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Much of contemporary systems biology owes its success to the abstraction of a network, the idea
that diverse kinds of molecular, cellular, and organismal species and interactions can be modeled as
relational nodes and edges in a graph of dependencies. Since the advent of high-throughput data
acquisition technologies in fields such as genomics, metabolomics, and neuroscience, the automated
inference and reconstruction of such interaction networks directly from large sets of activation data,
commonly known as reverse-engineering, has become a routine procedure. Whereas early attempts
at network reverse-engineering focused predominantly on producing maps of system architectures
with minimal predictive modeling, reconstructions now play instrumental roles in answering ques-
tions about the statistics and dynamics of the underlying systems they represent. Many of these
predictions have clinical relevance, suggesting novel paradigms for drug discovery and disease treat-
ment. While other reviews focus predominantly on the details and effectiveness of individual network
inference algorithms, here we examine the emerging field as a whole. We first summarize several key
application areas in which inferred networks have made successful predictions. We then outline the
two major classes of reverse-engineering methodologies, emphasizing that the type of prediction that
one aims to make dictates the algorithms one should employ. We conclude by discussing whether
recent breakthroughs justify the computational costs of large-scale reverse-engineering sufficiently
to admit it as a mainstay in the quantitative analysis of living systems.

I. LAY OF THE LAND

Biological systems on all levels of organization, from
cells to brains and to populations, are comprised of en-
sembles of interactions among smaller constitutive com-
ponents [1–3]. These interactions are typically very spe-
cific, and highly coordinated spatially and temporally [4–
8]. Involving not just pairs, but also larger groups of
components acting in concert [9–14], they are respon-
sible for the rich diversity of complex phenomena and
behaviors that make living systems work. Although of-
ten prohibitively numerous to model individually (though
see [15]), these components and their corresponding in-
teractions can be represented formally as graphs [16],
known colloquially as biological networks [3, 17–23].

The variables in such networks (also called nodes) typ-
ically represent biochemical or ecological species, cells,
or even amino acid residues when one is interested in
the biophysics of proteins. The links among the nodes
represent interactions, such as chemical transformations,
catalysis, and binding; cooperative or predator-prey re-
lations among species; electrical and chemical communi-
cation among cells; or geometric proximity among amino
acid residues (Fig. 1).

To answer many questions in modern data-rich biology,
an intermediate step often involves the reconstruction of
such networks from empirical data. The data typically

consist of joint samples of activities (often referred to as
expressions, frequencies, abundances, or population sizes,
depending on the context) of a large number of compo-
nents measured in different biological contexts. Problems
of this kind pervade the quantitative life sciences on all
physical scales, even if they take different forms and use
different languages across scientific disciplines.
At the smallest scale is the problem of inference of

physical contacts for amino acids in a protein fold [25–
27], which is a network representation of the 3D struc-
ture of the protein. Predicting such networks from the
co-occurence of amino acids promises the ability to de-
sign proteins with specific functional properties. At the
cellular level, different genes activate or suppress the ac-
tivities of other genes, forming networks of genetic regu-
latory interactions [28, 29]. Similarly, metabolites trans-
form into each other, catalyzed by various enzymes; these
form metabolic networks [22, 30, 31], as well as net-
works that combine both protein and metabolic modal-
ities. Protein signaling networks characterize the struc-
ture of decision-making and information processing in in-
dividual cells [32–36]. The accurate reconstruction of dif-
ferent types of these cellular networks is expected to lead
to successful interventions that cure some of the most
debilitating diseases [37].
On the scale of the nervous system, one often

reverse-engineers neural circuits [38–42] and, on a larger
scale, functional connectivity networks between brain re-
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FIG. 1. Examples of biological systems whose constituent interactions have been modeled using networks. (a) The regulation
of gene transcription by transcription factors and other enzymes. For example, in the classic lac repressor circuit [24], when
lactose concentration is high and glucose concentration is low, genes for metabolizing lactose are strongly activated. Activities
in this case might consist of microarray data for each mRNA species; the network shows the logic (AND) of the system. (b)
Neuronal co-activation networks can be measured by computing correlations between spike patterns. In this case, the network
graphs are weighted, and weights may represent correlations. (c) Spatially proximal amino acids tend to co-evolve, as they
often participate in bonds that are vital to the structure and function of the protein they form. Here activity values are
discrete, assuming one of 20 values to identify the amino acid at each site; the network represents bonds that are inferred to
exist by noting which site pairs are highly correlated across similar proteins in different organisms. (d) Complex predator-prey
interaction dynamics can be cast in a network form as well. Here activation data represent the populations of each species, and
connections are labeled with inferred values for the parameters in the governing population dynamics equations.

gions [43–47]. The structure of the latter has been shown
to be valuable as a diagnostic tool for some psychiatric
diseases [48], and there is mounting evidence that the
former can be “reprogrammed” via external interven-
tions to repair damaged circuits [49]. Finally, on the
largest scales, one can reconstruct networks of interac-
tions among members of a particular species [50–52], or
different species in an ecosystem [53–58]. This knowledge
may help in forecasting ecological catastrophes [59, 60]
and addressing the spread of infectious disease [61] (or
other epidemics [62]).

In all of these fields, data share similar properties, and
data sets often have similar sizes. This imposes unifor-
mity not only on the question of network inference it-
self, but also on the obstacles and algorithmic approaches
that underlie reconstruction efforts across multiple bio-
logical domains. Inference methods designed for one sys-
tem type ([63], [64], and [65]) can often be adapted to
accommodate others ([66–68],[32, 69, 70], and [39, 71], re-
spectively). Moreover, morally equivalent methods have

been developed in nominally unrelated fields [72] – or else
borrowed explicitly from established disciplines, such as
systems identification techniques migrating to network
biology from engineering [73, 74]).

An additional reason for the cross-pollination among
the subfields of biological networks inference is that, like
in other parts of bioinformatics, the field has benefited
from advances in machine learning and related Big Data
computational tools. In their turn, as is often true
of mathematical approaches, these tools are applicable
across multiple traditional biological subdisciplines, and
hence provide for natural theoretical bridges not only
among life-sciences subfields, but also to a “network”
of other quantitative disciplines (physics, statistics, and
computer science) [75].

However, one cannot embrace the unembraceable.
Thus in this review, we will focus almost exclusively on
applications of networks inference to the systems biol-
ogy of the cell [76–78], and will mention bridges to other
fields only briefly and haphazardly, leaving the reader
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certainly thirsty for more. Starting with a few of the ref-
erences that we mention, as well as using Google Scholar
(another network, this time of citations), is an easy way
to quench this thirst!

Before proceeding any further, it is certainly worth
warning the reader that the explosive growth of the field
of biological network inference has covered with a thick
blanket of journal articles some treacherous rocks. A few
of them are very dangerous, and can, in principle, sink
the field if not addressed thoughtfully. Specifically, while
fully automated network inference has become a routine
procedure, it is not immediately clear that the large-scale
reconstruction of entire networks from high-throughput
data will necessarily result in tangible insights or action-
able understanding about biological systems. One rea-
son is that most reconstructions are not experimentally
verified, remaining in the literature as collections of in-
formation (or misinformation) of dubious quality. An-
other comes from the fact that it is still not clear what
new knowledge entire-network inference yields, besides
proposing potential interactions for experimental verifi-
cation. If a goal of the field is to predict response of bi-
ological systems to yet-unseen exogenous perturbations,
then the bridge between a network graph and such pre-
dictive knowledge will have to be built eventually, but it
is not there yet in most practical applications. Most im-
portantly, it is usually unclear what insights are delivered
by large-scale networks, or how to interpret the typical
product of the reconstruction enterprise – Lander’s in-
famous “hairball” of decontextualized interactions [79].
One can even argue that exhaustively enumerating inter-
actions is not inherently more insightful than cataloging
the original experimental data, and both should give way
to studying the system’s emergent properties [80]. Hav-
ing now warned the reader, we leave these important,
foundational questions aside for the remainder of the re-
view (save the Discussion).

A. Scale of the biological network inference
problem

Network reverse-engineering is typically done in the
“low-hanging fruit,” Big Data regime. Here the data sets
are large, but the number of unknowns is even larger: not
all the unknowns can be learned reliably.

While reconstructions can be performed using differ-
ent data types [76, 81], here we are concerned with ap-
proaches that are based exclusively on biological activity
measurements. Suppose we have a network consisting of
p nodes (e. g., a group of p interacting genes or neurons),
and n simultaneous measurements of some activity vari-
able for each of these nodes (which for our purposes fully
characterizes the biological states of the nodes at a given
moment in time). The activity variables can be binary
(as in the characterization of whether a gene is on or off,
or whether a neuron is spiking or not at a given time) or

real-valued (gene expression levels, or firing rates for neu-
rons). In other words, the total amount of available data
is ∼ np. The goal is to identify links between pairs of
the p nodes (or more generally, higher order interaction
structures) from patterns in their activities. If we focus
on pairwise interactions among the nodes only, then the
number of unknowns is ∼ p2. Thus the amount of data
per unknown is α ∼ np/p2 = n/p.

In the classical statistics regime, the amount of data
is typically asymptotically large compared to the num-
ber of unknowns, α ≫ 1. In contrast, network infer-
ence usually proceeds in the regime where p ≫ 1, with
typical p ∼ 102 . . . 103. For gene expression and other
high throughput cellular data, in particular, it is not
uncommon to have p ∼ 104. Other fields are catching
up [82, 83]. The number of measurements is also typi-
cally large, n ≫ 1. We can consider n < p, as in most
genetic data, or n > p (but not n ≫ p), as in many
neuroscience applications. More generally, n ∼ p, so
that α ∼ 1, representing a qualitative departure from
the classical statistics regime.

