The role of the Ca2+ binding ligand Asn879 in the function of the plasma membrane Ca2+ pump

Débora E. Rinaldi, Hugo P. Adamo *

Instituto de Química y Fisicoquímica Biológicas (IQQUIFB)-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad de Buenos Aires, Argentina

Abstract

Asn879 in the transmembrane segment M6 of the plasma membrane Ca2+ pump (PMCA human isoform 4xb) has been proposed to coordinate Ca2+ at the transport site through its carboxylate. This idea agrees with the fact that this Asn is conserved in other Ca2+-ATPases but is replaced by Asp, Glu, and other residues in closely related P-type ATPases of different ionic specificity. Previous mutagenesis studies have shown that the substitution of Ala for Asn abolishes the activity of the enzyme (Adebayo et al., 1995; Guerini et al., 1996). We have constructed a mutant PMCA in which the Asn879 was substituted by Asp. The mutant protein was characterized by calmodulin affinity chromatography. The Asn879Asp PMCA mutant exhibited about 30% of the wild type Ca2+-dependent ATPase activity and only a minor reduction of the apparent affinity for Ca2+. The decrease in the Ca2+-ATPase of the mutant enzyme was in parallel with the reduction in the amount of phosphoenzyme formed from Ca2+ plus ATP. Noteworthy, the mutation nearly eliminated the ability of the enzyme to hydrolyze pNPP which is maximal in the absence of Ca2+, revealing a major effect of the mutation on the Ca2+-independent reactions of the transport cycle. At a pH low enough to protonate the Asp carboxylate the pNPPase activity of Asn879Asp increased, suggesting that the binding of protons to Asn879 is essential for the activities catalyzed by E2-like forms of the enzyme.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The PMCs couple the extrusion of Ca2+ from the cell with the hydrolysis of ATP [1]. They are members of the P-type family of ion translocating ATPases which form an acylphosphate from ATP and a side chain carboxylate of an aspartic acid as a part of their transport mechanism. In mammals four genes alternative splicing of the primary mRNAs generate a diversity of PMCA isoforms. The best characterized PMCA isoform is hPMCA4xb, the predominant PMCA in human erythrocytes.

Despite some criticisms and limitations, the mechanism of ion transport by the PMCA, like that of the other P-type ATPases, is usually interpreted in terms of the E\textsubscript{1}E\textsubscript{2} reaction cycle involving two conformational states of the enzyme known as E\textsubscript{1} and E\textsubscript{2} [2]. According to this model the Ca2+-free enzyme adopts the E\textsubscript{2} conformation and the binding of Ca2+ to the transport site promotes the conversion to the E\textsubscript{1} form. E\textsubscript{1} then reacts with ATP leading to the formation of the phosphoenzyme intermediate and the concomitant ion occlusion. The hydrolysis of the phosphoaspartyl-enzyme results in the liberation of the transported Ca2+ to the other side of the membranes and the binding of H+ to the E\textsubscript{2} form which in the PMCA has been proposed to result in the countertransport of one H+ per Ca2+ ion transported [3].

A detailed knowledge of the ionic transport sites of P-ATPases has been a long standing goal. The pioneering work of McLennan and coworkers [4] led to the identification of the amino acid residues involved in the two high affinity Ca2+ binding sites of SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Based on the results of single mutations of residues within the hydrophobic segments, it was proposed that the Ca2+-binding sites of the SERCA were located within the membrane bound portion of the protein. Further mutagenesis studies, and recently the high-resolution structures of SERCA confirmed this hypothesis [5,6]. In the SERCA pump Ca2+ binds first to site I which is entirely formed by side-chain oxygen atoms of residues from transmembrane segments M5, M6 and M8 and then to Site II formed by backbone oxygens of M4 and side-chain oxygens from M4 and M6 [6].

