b), with the highest ampli-
tude of all records obtained (0.43 mV at LII), higher
than the average obtained for all animals
(0.38 � 0.05 mV). The mean eupnoeic HR for
anaesthetized animals (n ¼ 13) was
104.61 � 10.06 bpm, ranging from 88 to 120 bpm
(HR data for each animal are available in
Supplemental data on-line, Table D).
Discussion

This study constitutes the firstdand detai-
ledddescription of the anaesthetized SSL elec-
trocardiogram. It resembled, in its essential
details, that of man and other mammals. All ani-
mals showed normal sinus rhythm. All the waves of
the ECG were detectable and could be easily
separated. The SSL ECG characteristically dis-
played a distinctly defined STS and QTi, with a T
wave clearly differentiated from the QRS complex.
No polarity inversion was registered in any lead.

All animals showed P wave low voltage in LI,
suggesting that atrial cardiac vector activation
runs perpendicular to LI. We observed a consistent
pattern of atrial depolarization for all leads in all
ECGs. The only exception was the animal 11, which
showed a notched P wave and the highest ampli-
tude among all animals. This P wave morphology
might be considered normal in the horse, where
the right atrium depolarization precedes the left
atrium and causes a biphasic P wave owing to the
large size of the atria. However, in other species
like the dog, a biphasic P wave might be associated
with left atrial enlargement.22 Although we cannot
determine if sea lion 11 presented left atrium
enlargement, the additional finding of a mean
positive electrical axis (þ120), different from that
of the other animals which had a left cranial ori-
entation of the mean electrical axis (�30� to
�120�), might support this hypothesis. Similar to
our results, Siegal-Willott et al.7 reported an
occasionally a biphasic P wave in the manatee,
although its causes were not established.

The PRi represents the total amount of time
required for both atrial depolarization and the
delay in the atrio-ventricular (AV) node.22 The PRi
of sea lions was almost invariable (0.15 � 0.02 s;
coefficient of variation ¼ 10.9%), longer than the
southern elephant seal (0.012 � 0.02 s5) and
shorter than the horse (0.28 � 0.12 s30). In the
latter, the PRi is usually long, variable and func-
tionally prolonged by vagal influence. Sea lions’
PRi resulted concordant with the predicted PRi
(0.15 � 0.01 s) derived from the Noujaim’s allo-
metric equation,28 which was established with the
largest set of published ECGs (33 species, including
humans). This equation has an exponent within the
range of scaling factors that describe the relation
between body mass and many biological processes
such as metabolic rate, life span and HR.28,32

Because it uses optimal heart function as its
basis, the good correlation between measured and
predicted PR intervals suggests that SSLs have a
normal PRi in necessary of efficient cardiac func-
tion similar to other mammals including humans.

Owing to its role as an indicator of the AV con-
duction time, the PRi can be considered as a val-
uable indicator of cardiac function efficiency. It is
known that atrial contraction contributes to
approximately 20% of the end diastolic volume
after rapid ventricular filling.23 This requires ade-
quate AV propagation of the electrical impulse
that will trigger the ventricular contraction at the
appropriate time, leading to a correct diastolic
ventricular filling. Following this reasoning, and in
concordance with the predicted PRi (0.15 � 0.01 s)
derived from the Noujaim’s allometric equation,28

it is probably that AV conduction time in the SSL
works at an adequate timing to allow an efficient
cardiac output.

The coordinated function of atrial and ven-
tricular contraction is important in any mammal,
but even more so in marine mammals that must
precisely adjust cardiac function during breath-
hold diving.33e36 This adjustment is part of the
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pulmonary and cardiovascular changes associated
not only with the dive response, but also with its
interaction with the exercise response. The dive
response is associated with the cessation of
breathing accompanied by a bradycardia, a
reduction in cardiac output and a peripheral vas-
oconstriction that maintains central arterial blood
pressure while maintaining blood flow primarily to
the heart, lungs, and brain.33e35 In contrast, the
exercise response is associated with hyper-
ventilation, tachycardia, cardiac output increase
and peripheral vasodilatation to active mus-
cles.16,36,37 Although the latter is the response
typically exhibited by terrestrial mammals and
birds that do not undergo in apnea during exercise,
it appears to be integrated with the dive response
in different phases of the dive.16,36e38

The QRS complex represents the ventricular
activation, which has been classified in type A
mammals (humans, monkeys dogs, cats, rats), with
three fronts of depolarization waves, and type B
mammals (horses, cows, pigs, sheep and goats),with
two wave fronts.30,39 A reliable classification of
ventricular activation requires the description of
cardiac anatomy and the characterization of the
conduction system,which is not yetavailable inmost
marine mammals. However, Siegal-Willott et al.7

hypothesized that manatees have a depolarization
similar to that of the horse and thusmanatees should
be classified as type B. This inference was based on
the only existing anatomical description and the
predominantly positive deflection in LI. In the case
of SSLs, the conduction system has not been yet
characterized and there is no heart anatomical
description, sowe cannotmake similar assumptions.
However, mean electrical axes reflected left and
cranial orientation of themeanQRS vector inmost of
the SSL studied (n¼ 12), similar tonorthernelephant
seals, southern elephant seals, harbour seals, pigs
and horses.40 These similarities suggest that SSL
might be classified as having a type B activation, but
further investigation is needed to elucidate this
aspect.

The STS represents the end of ventricular acti-
vation, immediately before ventricle repolariza-
tion. Most of the SSL studied showed normal STS,
but three exceptions were observed, showing clear
patterns of STS depression. Although it is known
that STS depression in humans and dogs may result
from several pathologies, including left ventricular
hypertrophy, myocardial hypoxia or electrolyte
disturbance,22 there was not enough evidence in
this study to suggest these pathologies were pres-
ent in the SSL with ST depression. In addition, T
waves did not exhibit any polarity inversion within
animals, which also suggests a normal mechanism
of ventricle repolarization. The importance of this
result relies in that reversal of T wave polarity is
most often considered abnormal and might indi-
cate similar pathologies as those suggested by the
STS depression.22 Until further data are available,
the STS depression might be considered as a nor-
mal occasional finding in the SSL ECG.

The QTi includes both ventricular depolarization
and repolarization. Because ventricular depolari-
zation is short and constant, QTi is used as a
measurement of ventricular repolarization. The
prolongation of the QTi has clinical importance in
the inhalation anaesthesia.41e43 Several studies
have shown that volatile anaesthetics prolonged
the QT of the ECG during inhalational induction of
anaesthesia.43,44 On the other hand, long-QT syn-
drome, is similarly characterized by abnormal QT-
interval prolongation on the ECG, accompanied by
an increased risk of sudden death usually owing to
serious cardiac arrhythmias like ventricular fibril-
lation.44 Considering that no previous value of QTi
or QTc has been reported for this species, no
inference of potential abnormalities or isoflurane
effects can be made for the animals in this study.
However, average QTi and QTc values obtained in
this study constitute a first approximation to the
normal QTi for the SSL, a value that must be
compared with future ECG in awake resting SSL.
Conclusions

This study presents the first ECG description for the
SSL and provides valuable information for cardiac
monitoring during anaesthesia. All the waves of the
ECG were detectable and could be easily sepa-
rated. The SSL electrocardiogram characteristically
displayed a distinctly defined STS and QTi, with a T
wave clearly differentiated from the QRS complex.
The results obtained are novel and useful infor-
mation for comparative electrophysiology analysis
in relation to other aquatic and terrestrial mam-
mals including humans.
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