The situation gets even worse when we remember that
the total number of parameters characterizing all (higher-
order) interactions in a network scales as the total num-
ber of states that the network can be in (i. e., 2p for
binary nodes, or 2pS for continuous ones, where S is the
entropy of each node measured at the experimental reso-
lution). Thus in the most general case, for biological net-
work inference, α ≪ 1. It is clear then that, just like in
most other Big Data applications, the problem cannot be
solved completely, with all interactions identified. Thus
networks inference necessarily is a “low-hanging fruit”
problem, where the limited data allows us to focus only
on the most salient features of the studied systems. This
also means that, in any quantitative assessment of the
quality of network reconstruction methods, we should fo-
cus a lot more on the precision (absence of false positives)
of a method, rather than on its sensitivity (absence of
false negatives), since the sensitivity of essentially any
method on realistic data would be tiny.

B. Different ideologies for inference

In biological network inference, one can think of recon-
structing actual physical interactions among the nodes or
coarse-grained, phenomenological surrogates. We focus
exclusively on the latter.

The notion of network inference may evoke the idea
of reconstructing actual physical interactions among net-
work nodes. For example, a regulatory interaction be-
tween two genes might mean the direct binding of a
transcription factor protein, translated from one of these
genes, to a specific part of the DNA sequence that con-
trols the expression of the other gene [67]. We refer to
the reconstruction of such physical, microscopically ac-
curate interactions as the inference of mechanistic net-
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works. In contrast, the majority of reconstruction meth-
ods focus (explicitly or not) on the inference of effec-
tive interaction networks [84], which keep track of purely
phenomenological interactions. These may or may not
be mechanistically accurate, but are sufficient to repro-
duce various statistics of the observed variables. Such
effective interactions may correspond to subsets of the
interactions in mechanistic networks. They may be com-
pact, coarse-grained averages of some microscopic quan-
tities. Or they may be entirely macroscopic properties
that have remote and complicated relationships with the
microscopic, mechanistic interactions.

One can focus on effective network inference for
purely pragmatic reasons: as discussed above, even high-
throughput data is insufficient to infer all the contribut-
ing actors in a complex system, and effective interactions
may simply be the low-hanging, accessible fruit. In con-
trast to this pessimistic view, one may argue that every
level of description requires its own proper degrees of free-
dom for efficient representation [80, 85, 86], and that the
distinction between mechanistic and effective networks is
not that clear-cut.

To wit, even mechanistic biophysical interactions are
themselves effective interactions, just at a different scale.
For example, the bonds between amino acids that form
at protein-protein interfaces consist of electrostatic forces
between constituent molecules. These forces can then be
broken down in terms of quantum interactions between
elementary particles, at which point the notion of an
amino acid has long since disappeared. Likewise, the fact
that communication between synapsing neurons requires
the diffusion of neurotransmitters across the synapse un-
dermines the notion that neurons can ever truly be in
a direct, mechanistic contact. We are most sympathetic
with this viewpoint, which treats the distinction between
mechanistic and effective networks less as a dichotomy
than as a spectrum. In what follows, we cast the issue
in terms of modeling assumptions: what is the appropri-
ate set of nodes and interactions to answer the specific
questions being asked while working at the desired scale?

Our perspective notwithstanding, a few authors have
distinguished explicitly between these two ideologies
(see [87] as the originator of the “physical” vs. “in-
fluence” network terminology, and [46] for a more fine-
grained distinction among different types of effective net-
works in the brain). Many other sources refrain from
making such explicit distinctions, presumably either for
expedience in exposition or because they take seriously
the aforementioned notion of pursuing the most efficient
or useful description at a given level of study, regardless
of the biological implementation details at other levels.
While we remain agnostic to the particular reasons for
the tendency of reverse-engineering literature to avoid
making this distinction at the outset, we lament the ab-
sence of explicit declarations of the intended level of de-
scription when elaborating a new algorithm by the ma-
jority of publications. By default, in this Chapter, we
focus on effective inference methods, for which authors

do not make an effort to understand whether there is
a mechanistic basis for inferred interactions, stating any
exceptions at the outset when they appear.

C. Goals of this Chapter

We are now in a position to state our intended goals
for this Chapter. In the following sections, we review
relatively recent (within the last two decades) attempts
at network inference, contending:

1. The aptness and success of a given inference
method depend on the ultimate purpose of per-
forming network reconstruction. One must first es-
tablish what kinds of predictions are desired (i. e.,
what does one seek to learn [19] using the net-
work?), and only then decide which algorithm to
use.

2. Large-scale network reverse-engineering has many
fruitful applications, but it is not always the nec-
essary – or not necessarily the best – approach for
making certain kinds of predictions.

Note that we deal exclusively with inference methods
that produce networks containing at most pairwise in-
teractions. While the joint probability distribution for p
discrete or continuous stochastic activation variables in a
stationary state {gi} can be expanded [65] most generally
as

P ({gi}) ∝ exp



−

p
∑

i

hi(gi)−

p
∑

i,j

Jij(gi, gj) . . .

−

p
∑

i,j,k

φijk(gi, gj, gk)− ...



 , (1)

where functions hi, Jij , and φijk denote first-, second-,
and third-order interactions, respectively, it is clear from
the considerations of Section IA that reliable estimation
for terms of higher order than Jij is prohibitively difficult.
In addition, we review only the algorithms that attempt
to infer static values for Jij under the assumption that
the system is in (near-)stationary conditions, although
some authors have attempted to estimate networks whose
topologies are dynamically evolving [88, 89].

The progression of the Chapter is as follows. First,
we examine highlights of the many places where net-
work inference has been used to advance new knowl-
edge in contemporary systems biology and establish novel
paradigms in modern medicine. Then we proceed to de-
lineate and explicate several types of inference methods,
briefly describing the operation of several representative
algorithms for each of the classes we name. We con-
clude with a brief outlook of where the field might be
headed. However, these concluding comments should be
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taken with a lot of caution, since “it is difficult to make
predictions, especially about the future.”

II. ROLES FOR REVERSE-ENGINEERING IN
SYSTEMS BIOLOGY RESEARCH

The reverse-engineering of large-scale networks by
means of automated algorithms has become such a rou-
tine procedure that it has spawned a research field of its
own. Why is the task of learning networks from data
considered so important?

The modern imperative to generate comprehensive
parts lists for large biological systems [22] is epitomized
in what one author somewhat flippantly calls “the gi-
ant maps of metabolic pathways that many molecular
biologists pin to their walls” [90]. Such diagrams en-
code and illustrate visually the entirety of observable
interactions of a particular type in a specific system.
Since the mid-2000s, attempts to generate such maps
have been pursued vigorously by researchers in various
disciplines, but the most prominent and systematic ef-
forts have come from the network inference Challenges
of the Dialogue on Reverse-Engineering Assessment and
Methods (DREAM) initiative [91, 92]. Contestants par-
ticipating in these ongoing Challenges submit network
reconstructions, inferred by original algorithms operat-
ing on standardized data, for comparison against (exper-
imentally) established sets of interactions in benchmark
networks.

The top-scoring networks in early competitions
achieved respectable accuracies, despite the difficulties
associated with defining “gold standard” benchmarks
and evaluation metrics [91, 93]. However, they also
lacked the ability to provide intuition (beyond structural
insights) about the systems they described. As static pic-
tures of interaction architectures, they had limited ability
to predict a system’s behavior. The pattern of assembling
a large, intricate network as the end goal, with no inten-
tion to use it as a tool for prediction – as in the iconic
but largely uninformative hairball of Ref. [79] – thema-
tized DREAM competitions roughly until 2014, nearly a
decade after one reviewer declared the field to be “still
in [its] ‘natural history’ phase” [2].

The emphasis of DREAM competitions has since
shifted, mirroring changes in the attitude of the reverse-
engineering community as a whole. Recent competitions
have more strongly favored predictive modeling, with in-
ferred networks serving not as ends in themselves, but
as coarse summaries of high-dimensional data – a special
type of statistic – to aid in projecting how the behavior
or components of a system will change (as a function of
time, due to changes in its environment, etc.).

This movement away from using learned topologies as a
signal that the “work is done,” and instead toward view-
ing the entire process of network inference as an interme-
diate step in an fully-fledged research pipeline [94], is also

supported by theoretical work. In particular, it has been
argued that structure alone provides insufficient infor-
mation to achieve an adequate degree of control over the
underlying system’s dynamics [95]. In fact, the object of
interest is not always a network’s structural complexity
(density of connections), but its dynamical complexity
(the number of fixed points it can accommodate), which
depends on other parameters beyond structure, such as
its connection strengths. Indeed, only the latter is closely
tied to the viability of a network architecture in the con-
text of evolution [96].

The field’s transition – from descriptive to predictive
– is a natural one, and indeed reminiscent of the pro-
gression in other branches of science. While it is not
completely clear why there was this prolonged period of
exploration without modeling, it is plausible that reverse-
engineers first needed to convince themselves that (1)
networks can, indeed, be accurately reconstructed from
activity data alone, and (2) the achieved reconstructions
are statistically significant and reproducible. Further-
more, experimental tools for administering systematic
perturbations to the networks under study took a while
to develop, so that the need to predict dynamical re-
sponses to perturbations had not emerged for a while. As
confidences in the statistical power of reverse-engineering
grew, and new experimental tools were developed, the
next level of questions naturally emerged. It is in answer-
ing this next level of questions that network reconstruc-
tions have found their broad spectrum of highly nontriv-
ial, often unique, and even central roles in modern sys-
tems biology. For the remainder of this section, we sur-
vey several key application areas, focusing on the most
impactful types of predictions that reconstructions are
capable of generating.

A. Predictions regarding individual nodes or
interactions

Reconstructions can help identify intervention targets
or functionally similar cohorts of biological species.