Asn879 of the PMCA is a particularly interesting residue because it seems distinctive of P-ATPases that transport Ca2+. While an Asn is conserved at this position of the SERCA type subgroup 2A and PMCA like subgroup 2B of P-ATPases, it is replaced by Asp or Glu in closely related pumps of different ionic specificity as those from subgroup 2C like the Na+ K+-ATPase and by hydrophobic residues in those of subgroup 2D.
PMCA Asn879 is homologous to Asn796, one of the Ca\(^{2+}\) ligands at site II of SERCA. It has been shown that substitution of Asn796 by Ala or Asp abolishes Ca\(^{2+}\)-transport, Ca\(^{2+}\)-ATPase and Ca\(^{2+}\)-dependent phosphorylation by ATP [4,5,7,8]. At concentrations of Ca\(^{2+}\) 100 times higher than those needed for the maximal Ca\(^{2+}\)-ATPase of the wild type, the SERCA Asn796Ala mutant reaches about 2% of the activity. On the other hand the formation of the phosphoenzyme by Pi phosphorylation is preserved and is inhibited by Ca\(^{2+}\) with an apparent affinity similar to the wild type. These findings are consistent with the idea that Asn796Ala disrupts the Ca\(^{2+}\) binding site II and blocks the catalytic activation while still allowing the binding of Ca\(^{2+}\) to the other site and the subsequent inhibition of Pi phosphorylation [7,8].

The plasma membrane Ca\(^{2+}\) pump in contrast with SERCA has been proposed to handle only one Ca\(^{2+}\) per cycle [9,10]. This proposal agrees with the fact that the primary structure of PMCA only retains a strong homology to Ca\(^{2+}\) binding site II of SERCA. PMCA mutants of Asn879 expressed in COS cells were reported inactive [9,10] consistently with its proposed role as a ligand for Ca\(^{2+}\). Our recent work using yeasts for the expression of recombinant PMCA has improved our ability to characterize the effects of mutations on the PMCA function using a purified preparation of the enzyme with high specificity [11]. Here we have investigated further the role of the lateral chain of Asn879 of the PMCA by mutating this residue to Asp which preserves the carbonyl oxygen involved in Ca\(^{2+}\) binding. We found that the substitution of Asp for Asn879 reduced but did not abolish the Ca\(^{2+}\)-dependent ATPase activity, and the residual activity of the mutant Asn879Asp exhibited near wild type Ca\(^{2+}\) dependency. In addition, the mutation nearly eliminated the ability of the enzyme to hydrolyze pNPP in the absence of Ca\(^{2+}\), indicating that a Ca\(^{2+}\)-independent reaction of the transport cycle was affected. The low pNPPase activity of the mutant in the absence of Ca\(^{2+}\) was stimulated by lowering the pH suggesting that the change Asn879Asp decreases the apparent affinity of the enzyme for the counter transported ion.

2. Materials and methods

2.1. Chemicals

Polyoxyethylene-10-lauryl ether (C\(_{12}\)E\(_{10}\)), \(\alpha\)-phosphatidylcholine type XVI-E Sigma from fresh egg yolk, brain extract (BE) Type I Folch Fraction I from bovine brain containing approximately 10% phosphatidylisinoi, 50% phosphatidylserine, and other lipids, calmodulin-agaroise, calcimycin (A23187), ATP (disodium salt, vanadium-free), SDS, yeast synthetic drop-out media supplement without uracil, yeast nitrogen base without amino acids, dextrose, enzymes, polyoxyethylene-10-laurylether (C\(_{12}\)E\(_{10}\)), L-γ-32P\]ATP was provided by PerkinElmer Life Sciences (Boston, MA). Salts and reagents were of analytical reagent grade.

2.2. Protein assay

The protein concentration was initially estimated by the method of Bradford [15] using bovine serum albumin as a standard. To achieve a better assessment of the content of PMCA protein in each preparation, the samples were analyzed by SDS-PAGE using bovine serum albumin as a standard, and the intensity of the bands was compared after staining the gels with Coomassie Blue.

2.3. Western blotting and protein staining

SDS electrophoresis and immunoblotting were carried out as previously described [16]. Proteins were electrophoresed on a 7.5% acrylamide gel according to Laemmli [17] and revealed by Coomassie Blue staining, or subsequently electrotransferred onto Millipore Immobilon P membranes. Nonspecific binding was blocked by incubating the membranes overnight at 4 °C in a solution of 160 mM NaCl, 0.05% Tween 20, and 1% non-fat dry milk. The membranes were incubated for 1 h with antiPMCA monoclonal antibodies [18] from ascitic fluid (dilution 1:1000). For staining, biotinylated antimouse immunoglobulin G and avidin-horseradish peroxidase conjugate were used.

2.4. Proteolytic digestion of PMCA

Limited proteolysis of the purified proteins was carried out at 37 °C. The reaction media contained 0.1 μg of PMCA solubilized in 0.17% C\(_{12}\)E\(_{10}\), 0.08% of BE lipids, 20 mM HEPES-K (pH 7.2 at 37 °C), 100 mM KCl, 4 mM MgCl\(_2\), 0.5 mM EGTA, enough CaCl\(_2\) for 10 μM free Ca\(^{2+}\). The reaction was initiated by the addition of protease K (ratio ATPase/protease of 50:1 by mass) and was arrested at the indicated times (minutes) by the addition of 2.2 μg aprotinin. The samples were suspended in electrophoresis sample buffer and the proteolytic fragments were analyzed by Western Blot.

2.5. Ca\(^{2+}\)-ATPase activity

The Ca\(^{2+}\)-ATPase activity was estimated from the release of \([\text{32}\text{P}]\)P, from \([\text{32}\text{P}]\)ATP at 37 °C [19]. The ATPase reaction medium contained 20 mM HEPES-K (pH 7.2 at 37 °C), 100 mM KCl, 4 mM MgCl\(_2\), 10 μM of calcium, 500 μM EGTA, 3 mM \([\text{32}\text{P}]\)ATP and enough CaCl\(_2\) to give the concentrations of Ca\(^{2+}\) indicated in each experiment. The final volume of the ATPase reaction was 0.3 ml. The tubes were transferred to a water bath at 37 °C and the reaction was initiated by adding 50 μl of PMCA (about 2 μg of PMCA protein previously supplemented with
26. pNPPase activity

The pNPPase activity was estimated as described [21]. The reaction mixture contained 20 mM HEPES-K (pH 7.20 at 37 °C), 100 mM KCl, 0.5 mM EGTA, 4 mM MgCl₂, and 12 mM pNPP. The tubes were transferred to a water bath at 37 °C and the reaction was initiated by adding 50 μM of PMCA (about 2 μM of PMCA protein previously supplemented with BE lipids). The total assay volume was 0.3 ml. The incubation time was 60 min. The (Ca²⁺-ATP)-dependent pNPPase was measured in an identical media except for the addition of 3 mM ATP and CaCl₂ to give the concentrations of free Ca²⁺ indicated in the experiment.

When the pH was varied the reaction media contained in addition 20 mM Mops-imidazol adjusted at each pH. The reaction was stopped by the addition of 1 ml of 1 M NaOH. The tubes were centrifuged at 14,000 rpm in a microcentrifuge for 5 min and the supernatants were measured in an identical media except for the addition of 3 mM ATP and CaCl₂ to give the concentrations of free Ca²⁺ indicated in the experiment.

When the pH was varied the reaction media contained in addition 20 mM Mops-imidazol adjusted at each pH. The reaction was stopped by the addition of 1 ml of 1 M NaOH. The tubes were centrifuged at 14,000 rpm in a microcentrifuge for 5 min and the supernatants were monitored for the optical density at 410 nm. Blank obtained without protein were subtracted from each point. A molar extinction coefficient of 1.78 × 10⁴ M⁻¹ cm⁻¹ was used to convert optical density in micromoles of p-nitrophenol released.

2.7. Phosphorylation of PMCA

5 μg of purified ATPase in 100 μl of elution buffer was supplemented with 0.57% C₁₂E₁₀ and 0.29% of lipids and phosphorylated at 4 °C in 250 μl reaction buffer containing 50 μM Tris–HCl pH 7.6 at 4 °C with or without CaCl₂ to give a concentration of 100 μM free Ca²⁺. The reaction was started by the addition of 30 μM [γ³²P]-ATP and was stopped after 180 s with 10% ice-cold trichloroacetic acid. After adding 20 μg of bovine serum albumin, the denatured proteins were collected by centrifugation at 20,000 × g for 10 min, washed once with 5% trichloroacetic acid and 150 mM NaH₂PO₄ and once more with distilled water. The precipitated protein was suspended in sample buffer and separated by acid SDS-PAGE. The gels were dried and the radioactivity detected using a Storm Molecular Image System.