The advent of modern, high-throughput data acqui-
sition techniques transformed the enterprise of network
reconstruction from a painstaking, often collaborative
process into an exercise in algorithmic design. Verify-
ing the existence of a single interaction no longer de-
mands corroboration by multiple independent research
efforts, and connections can now be inferred in parallel di-
rectly from a single set of data. An oft-cited consequence
of this change of pace contends that modern reverse-
engineering dramatically increases the rate at which hy-
potheses about potential interactions can be generated.
To this end, whole-network reconstructions allow us to
rapidly elucidate both the presence and nature of individ-
ual interactions, as well as predict the function of individ-
ual nodes from knowledge about their neighbors [97, 98].

Inference methods designed for the express purpose
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of proposing novel interactions for experimental verifica-
tion [65, 99] have confirmed previously established gene
targets [74] and identified novel targets for known tran-
scription factors and drugs [100, 101]. Known broadly
as statistical or association methods (see “Who talks to
whom,” Section III A), algorithms in this class have also
discovered entirely new interactions [10, 11, 100, 102–
105], with previously unknown gene interactions often
being verified experimentally [106, 107]. In a multi-
algorithm litmus test, several of these methods were ca-
pable of inferring missing links in artificially corrupted,
incomplete versions of established pathways [108].

Network-based strategies for the prediction of protein
function [109] generalize more traditional approaches,
such as clustering analyses [97], that have been used
to classify genes and proteins according to their role
at either the physiological or the network level. In-
dividual gene clusters correspond to distinct functional
groups in some systems [110]. They can be used to in-
fer roles for unclassified elements according to the guilt-
by-association (GBA) heuristic (i. e., assigning functions
similar to those of nearby neighbors in the interaction
space).

Clustering alone cannot produce a full interaction map,
and its applicability is limited because its underlying
assumptions are not universal among biological system
types [111, 112] (GBA may be more valid for protein-
protein interactions than gene-gene interactions, since
the latter entail more latent or intervening steps). Nev-
ertheless, clustering is still useful in modern reverse-
engineering, predominantly in the data-processing phase
that often precedes the inference of full interaction ar-
chitectures [113]. Clustering the data prior to inference
greatly restricts the search space by providing an ef-
fective prior to bias the set of candidate interactions.
On the other hand, the same idea can also be used
to coarsen inferred networks: “module-based” inference
techniques [114] have identified entire groups of genes
that are functionally related [115]. We will return to this
idea of identifying coarse functional and conceptual (as
opposed to simply structural) units in the Discussion.

B. Insights from the statistical properties of
network ensembles

Certain structural statistics differentiate real biological
systems from other kinds of complex networks.

While the rapid verification of microscopic interactions
undeniably constitutes an improvement in the pace of
discovery, it does not by itself generate categorically new
kinds of knowledge. Systems biology is “more than an ac-
celerated program of molecular biology” [79], and the rel-
atively new tools of reverse-engineering must prove their
worth by helping to play a part in that grander enterprise.
This is reflected in the possibility of using reconstructions
to make predictions not only about single nodes and in-

dividual connections, but about the statistical properties
of network ensembles.

Work in this direction has produced various insights
about what distinguishes biological systems and endows
them with their unique characteristics among complex
networks. For instance, it has been shown that the most
highly connected nodes in protein networks are likely to
be essential [116] for survival [117, 118]. Moreover, nodes
with an exceptionally high degree (i. e., number of con-
nections), called hubs, attach preferentially to nodes with
low degree while tending to avoid one another [119]. This
property, in part, underlies the widely observed modu-
lar organization of cellular systems: an efficient coding
scheme in which network partitions include only com-
ponents involved in related processes. This discourages
overlap and ensures that (on average) no single node par-
ticipates in too many processes [35]. This forms the basis
for one type of biological robustness [120].

Certain modular structures recur with disproportion-
ately high frequencies in biological systems (with re-
spect to their chance rate of appearance in a random
graph [16]). Known as motifs [21, 121], they can endow
the network with vital control and design features, such
as positive or negative feedback, and are often conserved
throughout evolution [122–124]. Studying the appear-
ance rates of different motifs across different networks can
help clarify the functional “purpose” they satisfy within
a given network.

While a node’s degree is its most fundamental at-
tribute, studying other network parameters has also led
to key insights. The betweenness centrality [16] for nodes
in protein interaction networks has been observed to be
even more highly correlated with protein essentiality than
their degree [125]. Moving beyond individual nodes, it
has been argued that the full degree distribution is ap-
proximately scale-free [20] for many systems, providing
deep architectural support for the robustness of biological
systems to noise and perturbations, at both environmen-
tal and genetic levels [126] (yet see [127] for a cautionary
note about the associated power-law distributions).

In network medicine [128], clinically relevant predic-
tions can often be made from such high-level statistics,
irrespective of whether interactions can be enumerated
exhaustively or determined at a fine-grained level. For in-
stance, the aforementioned correlation between a node’s
degree and its essentiality for survival begets the notion
that candidate drug targets can often be ruled out imme-
diately if they are too highly connected, such that using
them risks compromising the rest of the network [129].

While one should not focus exclusively on the architec-
tural aspects of dynamically engaged networks [96], even
microscopic statistics can sometimes go beyond struc-
ture to tell rich stories about the behavior of the un-
derlying system. Maximum Entropy [130, 131] meth-
ods [72] (see Section III A) have been used to learn the
effective coupling constants that connect neurons in the
retina [38, 132], where the inferred values suggest that
these networks naturally reside in the neighborhood of a
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critical point in their parameter spaces [133]. This might
afford such networks an essentially optimal capacity for
stimulus representation, as well as information storage
and transmission [134, 135] (though see [136] for an al-
ternative viewpoint). For the amino acid interaction net-
works that keep track of where bonds form during pro-
tein folding, the same methods corroborate the idea that
geometrically proximal residues tend to coevolve [27] by
showing that bond locations can be identified using a sim-
ple statistic on the ensemble of viable protein sequences
(in this case, correlations between the activations of site
pairs).

C. Using statistics to characterize or classify
individual networks

Ensemble statistics can help identify defective or emer-
gent properties in a network.

Sometimes, statistical surmises can be used to make
statements about the typicality of a particular network.
An approach known as differential networking (so named
to contrast with differential expression, a popular type of
approach to activation data in gene networks) has been
increasingly used for this purpose.

For example, Refs. [137, 138] discuss the idea of us-
ing topological characteristics to solve supervised classi-
fication problems, such as determining whether a given
network comes from a healthy or a pathological organ-
ism. This possibility is explored explicitly in [48], which
nominates several criteria (reduced clustering and “small-
worldness,” reduced probability of high-degree hubs, and
increased robustness) as those which are markedly al-
tered in patients with schizophrenia. The reconstruction
method developed in [139] was able to identify genes that
are either known tumor drivers, associated with biolog-
ical processes relevant to disease, or correlated with pa-
tient prognosis for various types of cancer by examining
how pathological networks differ from their counterparts
in “normal” tissue. Changes in hub structure have also
been used to forecast the survival outcome for breast can-
cer patients [140].

It is worth pointing out that the aforementioned Max-
imum Entropy methods [72] provide, in some sense, a
complementary approach to ensemble statistics. Rather
than addressing only aspects that networks have in com-
mon (or can be averaged over), these approaches are
predicated on exploiting the intrinsic variability at the
micro-scale in an attempt to reproduce what is conserved
at the macro-scale. This is especially useful wherever
diverse microscopic network connectivity structures are
known to produce indistinguishable behavior at coarser
resolutions, as in protein folding: there is no one-to-one
mapping between amino acid sequence and tertiary struc-
ture, but an entire distribution of microscopic parameters
– a wide variety of equally viable amino acids sequences
– that code for roughly the same protein shape [25, 141–

143]. Knowing this, one can easily imagine how running
Maximum Entropy methods in reverse can help deter-
mine, for example, whether a given amino acid inter-
action network represents a viable protein. The same
might be said for evaluating the typicality of an inferred
retinal network, by measuring properties like critical-
ity [144, 145] (NB: for a selection of competing viewpoints
on the criticality of neuronal networks, consult the afore-
mentioned [136], as well as [146–149]).

D. Predicting how a given network will respond to
perturbations

Reconstructions help identify and quantify response
patterns in novel conditions.

Network models capture and summarize complex de-
pendencies the among states of biological components,
often allowing one to predict how a system will change
its state or behavior with changes in the biological en-
vironment (i. e., modifications affecting the state of one
or more nodes or interactions). Commonly studied per-
turbations can be local [150] (e. g., knockout of a sin-
gle gene, as in the simulation of deleterious mutations),
multifactorial (affecting many elements) [151], or fully
global [152] (applying a drug to slightly suppress the fir-
ing of all neurons in a circuit), and the system’s responses
can be investigated at local or global levels as well. For
instance, one might inquire about the effect of a drug
or a mutation on the expression of a single gene, or the
success or failure of signal propagation from start to end
through a perturbed pathway.

The types of responses that are interesting to re-
searchers vary widely, and range across a spectrum of
detail. The simplest and the coarsest entail qualitative
predictions: for example, is the activation state of a given
node affected by a specific perturbation? Progressing to
a more quantitative picture, one can try to predict the ac-
tual post-perturbation values for affected nodes, as in the
prediction of gene expression levels following a knockout
event [153]. At the finest granularity, models incorporat-
ing time-series measurements can be used to forecast the
transient behavior for such a gene as it approaches a new
steady-state expression level.

Recent DREAM Challenges have provided a testing
ground for algorithms aiming to make these types of
predictions. The DREAM4 Predictive Signaling Net-
work Modeling Challenge [154] instructed contestants to
predict phosphoprotein measurements “using an inter-
pretable, predictive network”[155], and the bonus round
of that year’s in-silico Challenge [150, 156, 157] asked
competitors explicitly to predict the system’s responses
to “novel” perturbations that were not encountered in
the training data. The DREAM7 Network Topology and
Parameter Inference Challenge [108] specified the pre-
diction of perturbation outcomes using gene regulatory
network models as a separate step from inferring their
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topologies.