3. Results

3.1. The Asn879Asp mutant was expressed at a level similar to that of the wild-type enzyme

Microsomal membranes from yeasts expressing the wild type PMCA or the Asn879Asp PMCA mutant were isolated. The immuno-

[Image 112x100 to 475x240]

Fig. 1. The Asn879Asp mutant is expressed at a level similar to that of the wild type enzyme. (A) Immunoblot of total microsomal membranes from yeast cells expressing the wild type or the Asn879Asp proteins. Membranes from non-transformed yeasts, lanes 1 and 4, 4.8 and 3.2 μg of protein respectively; membranes from yeast transformed with DNA coding PMCA mutant Asn879Asp, lanes 2 and 5, 4.5 and 2.9 μg of protein, respectively; membranes from yeast transformed with DNA coding wild type PMCA lanes 3 and 6, 3.8 and 2.3 μg of protein, respectively. (B) SDS-PAGE stained with Coomassie Brilliant Blue of different amounts of purified proteins. The numbers on top of each lane indicates the ng of protein loaded.
half maximal activity at 1.6 μM Ca2+, and in the presence of saturating amounts of Ca2+ its maximal activity was about 30% of that of the wild type.

3.4. The Asn879Asp mutant formed less phosphorylated intermediate from ATP than the wild-type enzyme

The lower Ca2+-ATPase activity of the Asn879Asp mutant may result from the impaired reaction of the enzyme with ATP and Ca2+.

Fig. 3. The Asn879Asp mutant exhibits a reduced Ca2+-ATPase, and Ca2+ concentration dependence similar to that of the wild type enzyme. (A) Time course of ATPase of wild type (filled circles) and Asn879Asp mutant (empty circles). The concentration of Ca2+ was 10 μM. (B) Ca2+ concentration dependence of Ca2+-ATPase activity. The Ca2+-ATPase activity was measured as indicated in Materials and methods. The symbols are the same as in panel A. The lines represent the best fit of the data given by the Hill equation plus a constant (v\textsubscript{0}) with the following parameters: wild type V\textsubscript{max} = 4.7 ± 0.8 μmol/mg/min, K\textsubscript{1/2} = 0.4 ± 0.1 μM, n = 2.4 ± 1.2; v\textsubscript{0} = 0.4 ± 0.6 μmol/mg/min; Asn879Asp mutant V\textsubscript{max} = 1.5 ± 0.1 μmol/mg/min, K\textsubscript{1/2} = 1.5 ± 0.2 μM, n = 1.6 ± 0.2; v\textsubscript{0} = 0.5 ± 0.1 μmol/mg/min. The value of the activity at 50 μM Ca2+ was not included in the fitting.

3.5. The Asn879Asp mutant exhibited lower apparent affinity for vanadate

The lower ATPase activity and apparent affinity for Ca2+ and the lower level of phosphoenzyme could be explained if the mutation caused the displacement of the enzyme toward the E\textsubscript{2} conformation. The affinity of the inhibition by the phosphate transition state analog vanadate has been usually taken as a measure of the abundance of the E\textsubscript{2} conformer of the enzyme during the ATPase reaction cycle. As shown in Fig. 5, the ATPase activity of the Asn879Asp mutant decreased as the concentration of vanadate in the reaction media increased. However, the concentration of vanadate needed for half maximal inhibition of the mutant’s activity was about 25 μM compared with 1.8 μM for the wild type enzyme. Thus, this result...
suggests that also the concentration E2 conformer of the enzyme is lower in the mutant.

3.6. The mutation Asn879Asp nearly eliminated the ability of the enzyme to hydrolyze pNPP

It is known that the PMCA can hydrolyze pNPP and other non-nucleotide substrates. This activity is made possible by an E2-like conformation of the PMCA which is attained in the absence of Ca$^{2+}$.

3.7. The pNPPase activity of the Asn879Asp increased with the increase of the concentration of H$^{+}$

It has been proposed that the transport of Ca$^{2+}$ by the PMCA is accompanied by the counter transport of H$^{+}$. H$^{+}$ would bind and stabilize the E2 form of the enzyme. Following this line of reasoning we tested the effect of pH on the ability of the wild type and mutant enzymes to hydrolyze pNPP. As shown in Fig. 7A, the wild type enzyme attained maximal pNPPase activity at a pH around 6.5 and it decreased at lower pH. In contrast the activity of the mutant enzyme increased as the pH decreased, and reached a maximal activity at a pH around 4.5. We tested whether the mutation caused a similar change in the optimal pH of the ATPase activity. Results in Fig. 7B show that the wild type enzyme reached the highest ATPase activity at a pH near 7.0. In contrast with the pNPPase activity the mutant exhibited maximal ATPase activity at a pH of 7.3, slightly higher than the wild type enzyme.