As we discuss later, prediction of time-course trajec-
tories requires directed networks, but the converse is not
true: directional links can sometimes be inferred from
static data. On the level of qualitative predictions, the
linear dynamical systems approach of [74] was able to
deduce the targets of novel perturbations in a system of
nine genes using only steady-state values of their expres-
sion levels, following a series of highly controlled pertur-
bations (and the knowledge of which genes were targeted
during the perturbations). We consider this result to be
particularly important, for two reasons. First, it chal-
lenged previously expressed (and still later-held [158])
ideas by successfully determining a directed network,
despite the fact that the applied perturbations elicited
statistically significant changes in the activations of all
nodes. Second, later improvements extended the abili-
ties of the algorithm therein to determine which species
were “hit” by applied perturbations even without spec-
ifying as inputs which genes were targeted during the
data acquisition phase [159], reinforcing the idea that M
static, independent, but carefully selected perturbation
measurements can substitute for a series of time-course
measurements taken at M intervals [160].

E. Representing the joint probability distribution
for observables

Networks models can be interpreted as shorthands for
joint probability distributions.

Activation values for each node depend on those
of many others, rendering graphical models particu-
larly convenient representations of their joint activities.
Graphs can explicitly encode the statistical dependen-
cies among different activation variables as connection
weights, with the states of connected nodes given not by
a stochastic transfer function, but by conditional proba-
bilities.

A type of directed acyclic graph (DAG) known as a
Bayesian network is a weighted construction whose con-
nection strengths are typically learned [161] via Bayesian
inference (i. e., computing the posterior probabilities for
a set of candidate DAGs, and selecting the member with
the highest value, etc.) Undirected variants, which com-
municate only binary dependency information via the
presence or absence of symmetric links are popular in dif-
ferent applications. When activities are assumed to de-
viate normally from baseline values (an assumption that
greatly simplifies the inference process), they are known
as Gaussian graphical models [162].

Bayesian networks weights can be scaled so as to rep-
resent a proper, normalized probability distribution. Ad-
justed to match that of the observed data, the weights in
such a dependency graph become an explicit encoding of
the system’s joint statistics. Bayesian networks satisfy a
Markov property, such that the activity value distribution

for a given node depends only on the values of its imme-
diate predecessors (these activities are often discretized
as binary variables for mathematical convenience, so the
resulting graph neatly keeps track of the probability that
a downstream node in the inferred network will be active
if its predecessors are active). This directed conditional
dependency structural arrangement offers a conceptually
accessible and intuitive view of the system, although the
presence of directed connections between two nodes does
not mean there is a direct physical (i. e., mechanistic) or
causal link between the corresponding species [163].
One of the most important and unique applications of

network inference, this compact representation of proba-
bility distributions permits the quantitative prediction
for nodal activity values, in both static and dynamic
contexts. Probabilistic graphical models are particularly
useful in putting numbers on answers to questions like
“What is the probability of this protein being active,
given that a particular stimulant is present?” or its con-
verse: “What is the probability of the stimulant having
been present, given that the expression level of this gene
is high?” [164]. We discuss methods for inferring both
types of probabilistic graphical models named here, and
their limitations (including their ability to infer causal-
ity), in Section III.

F. Reconstructions as a part of the Big Picture

Inferred network models can be combined with existing
and new methods as one part of a larger repertoire for
investigating many facets of living systems.

Reconstructions are increasingly combined with other
tools and prior biological knowledge to form integrated
frameworks for discovery. Some reverse-engineering ap-
proaches attempt to incorporate prior knowledge ex-
plicitly into the inference process for individual net-
works [165–170], including one study which advocates the
use of undirected gene networks (gleaned from functional
association databases) as priors to enhance the inference
of mechanistic, causal gene regulatory networks [171].
Other applications use networks to cross-reference, cor-

roborate, or pre-screen evidence for predictions about
specific systems. For example, the “network approach”
to genome-wide association studies (GWAS) and dis-
ease gene prioritization is reviewed in [97], and the use
of networks for the prediction of protein functions (in
the general sense, not restricted to physical binding),
evolutionary studies of pathogenic and non-pathogenic
strains, and the bidirectional interactions between host
and pathogen are reviewed for the specific context of in-
fectious disease in [98].
We have already mentioned the work [94], which uses

Bayesian networks in tandem with support vector ma-
chines to predict the toxicity of various chemicals in a
supervised setting. Yet we believe the most pivotal roles
to be played by reconstructed networks are those which



9

completely change the way we think about biological
phenomena, specifically by offering new ways to predict
system-wide behaviors. Such a revolution is already un-
derway in medicine: the treatment of various diseases
is no longer unilaterally viewed from within the “one-
gene, one-drug” paradigm, and it is gradually becoming
the new standard to view related autoimmune disorders
as emanating from a network of maladies with the same
root causes [172–174].

III. TWO DIFFERENT MEANINGS OF
PHENOMENOLOGICAL “RECONSTRUCTION”

We distinguish two principal categories for phe-
nomenological network inference, accounting for methods
that produce undirected and directed graphical models.
Algorithms in our first category define an inferred in-

teraction as an irreducible statistical dependency among
nodes, typically quantified by some measure of the sim-
ilarity among the activation profiles of different nodes.
This is a structure-only approach, and should be used
when it is only necessary to reconstruct the overall net-
work topology – in other words, for applications for which
it is sufficient to know “who talks to whom.” In some
cases, topological maps can be augmented with weights
that ascribe an effective strength or confidence level to
the inferred interactions [143, 175].
Algorithms in our second category define interac-

tions in terms of asymmetric relations capable of de-
scribing not only which nodes participate in an inter-
action, but also “who controls whom.” Previous clas-
sification schemes have considered the inference of un-
weighted, directed links as a separate endeavor from dis-
covering quantitative input-output relationships between
nodal activities [176], or further distinguish algorithms
that detect the sign of interactions without an explicit
direction [177, 178]. However, since both the types of
data and the processing techniques needed to infer all
these kinds of graphs are similar, we treat them on equal
footing.

A. Who talks to whom? Presence, absence of

undirected links

The most basic question that one can answer in the
course of network reconstruction is whether a given sub-
set of nodes can be characterized as interacting – in other
words, who talks to whom? Since our focus here is on the
unsupervised inference of interaction networks directly
from activation data, any notion of “interaction” that we
consider must depend on these activations alone. A nat-
ural definition for the existence of an interaction among
species is the presence of statistically significant corre-
lations among their respective activation states. Such a
choice results in an undirected network with symmetric
(though possibly weighted) connections.

In practice, pairwise statistical dependencies are typi-
cally quantified by introducing a similarity metric, such
as the first-order Pearson correlation. The Pearson cor-
relation coefficient is a normalized, pairwise dependency
measure bounded by the interval [−1, 1]. Positive (nega-
tive) values indicate an increasing (decreasing) linear re-
lationship. While its value is always zero for statistically
independent variables, a vanishing Pearson correlation
cannot rule out nonlinear correlations. Conversely, in
the absence of nonlinear effects, finite sampling can cause
independent variables to appear correlated, so that con-
nections can be inferred where no otherwise discernible
interaction exists. To avoid inferring such spurious inter-
actions, one must apply a threshold to filter raw correla-
tion values.

When nonlinear effects cannot be ignored, one can
quantify statistical dependencies using information-
theoretic measures [179–181], which generalize the notion
of correlation to such nonlinear cases. D’Haeseleer et
al. [182] were the first to employ the mutual information
to uncover gene-to-gene dependencies, while Butte et al.
applied mutual information “relevance networks” [183]
to propose single-gene determinants of anticancer agent
susceptibility [184] for experimental verification. Mutual
information-based methods must still contend with the
same sampling and bias problems faced by linear corre-
lation coefficients, and therefore require thresholding as
well.

Even under conditions of perfect sampling, neither
Pearson correlations nor the mutual information can dis-
ambiguate so-called direct interactions from indirect in-
teractions – statistical dependencies that are already ac-
counted for by links involving other species. Note that
this notion of “indirect” is distinct from its usage in the
context of mechanistic networks. There, “direct” typi-
cally refers to physical contact, which often occurs be-
tween nodes whose activations are not included in the
network model (unobserved, latent, or marginalized de-
grees of freedom in the system). Here instead we are
concerned with statistical redundancies within the set of
observed activation variables. For example, consider the
case of three genes in a regulatory cascade: X → Y → Z.
Inference methods based on measuring correlations be-
tween the associated activation variables would find a
link between X and Z, which is indirect, in the sense
that it is not actually needed to account for the joint
statistics of X , Y , and Z.

While sometimes inconvenient, indirect links are not
always superfluous. They are useful when probing the
network at the single-node level, as when trying to dis-
cover a previously unknown member in an established
pathway, propose a novel interaction for experimental
verification, or predict the overall effect on the activation
state of one node by perturbing another. On the other
hand, in applications for which inferred networks must
be treated as whole entities (e. g., when they encode nor-
malized probability distributions; see MaxEnt methods
described below), this sort of redundancy can be mini-
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mized by examining conditional dependency structures.
There exist several approaches to studying conditional

dependencies. The most intuitive is to work explicitly
with either partial correlation coefficients [99] or the con-
ditional mutual information [10, 11, 185–187] between
two activation variables X and Y , given another variable
(or set of variables) Z:

I(X ;Y |Z) = I(X ;Y, Z)− I(X ;Z), (2)

where I(X,Z) is the mutual information between X and
Z. In principle, one can refine a reconstruction by re-
moving links between any pair of species X and Y that
are associated with statistically insignificant values of
I(X ;Y |Z). However, reliable estimation of this quantity
is much more difficult than it is for the pairwise quanti-
ties, such as I(X,Y ), since it requires sufficiently dense
concurrent sampling of at least three variables.
In order to dispose of indirect links without incur-

ring the aforementioned estimation problems, some al-
gorithms make additional assumptions and thus ap-
pend ancillary filtering steps to the basic mutual
information-based procedure. For instance, the Algo-
rithm for the Reconstruction of Accurate Cellular Net-
works (ARACNe) [65, 100] invokes the Data Processing
Inequality [180] to delete the weakest link in every closed
triplet of nodes (this would be an exact step if the studied
network was a tree). The Context Likelihood of Relat-
edness (CLR) method [102] determines the presence or
absence of a link by assessing its strength against all other
mutual information scores computed for that graph, as a
background significance threshold. MRNET [188] builds
a network iteratively, including a link between two vari-
ables if one is both a good predictor of the other and
yields information that is non-redundant with that pro-
vided by the previously inferred links.
An alternative approach to solving the conditional in-

dependence problem is to use full probabilistic models
that allow conditioning on the complete set of marginals,
rather than requiring the progressive computation of
higher-order partial correlations [187]. In particular, if
a set of continuous, real-valued activation variables are
(assumed to be) normally distributed, one can condition
a single interaction on the full set of remaining variables.
In this case the statistical independence of any two nodes
can be ascertained by examining the elements of the in-
verse of the covariance matrix: Σ−1

ij = 0 if and only if
i and j are conditionally independent, given all other
variables. An important facet of such multivariate Gaus-
sian distributions is that they correspond to the least
constrained, maximum-entropy models that satisfy the
full set of first and second-order marginals for continuous
variables [72, 131]. These first two moments correspond
to the individual means and the pairwise correlations,
which are usually well measured even in sparsely sam-
pled data sets.
Beyond Gaussian variables, the Maximum Entropy

principle has been a successful modeling approach in
neuroscience [38, 189–191], natural images [192], the in-

ference of gene networks (from expression data) [193]
and signal transduction networks (from phosphoryla-
tion proteomics data) [194], and the prediction of amino
acid contacts in proteins [141, 142, 195, 196], multidrug
effects [197], protein structural attributes [26], anti-
body diversity [198], and even the dynamics of flocking
birds [199]. The joint probability distribution for a max-
imum entropy model has a particular form, known in
statistical mechanics as the Boltzmann distribution. If
we ask to match only the empirical means 〈xi〉 and pair-
wise correlations 〈xixj〉 to those of the observed data,
the distribution with maximal entropy is

P (~x) =
1

Z
exp





∑

i

hixi +
∑

ij

Jijxixj



 . (3)

Here parameters hi and Jij are known as the fields and
the couplings, respectively, and Z is the partition func-
tion (compare to the full expansion in Section IC).
For discrete variables, the Maximum Entropy model

retains the form of Eq. (3), but is known as the Ising
model (for binary variables) or Potts model (for categor-
ical variables with more than two accessible states). In
the discrete case, fitting the parameters {hi, Jij} is highly
nontrivial. Many methods exist, but their effectiveness
depends on the system size and the density of its in-
teractions, as well as on other properties [200–204]. One
algorithmworth mentioning is the adaptive cluster expan-
sion, which was developed in the context of the MaxEnt
problem [204, 205]. It is closely related to information-
theoretic approaches, being equivalent to relevance net-
works [183] for clusters of size two, and similar to con-
ditional mutual information methods for clusters of size
three.
Due to the limitations of finite sampling, both solv-

ing for the inverse of the covariance matrix and learning
the parameters of an Ising model can constitute ill-posed
problems. One way to avoid this is to impose a regu-
larization [206], which invokes additional constraints on
the interaction coefficients to ensure that the inference
problem is well-defined – and moreover, that the inferred
network generalizes well to unseen data. Regularization
is often done in one of two common ways: either the inter-
actions coefficients are assumed to be small (for example,
using an L2 norm) [205] or the interaction structure of
the system is presumed to be sparse, so that the overall
number of the interactions is small (this may be done ex-
plicitly by specifying the number of non-zero coefficients
[74] or by invoking an L1 norm [203]).
Frequently cited as the rationale behind these regu-

larization procedures is the inherent sparsity of natural
networks [117, 207, 208]. Indeed, for protein studies, the
nodes in networks used to describe tertiary protein struc-
ture represent real amino acids in the three-dimensional
space; they can therefore be connected to only a small
subset of all possible neighbors. Similarly, the number
of transcription factors that can influence a given gene’s
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expression levels is limited by the physical extent and
arrangement of its promoter sequence. While the gen-
eral ubiquity of sparseness in biological systems is de-
bated [69], the enforcement of sparsity constraints can
be justified as a purely pragmatic measure in the “low-
hanging fruit” inference regime.

B. Who controls whom? Causal relations and

directed links

Directed network inference differs in an important way
from that of undirected, symmetric, mutual-influence
graphs: since questions of causality (or, more generally,
the flow of information) are built not upon a single, uni-
versally agreeable concept like statistical correlation –
but rather on more subtle, less straightforward notions
like control – there exist many diverse criteria for estab-
lishing directed connections. Each method has its own
operating definition of what counts as an interaction, and
how to infer its direction.
Though disparate, the aforementioned definitions can

be conveniently divided into approximately two sub-
classes, depending on the intended application of the in-
ference procedure. In certain cases, it is enough to know
the direction or causal sense of an inferred interaction.
For example, will silencing a certain gene or disabling
a particular neuron result in a collapse of the entire sys-
tem? Can the intracellular concentration of a reactant be
increased by introducing more of the product? Answers
to questions like these do not require numbers, entail-
ing purely qualitative predictions. On the other hand, if
the goal is to use a reconstructed network to predict the
amount by which one gene’s expression level increases
when two other genes are suppressed, directed connec-
tions must be weighted by quantitative values represent-
ing the effective strengths of interactions. We describe
methods of both types, leaving it as an exercise for the
reader to think about when a directed topology suffices,
and when it is necessary to infer fully signed and weighted
graphs.
Before we delve into specific methods, we advise the

reader to tread with caution. The particular definitions
of directed influence we explore in the following methods
do not always correspond to our intuitive and/or math-
ematically formal notions of causality. As a result, pro-
ducing a graph with directed links does not automatically
satisfy a reverse-engineer’s desire to uncover system-wide
causes in an ontological sense, and should not be treated
as such despite one’s instincts. Instead, great care needs
to be taken with each method in order to ensure that all
idiosyncratic constraints are met, and to avoid generaliz-
ing or extrapolating beyond the predictive power of each
algorithm.
To expound on this point, it is worth asking at the

outset whether it is even possible to infer causal in-
formation from passive observations of activation vari-
ables [209, 210]. It has long been understood [211] that

proximal causal relations can be inferred reliably when
the observer is able to interact with the system in accor-
dance with a principled protocol (as is done in many con-
trolled experimental interventions [212, 213], including
genetic knockouts [150, 153] and multifactorial perturba-
tions [151, 214]). While this is old news to engineering
audiences, it has also been shown that causal informa-
tion (or at least a lower-bound estimate of causal effects)
can be extracted from purely observational data when
the equivalence class for the fully directed graph can be
ascertained first [215, 216][217].
We mention again a surprising corollary of this result

that directed influence (a less stringent condition, and
slightly less nebulous concept, than causal influence) can
often be established without time series data, using only
static measurements. Where there was once a preva-
lent belief in the reverse-engineering community that the
inference of directed edges required temporal data [65],
there is now a tradition of algorithms which accept static
data as inputs [69, 73, 74, 212, 218–220]. However, we
focus for coherence predominantly on methods that op-
erate on time-series data.

We organize this subsection as follows. We first make
a few general remarks about the inference of directed
interaction patterns. We then explore a class of meth-
ods which presume that the measured activities can be
treated as deterministic variables that change smoothly
in accordance with a particular, predetermined quantita-
tive law. Afterwards we switch to model-free determinis-
tic methods, for which there is no need to specify a math-
ematical form or law in advance in order to detect interac-
tions. We then treat the more general situation, in which
activations are regarded as stochastic variables. Again
we start with methods requiring a parameterized model
and conclude with a discussion of stochastic model-free
methods.

A näıve but conceptually intuitive approach to infer-
ring directed connections is to take the presence of strong
temporal correlations between the trajectories of differ-
ent activity variables as evidence for a (casual) interac-
tion between the corresponding species. It is common
for changes in one activity variable to succeed that of
another in time (consider a gene whose expression level
is observed to increase consistently in response to the
elevation of another), but the proxy of temporal prece-
dence is not robust as a criterion for declaring control
relations [57] because it also appears in the absence of
causal influence. Despite its limitations, this strategy,
combined with a projection method known as multidi-
mensional scaling [63] in an algorithm entitled “Corre-
lation Metric Construction,” was originally used to infer
the first steps of the glycolytic pathway [221] and more
recently applied to study the pharmokinetics of the anti-
cancer drug Gemcitabine [222].
In physics and engineering, signed and directed con-

nections are often used to encode the weighted coupling
constants that appear in systems of differential equa-
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tions [223]. To write down such a system, one needs
to first have in mind a particular quantitative form for
a dynamical law, according to which activations will be
presumed to interact. One then fits the model parame-
ters, typically with some optimization or statistical learn-
ing technique that takes time series data as input, and
reports the learned values as the weights for the corre-
sponding connections, sometimes adding additional, un-
observed, hidden variables in the process [86].
The inherent directionality of this method, which

works best for small systems (p ∼ 10), can be under-
stood immediately by examining the matrix Jij of pair-
wise interactions in Eq. (4) below: since this matrix is
not constrained to be symmetric, couplings between two
species can differ in the forward and backward directions.
For continuous activation variables {xi}, many popular
models can be subsumed as special cases of the general
form (though see [86, 224] for alternative forms):