4. Discussion

Previous studies have shown that the Asn879 of PMCA and Asn796 of SERCA have a critical role in the function of these Ca$^{2+}$ pumps as...
Ca\(^{2+}\) binding residues. Most studies however analyzed the consequences of the replacement of Asn by Ala eliminating the side chain oxygen of the lateral chain. Here, by changing Asn879 to Asp the Ca\(^{2+}\) coordinating carbonyl oxygen was preserved and other functions of this residue were made more obvious.

The Asn879Asp PMCA mutant was successfully expressed in yeasts at a level similar to the wild type PMCA, and was obtained in purified form following the standard protocol. These results, and the fact that the mutant protein exhibited a wild type susceptibility to degradation by protease K, suggest that the mutation did not cause a global disruption of the protein structure. While the possibility that the structure of the PMCA protein was locally distorted as a consequence of the mutation cannot be discarded, we detected no signs of increased instability of the mutant protein under the conditions used for the activity measurements.

The substitution of Asn879 by Ala has been reported to eliminate the Ca\(^{2+}\)-dependent reactions of the PMCA [9,10] while in SERCA the change Asn796Ala eliminates Ca\(^{2+}\) binding at site II [5]. In contrast, we found that mutation Asn879Asp reduced the maximal ATP hydrolytic activity to 30–40% of that of the wild type enzyme and decreased the apparent affinity for Ca\(^{2+}\) about 3 fold. Thus, the substitution of Asn879 by Asp seems to have a milder effect on the ATPase activity and the level of phosphoenzyme suggest a decreased transition between E2 and E3. Consistent with this idea, we found that the pNPP hydrolysis, which is catalyzed by the PMCA in an E3-like form, was severely impaired in the mutant either in the presence of Ca\(^{2+}\) + ATP or in the absence of Ca\(^{2+}\). Thus, it would seem that the loss of the protonated amido group at position 879 of the PMCA affects the Ca\(^{2+}\)-independent reactions associated with the E2 form of the enzyme. The fact that as the pH decreased, the pNPase activity of the Asn879Asp mutant increased is also consistent with the proposed need for a protonated lateral chain at this position of the enzyme in the E2H conformation.

The low sensitivity of the Ca\(^{2+}\) ATPase activity to inhibition by vanadate and the low pNPase activity of the Asn879Asp mutant would indicate that amount of the E2 conformation is reduced. These results could indicate that vanadate inhibition and the catalysis of pNP hydrolysis may require the protonated form E2. Because of the presence of a carboxylate, this form would be more difficult to attain in the mutant at physiologic pH.

Previous studies of SERCA have shown that, the change Asn796Ala decreases the rate of dephosphorylation of the acylphosphate intermediate [8]. In contrast the lower activity of the PMCA Asn879Asp mutation cannot be explained by a reduction in the rate of dephosphorylation. Instead the parallel reduction of the Ca\(^{2+}\)-Asn879Asp mutation cannot be explained by a reduction in the rate of the E2 form of the enzyme consistent with the position of Asn796 in the structure of SERCA. In the Ca\(^{2+}\) bound E2, the amide of Asn796 is solely connected to a water molecule [6]. In contrast in E2 (TG + BHQ) [23] the side chain amide of Asn796 is involved in interhelix hydrogen bonds with Ca\(^{2+}\) binding site I residue Glu771 in M5, and with the Ca\(^{2+}\) binding site II residue Glu309 in M4. Because the substitution of Asp for Asn introduces a negative charge it may destabilize the hydrogen bonds in which the amide group is involved. These hydrogen bonds may be preserved despite the change of the amide by carbonylate provided that protons are available. This effect can account for the increase of the phosphatase activity of the mutant at acidic pH.

It has been previously proposed that Asn796 participates in the countertransport of protons by SERCA [8,24]. In agreement with this proposal, our results show that in the PMCA the function of this residue cannot be ascribed solely to the binding of Ca\(^{2+}\), and argue in favor of a role of Asn879 as one of the residues from a recently proposed "cation filter" group of residues of the P-ATPases that would alternatively coordinate both the transported and countertransported ions [25].

Acknowledgements

This work was supported in part by the University of Buenos Aires (UBA, Grant B009), by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Pregio Bid OC-AR PICT 15–25965).

References

Scheme 1.

\[E_2H + P_i \rightleftharpoons E_2^- + H^+ \rightleftharpoons E_i^- \]