dxi(t)

dt
= fi



xi +

p
∑

j

Jijxj + ui + ξi



 , (4)

which includes at most pairwise interactions of strengths
{Jij} between all element pairs i and j. Here the func-
tions {fi} can be chosen according to the desired level of
computational complexity (controlled by the amount of
data available) or biochemical detail, or both. In the
reverse-engineering of biological networks, many early
applications were linear activation models [225–228], for
which fi(x) ∝ x. The sum determines the net (excitatory
and inhibitory) effect on the activation of node i at time
t, given its interactions with all other elements j. The
next term accounts for external driving of the node, (i. e.,
any extrinsic perturbation that increases or decreases its
activation value by an amount ui(t)), and ξi(t) represents
noise.
Linear, “additive” regulatory models are based on the

assumption that dynamical systems can be linearized
about their steady-states. They are relatively easy to
fit in sparsely sampled conditions, especially when the
terms in Eq. (4) are discretized to form a linear differ-
ence equation [227, 229]. Early work countered under-
sampling by augmenting the number of data points for
multilinear regression via nonlinear interpolation [226],
or imposing sparsity constraints on singular decomposi-
tion algorithms [73]. Another approach to decreasing the
number of interactions that must be inferred is to first
cluster the nodes [113]. In any case, data are typically
taken during the system’s approach to steady-state con-
ditions (whether its natural equilibrium or another fixed
point of its dynamics) after a perturbation.
A straightforward modification of the basic linear

model, realized by overlaying the sum in Eq. (4) with a
sigmoidal threshold function, leads to one version of the
artificial neural network construction. Early methods
based on neural networks were used to infer interactions
between individual [230] and aggregate “genes” which
encompass multiple degrees of freedom at the biological

level [228]. Modern improvements use multilayer percep-
trons [231]. Early neural-inspired architectures known as
gene circuits [232] have also been used to infer mechanis-
tic interactions [233].

Nonlinear models are attractive because they can cap-
ture more sophisticated dynamical behaviors than their
linear counterparts (e. g., oscillations and multistability).
Nonlinear reverse-engineering schemes based on mass-
action kinetic laws like Michaelis-Menten or Hill equa-
tions [21] are also used in reconstruction [234, 235].

An important causal inference method based on the
assumption of an underlying deterministic system, but
which does not require the definition of an explicit dy-
namical model, is the convergent cross-mapping (CCM)
approach [57]. As noted in [237], an essentially iden-
tical method had been developed earlier to study syn-
chronization in chaotic dynamical systems [238]. The
method draws from Takens’ theorems [239], which pro-
vide both the conceptual framework and mathematical
justification for a brand of state space reconstruction –
reverse-engineering of the phase-space portrait for a dy-
namical system – known as delay embedding. Consider a
multidimensional dynamical system, a special case of the
general form (4) whose parameters are fixed, and whose
temporal evolution x(t) is confined to a subspace deter-
mined by a d-dimensional attractor [240]. Under very
general conditions, the attractor’s state space can be re-
constructed [239] from measurements of a single time se-
ries {xt, xt+τ , xt+2τ , . . .}, sampled at an interval τ . The
number of consecutive time points needed to span the
reconstruction space is given by the attractor dimension
d; both τ and d are often found using Ragwitz’ crite-
rion [241], but alternative methods have been proposed
as well [242, 243].

Delay embedding refers to the entire process of defin-
ing these two parameters and arriving at a reconstruc-
tion space onto which the time series can be mapped. It
provides the substrate for causal inference via CCM as
follows. For any two measured times series {xt} and {yt},
the variables x and y are said to be causally linked if they
belong to the same underlying dynamic system (i. e., the
time series they represent are samples from the same at-
tractor [57, 239, 240]). The direction of an interaction
between x and y variables can be estimated by 1) using
delay embedding to obtain reconstruction manifolds Mx

and My for xt and yt, respectively [240]; 2) projecting
one of the variables, say x, onto the other manifold –
hence the name cross-mapping – and using the resulting,
projected values to predict the values taken by the orig-
inal time series (which converge to the measured values
for a large enough number of samples); and 3) measuring
(with any suitable measure, e. g. RMSE or correlation
function) the deviation of the postdicted values {x̂t} from
the actual values {xt}. A causal interaction is declared if
the prediction quality does not decay to zero for a grow-
ing number of samples.

In the original work, Sugihara et al. [57] did not ana-
lyze thoroughly the influence of noise on reconstruction.



13

Network Motifs

a) Directed link

b) Bidirectional link

c) Common drive e) Hidden intermediate

f) Higher-order (XOR)Spurious relationd)

e) Hidden intermediate

FIG. 2. Simple directed network motifs help illustrate basic problems in directed network reconstruction. This list is not
intended to be comprehensive, but to address some simple yet important scenarios. Links can represent mechanistic interactions
or effective relations (i. e., information transfer). Nodes represent stochastic or deterministic activation variables, which can be
either continuous or discrete. Here, dashed links represent spurious (erroneously inferred) interactions, dark nodes represent
unobserved (hidden) variables, and the small square in f) refers to a computation that involves more than two nodes (in
this case, a third-order interaction). a) The simplest scenario: a directed link between two nodes. b) A bidirectional coupling
models a simple system with feedback (e. g., the predator-prey system of Fig. 1). c) A hidden common drive (dark node) to two
observed nodes results in a correlative relation between those nodes. If care is not taken, this can be confounded with a direct
causal interaction. d) A situation similar to that of c), with the difference that measurements of all three nodes are accessible.
Näıve pairwise methods infer a spurious link between the initial and final nodes in the feedforward chain. Multivariate methods
are required in this scenario to infer the correct links. e) In the case of a hidden node relaying the causal interaction, network
reconstruction methods may infer the correct direction of interaction, but the inferred links will be effective rather than strictly
causative since an intervention at the hidden node can disrupt the interaction. f) The logic gate XOR entails a higher-order
interaction. The output is 0 if both input nodes carry the same value, and 1 if they are different: simultaneous knowledge of
the states of both nodes is required to determine how each of the inputs affects the output. This is a classical example of a
scenario where X and Y carry synergistic (as opposed to unique, or redundant) information [236].

Indeed, Takens’ original theorems allow for noise in the
measurement procedure only (i. e., intrinsic stochastic-
ity is prohibited; the breakdown of inference based on
CCM in the presence of intrinsic noise has been demon-
strated explicitly [244–246], and a thorough analysis of
state space reconstruction in the presence of noise can be
found in [241]). Nevertheless, artificially added measure-
ment noise can actually improve the detection of causal-
ity [247].
Several other considerations must be taken into ac-

count when inferring causal relations with CCM. First,
it seems that the outcome is quite sensitive to the sam-
pling methods used to obtain training data (for example,
eliminating nonstationarity on the way to the attractor is
key) [237]. Second, CCM fails to infer the accurate cou-
pling strengths and even the direction of causal interac-
tion when time series are synchronous [246]. Third, it has
been shown that the predictions made by CCM do not
always conform to our intuitive notions of causality, even
for certain rudimentary systems like a simple resistor-
inductor (R-L) circuit with a sinusoidal driving voltage,
where CCM does not unequivocally determine the causal
dependence of the current on the voltage [244]. Finally,
Cobey and Baskerville [245] provide a thorough numer-
ical analysis of the limits of CCM, suggesting that the
standard approach is generally prone to failure if the sys-
tem dynamics are oscillatory and proposing a modifica-

tion in the algorithm to alleviate this shortcoming [245].
For stochastic activations, early attempts to recon-

struct the directionality of interactions included autore-
gressive models [248, 249], but autoregression by itself
makes no assertions about causality. However, a method
due to Granger [250] combines autoregression with the
aforementioned notion of temporal precedence to infer
quantify a robust stand-in for causality – namely, Weiners
predictability [251]. The framework for Granger Causal-
ity (GC) is built upon two central assumptions [252]:

1. The cause x occurs before the effect y.

2. The causal series {xt} contains unique information
about the time series being caused {yt} that is not
available in any other series {wt}.

More generally, {wt} represents the entirety of processes
that can influence {xt} and {yt}. In the ideal scenario,
for which these three variables together contain “all the
information available in the universe at time t” [252] (i. e.,
in the closed system under investigation), GC guarantees
that one can reconstruct the direction of the causal re-
lationship between x and y. By definition, a variable x
“Granger-causes” variable y if knowledge of past values
of both x and y reduces the variance of the prediction
error for y, in comparison with the history of y alone.
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Typically, these predictions are carried out via linear re-
gression, and the direction of causality is decided by sta-
tistical tests on the variances of the respective residuals
(prediction errors). However, this implicitly assumes (at
most) linear relations between variables. Nonlinear ex-
tensions of GC exist, but these extensions can be more
difficult to use in practice and their statistical properties
are less well understood [253–257].

Granger causality can be extended to multivariate sce-
narios [258] as well, although finding Granger-causal links
among all possible candidate interactions then becomes
a combinatorially hard problem. For the particular case
of inferring causal relations between the activity of dis-
tinct brain areas (using electroencephalograms or local
field potential time series), it has been found to be of cru-
cial importance to employ a multivariate approach rather
than bivariate techniques [259].

A more general approach to the reverse-engineering of
directed links between stochastic variables is to learn an
explicit model for the joint probability distribution of the
observed activities. This approach, based on probabilis-
tic graphical models, was discussed earlier for undirected
networks. For the directed case, one can define a class
of models known as Bayesian networks [260–263] which
decompose the joint distribution into separate factors
representing conditional probabilities. Edges are drawn
starting from the nodes corresponding to variables being
conditioned on (called the “parents”) and ending on the
conditioned variables (the “children”) [211, 263]. Since
the joint distribution of a Bayesian network is an exact
product of conditional probabilities, the resulting graph-
ical structure is a directed acyclic graph (DAG). Thus
in order to be eligible for representation by a Bayesian
network, systems need to satisfy the necessary criteria
for forming a DAG. If the phenomenon in question is
known to encompass cyclic dependencies (e. g., autoregu-
lation pathways in gene regulatory networks, or autapses
in neural networks), the only recourse is to “unroll” the
cyclic dynamics in time, forming a dynamic Bayesian
network [163, 264–267]. The performance of dynamic
Bayesian nets has been been compared directly against
that of Granger causality [268], and favorably so when
the observed time series are shorter than a certain length
(NB: In general, findings like these should be taken with
a grain of salt, since 1) they could be artifactual results
that depend on idiosyncratic features of the data, and
2) notions of error and accuracy tend to rest on the exis-
tence of a reference network containing only the “correct”
edges, which is in our opinion a dubious concept; see com-
ments on evaluation metrics in the Discussion. In [268],
the authors are clear in their admission that “the causal
relationship derived from these two approaches could be
different, in particular when we face the data obtained
from experiments,” in accordance with our introductory
statements about the nonuniform definitions of causality
that are assumed by different methods.).

With the conditional probability framework in place,
one needs to select 1) a quantitative form for the under-

lying model that parameterizes the conditional probabil-
ities, 2) a scoring or objective function that quantifies the
quality of fit, and 3) an optimization or search routine by
which to learn the parameters values that extremize the
objective function. An example of such a parameteriza-
tion, used quite frequently in the literature, is again that
of linear regression [161, 263]. The choice of a specific
parametric representation of conditional probabilities is
often dictated by our knowledge or assumptions about
the domain (prior knowledge) [269], or pragmatic prin-
ciples favoring computationally simple models (Occam’s
razor). Standard objectives are the maximization of the
likelihood function [264] or posterior probability distribu-
tion [161], as well as the Bayesian Information Criterion
(BIC) [266], which penalizes for large numbers of param-
eters. Since the optimization search is an NP-hard prob-
lem [261, 263], exact methods are often computationally
infeasible, so one often reverts to heuristics like greedy
hill-climbing (which adds, deletes, or reverses edges to
encourage maximal ascent in the objective score [270]),
stochastic hill-climbing, or Monte Carlo methods [271].

An impressively comprehensive and thorough body of
work regarding the concept of causality and its formal
description via Bayesian nets has been provided by their
originator, Judea Pearl [211]. Pearl introduces a concep-
tual framework called the do-formalism (known variously
as the do-calculus, the intervention-calculus, etc.), which
formally describes the use of experimental interventions
to ascertain a causal structure. In the do-formalism,
p(y|do(x)) denotes conditioning on a variable x that is
experimentally controlled rather than simply measured
(i. e., observed passively). In other words, this notation
distinguishes the more familiar observational condition-
ing p(y|x) from “interventional conditioning” [152, 272].

While correlation does not in general imply causal in-
fluence, Pearl reveals specific cases for which the con-
ditional probability distribution – reflecting associative
dependencies – is equivalent to that which denotes the
corresponding mechanistic dependencies: in such situa-
tions, interventions which manipulate the values of par-
ent nodes are clearly and unambiguously seen to have
direct effects on the children, and the Bayesian graph is
therefore also the correct casual graph.

It is often difficult to satisfy all the criteria for mod-
eling a causal system with DAGs. In certain circum-
stances, it is easier to work with model-free stochastic
frameworks, such as that of the transfer entropy (TE).
TE was introduced twice independently, by the physi-
cists Schreiber [273] and Paluš [274], and has since proven
to be a versatile and useful tool for inferring the direc-
tion of information transfer in neuroscience [275–277],
physiology [243, 278], climatology [279–281] and eco-
nomics [282, 283]. TE is simply the conditional mutual
information (2) between a target variable Y and the en-
tire history of values assumed by a source variable X ,
given the history of the target:

T (X → Y ) = I(Xt−;Yt|Yt−). (5)
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Here the arrow denotes the direction of information
transfer (i. e., X informs Y ) and Xt− and Yt− respec-
tively denote the histories of the corresponding stochas-
tic processes up to, but not including, t; Yt denotes the
value taken by the target variable at time t. Conditioning
on the history of the target ensures that only those bits
of information that are unique (in the sense discussed
earlier for Granger Causality; for a formal treatment
see [236, 284]) to the source variable are considered.

Like all information-theoretic measures, TE and its
surrogates [57] suffer from the curse of dimensionality
because of the need to estimate entire probability distri-
butions (discrete variables) or probability densities (con-
tinuous variables) for long time series and many vari-
ables. For discrete variables, the simplest estimation pro-
cedure entails simply counting frequencies to produce a
histogram that approximates the desired distribution. A
substantially more accurate estimation of information-
theoretic quantities for discrete variables (especially if
the data set is small) can be obtained by computing en-
tropies directly with the NSB estimator [285, 286]. In the
continuous case, a standard approach is to bin the data,
rendering the distribution effectively discrete and there-
fore amenable to histogram methods. While less “data
hungry” alternatives exist for continuous variables (such
as kernel estimators [287]), they suffer from the same
systematic estimation biases that are associated with his-
togram methods [288], and may even reverse the inferred
direction of information flow [289]. Nearest neighbor es-
timators [277, 288] are some of the most commonly used
in practice. In all cases, statistical testing against surro-
gate data or empirical control data [290] is recommended
to help ameliorate the bias problem.

An approach to dimensionality reduction based on the
concept of Markov chains has been proposed for the esti-
mation of TE [280]. This approach is particularly useful
in the case of delayed coupling between variables [291]:
estimation of the delay time can prevent the inclusion of
unnecessary time steps when tracking the history of the
source variable (i. e., Xt− in Eq. (5)), which can clearly
reduce the dimensionality of the latent representation.
Finally, the curse of dimensionality can also be allevi-
ated by first constructing an explicit, low-dimensional
model of the time series (and hence, parameterizing the
probability distribution). For the simplest case – linear
dependence between X and Y with additive Gaussian
noise – it has been shown analytically that TE will al-
ways recover the same network as Granger Causality, up
to a constant factor [292].

Since some authors speak loosely about inferring
causality when computing the TE or related quantities
like the directed information [105], we reiterate that, al-
though causal interaction is a necessity for information
transfer, the converse is not true: information transfer, as
quantified by TE and other information-theoretic func-
tionals, does not imply underlying causal interactions.
In fact, we caution readers that some methods for the
detection of causal or directed influence have been rou-

tinely applied in ways that differ markedly from the in-
tentions of their originators. For instance, the directed
information was initially designed to infer achievable in-
formation rates on a known communication channel with
feedback [293], rather than the inference of directed net-
works (for a thorough discussion, see [277]). However,
TE specifically has been extended using the aforemen-
tioned do-formalism in a new procedure known as in-
formation flow [211], a more appropriate measure for
inferring causality under certain constraints [272, 294].
Notably, this measure can correctly resolve the connec-
tivities of an XOR circuit (see Fig. 2f)) even in spe-
cial scenarios where the conditional mutual information
fails [272], a fact overlooked by authors who have con-
tended that conditional mutual information is sufficient
for this purpose (see, for instance, the argument in [186]).
Finally, we note that TE and similar methods have not
achieved widespread implementation for large systems
(p ≫ 1) due to the aforementioned, intrinsic difficulty of
estimating information theoretic measures in high dimen-
sional spaces. Multivariate approaches to TE estimation
and related methods are a subject of ongoing research.

IV. DISCUSSION

Since the year 2000, some thirty review articles that we
know of have been published on the inference of gene net-
works alone (in addition to those referenced or mentioned
throughout, see [295–322]), and an increasing number
have begun to specialize on the unique challenges faced
by network reverse-engineers rather than merely listing
different algorithms [29, 97, 323–328]. One DREAM
report [92] notes that the number of PubMed articles
on reverse-engineering had doubled each year for over a
decade through 2009, and “novel” algorithms (new twists
on the same foundational principles we outline above)
continue to emerge even as we write [329].
Has this explosive growth in the number of reverse-

engineering algorithms and studies helped carve out a
niche for large-scale reverse-engineering in contemporary
systems biology repertoires? Or has a staunch directive
on the reconstruction of entire microscopic networks ac-
tually encumbered and obfuscated our understanding of
the working principles that underlie these complex sys-
tems?
One major impediment to assessing the promise of

reverse-engineering algorithms stems from the way in
which they are assessed: we observe a rampant, perva-
sive, and potentially counterproductive tendency to draw
direct, quantitative comparisons between reconstructions
produced by different algorithms. In other words, despite
the commoditization of network inference tools, there is
still no consensus on the correct way to evaluate recon-
struction results [91] – and perhaps for good reason! In
the context of effective network inference, the notion that
reconstructions can be checked for accuracy contradicts
our very premise, that algorithms both among and within
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each of the classes we have described make diverse as-
sumptions about what should count as an interaction.
Recent work [93, 330] notwithstanding, we believe this
issue continues to be confounded by a repeated mismatch
between algorithms and metrics (as in the use of the
area under receiver-operator characteristic curves [331], a
measure that presupposes the existence of a valid confu-
sion matrix, to give an overall rank or “score” to effective
reconstructions [324, 332]).

The methods in different classes also differ in more
concrete ways: they vary in the extent to which they can
infer strengths, signs, and directions for the interactions
they detect. This might be thought of as a “feature, not
a bug” of reverse-engineering technologies: having a se-
lection of versatile algorithms, each tailored to particular
situations or designed with different inference goals in
mind, increases the chances that researchers can make
use of reverse-engineering algorithms. Yet the question
of whether systems biologists should persist in pursu-
ing whole-network reconstruction as a go-to modality or
learning tool hinges not solely on whether the inference
goals are achieved by the time the smoke clears, but on
the attainment of a reasonable tradeoff between the com-
putational effort consumed by inference algorithms and
the (ideally, unique) benefits they afford to researchers.

Do the spectrum and short history of network inference
successes live up to such high hopes? Along these lines,
we have argued that reverse-engineering over the past two
decades has played at least five distinct research roles –
the acceleration of hypothesis generation and verification
at the single-node/single-interaction level, the illumina-
tion of statistical properties that render biological net-
works unique among complex systems, the diagnosis of
individual networks as either typical or perturbed (paral-
leled by the use of within-class variation to make theoret-
ical statements about the system), the prediction of how
the activities in a given network will respond to exoge-
nous perturbations, and the compact encoding of joint
probability distributions – that go far beyond the trivial
task of piecing together which of a set of observed system
elements engage in physical contacts or the transfer of bi-
ologically relevant information. The roles we have iden-
tified represent a far cry from the (three) uses of effective
influence networks – identification of functional modules,
probing the response to perturbations, and helping deter-
mine the underlying mechanistic interactions – named by
the authors of Ref. [28] ten years ago.

While it is impossible to say which of recent attempts
to use networks as compressed “statistics” to help make
(quantitative or qualitative) predictions will have the
biggest impact down the road, it is clear that new prece-
dents for the prediction of drugs targets and systemic re-
sponses in network medicine [101] point to a significant
departure from the more traditional, reductionist ways
of thinking. The consequences here will almost certainly
include dramatic impacts on the ways medicine is prac-
ticed in the lifetime of the reader. With this example in

mind, we reiterate our assertion that reverse-engineering
yields its most succulent fruit when it is used to aug-
ment other methods of expanding our understanding of
how living systems work, rather than employed dispos-
ably as an end goal in itself. Indeed, changes in the ways
network inference has been used over time seem to be
in accordance with this sentiment: whereas in 2003 the
field was still firmly entrenched in its “pattern-detection
phase” [333] (to better understand the state of the art at
that time, we recommend [19]), it was around the time of
publication of [92] in 2009 that the DREAM4 Challenges
first introduced predictive modeling tasks as part of the
main annual competition.
Indeed, the DREAM competitions play a unique part

in the reverse-engineering culture. They not only echo
changes in the field’s priorities but also inform them:
they have helped set the precedent in establishing in-
ferred networks as tools for making predictions (as in
the DREAM8 prompt to anticipate the responses of cel-
lular signals to yet-unseen perturbations [334]). More
radically, some of the most recent Challenges go as far
as skipping the hitherto-canonical intermediate step of
network inference entirely, asking competitors to infer
macroscopic properties or outcomes using wholly differ-
ent types of data [335]. While we clearly do not advocate
for the complete abandonment of automated, network-
scale reverse-engineering from large data sets, we do view
the foundation’s decreasing reliance on methods which
require the construction of a detailed microscopic model
prior to making inference about the macroscopic system
as a progressive step. In fact, we contend that, given
suitable alternatives, whole-network reverse-engineering
may not be justified in every case.

If the reverse-engineering of entire microscopic net-
works is not always the right tool for the job, what might
be done instead? As a starting point, we suggest asking:

• Given a reverse-engineered network, can we find
any further compressions of that network that still
preserve information about (i. e., are equally good
at predicting) the macroscopic properties and ob-
servables it encodes?

• Can we identify any coarse functional units (per-
haps with their own set of interaction rules and dy-
namics) that might supplant individual nodes and
edges as the elements of a common parlance for the
study of living systems?

For instance, might more appropriate “parts lists” for
biological systems consist not of individual species’ ac-
tivations, but of larger physical or conceptual elements
(e. g., negative feedback loops and operons) with their
own dynamical interaction laws? Alternatively, attrac-
tors of the dynamics of biological networks may be a more
laconic descriptions of the networks than the interactions
among the nodes themselves [14, 336]. This possibility
may be motivated via a historical analogy: renormaliza-
tion group theory in physics [337] offers a systematic way
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to deduce an appropriate new vocabulary (and the cor-
responding syntax) when one changes the physical scale
at which a system is to be observed. The effective inter-
action rules which emerge (say, the interactions between
groups of Ising spins) are not always easily reducible to
the familiar dynamics of microscopic activation variables
(the nearest-neighbor interactions associated with indi-
vidual spins), but which nonetheless account accurately
for their effects at the new scale.

A recent line of work, inspired directly by statistical
physics, formalizes the argument that only a small subset
of parameter combinations are easily learnable from data,
and therefore that only certain (combinations of) micro-
scopic parameters can be relevant in determining a com-
plex system’s macroscopic or emergent properties [338–
341]. By systematically integrating out “sloppy” param-
eters or parameter combinations, whose values remain
relatively unconstrained, one can assemble coarse, parsi-
monious models in terms of the remaining “stiff” parame-
ters that serve as effective, low-dimensional compressions
of a system’s microscopic statistics.

Answers to the second question – that of finding
higher-level explanatory structures in terms of which sys-
tem’s behavior can be understood – have been explored
since the inception of “module-based” inference [119,
122]. In fact, newer and more powerful tools have sparked
a resurgence [114, 342–344] of this approach. Around the
same time, it was demonstrated that the flow of infor-
mation in development, from promoter sequence to ex-
pression, can be reliably understood in terms of coarse,
multiple-sequence patterns called graph-mers [345] that
encompass entire sequence motifs. Ultimately, we believe
that it will be work in directions such as these, which in-
volve gross reconceptualizations regarding the fundamen-
tal actors in the biological dynamics, that will supersede
whole-network reverse-engineering.

If the end goal of emulating physics-style modeling is
prediction, the penultimate is certainly intuition and con-
ceptual understanding. We entertain phenomenological
approaches like renormalization because they promise to
yield interpretable models, not intractably large sets of
detailed equations. Yet we still stress that, while search-
ing for modularity and simple descriptions entails an in-
vocation of the engineering mindset that has informed
systems biology since its inception, the principles of good
biological design often differ markedly from what works
in that context; an open mind is necessary to dream up
fitting new constructs. Whatever the case, we are con-
fident that it is only by focusing on phenomenological
(rather than microscopic) accuracy that we can deliver
a satisfying confutational blow to famous Rutherford’s
quip that “all sciences are either physics or stamp col-
lecting [346] and begin removing the major impediments
to the advancement of formal theories in biology [347].
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VI. TRY ON YOUR OWN: BECOME A
REVERSE-ENGINEER

By now we hope to have made a convincing case for
our contention that different reverse-engineering method-
ologies are, in general, best-suited for answering different
types of questions. We have reviewed the most prominent
such questions, and illustrated how the “goals” fulfilled
by specific algorithms are really manifestations of their
underlying assumptions about what should count as an
interaction.
Since no one definition of biological interaction can be

considered more “correct” than the others in all contexts
(different algorithms merely capture different aspects of
the same system), a diversity of goals and operational
idiosyncracies might be viewed as a blessing rather than a
curse. Yet choices should be made at the outset regarding
what one wishes to learn by doing reverse-engineering,
because these choices inform which algorithms are best
suited for the job.
In this section, we simulate the conditions under which

the need for such choices arises. Imagine that you have
just been handed a set of high-throughput data, for a
system whose interaction architectures have not yet been
fully mapped. Follow the series of prompts in the box to
embark on an exploratory challenge with a representative
set of actual experimental data.

Consider a set of multi-electrode recordings from
the retina of a salamander (we thank M. Berry
for providing us with data from [191]; down-
load link at https://figshare.com/articles/bint_

fishmovie32_100_mat/5009840). As explained in detail
in the README.txt file, the data consists of the responses
from p = 160 ganglion cells to the presentation of a nat-
uralistic stimulus – in this case, a short (∼ 20 sec) movie
of a fish tank, repeated n = 297 times. The activity of
each neuron is binarized as 0 (when the neuron is not fir-
ing an action potential) and 1 (when it is firing an action
potential) within discrete time bins of length 20 ms.

1. Of the methods discussed in this Chapter, which
are clearly applicable to this particular set of data?
Are there any which are not?

2. What kinds of predictions might a researcher want
to make using this data?

Consider multiple levels of analysis, from single
nodes in the neuronal network (Will removing a

https://figshare.com/articles/bint_fishmovie32_100_mat/5009840
https://figshare.com/articles/bint_fishmovie32_100_mat/5009840
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single node cause the network to collapse? Can we
predict a future value for a given neuron, given the
values of certain others?) to multiple nodes (Are
there any functional groups that seem to be operat-
ing as a unit? Are there hub structures present?) to
the entire system as an emergent whole (What can
we say about the percentage of time the system is
silent, versus when it is spiking? What other infor-
mation would we need to say something about the
“typicality” of the recorded networks, with respect
to their structural and dynamical properties?).

3. Crowdsourcing [348] – the idea that conglomer-
ate predictions, made by combining the wisdom
of many independent thinkers, are more accurate
than those of any individual – is a popular strat-
egy in DREAM competitions [349, 350] (for re-
cent examples, see the closed Sage Bionetworks-
DREAM Breast Cancer Prognosis (DREAM7,

2012), NIEHS-NCATS-UNC DREAM Toxico-
genetics (DREAM8, 2013) and ICGC-TCGA
DREAM Somatic Mutation Calling (DREAM 8.5-
9, 2013-2014) Challenges). Yet we have seen that
different reverse-engineering methods often yield
disparate – even antagonistic or contradictory –
predictions. For which combination of the follow-
ing algorithms would you feel comfortable following
the “wisdom of crowds” (say, averaging the results,
or taking majority rules)?

Think about ARACNe, CLR, Bayesian networks
(static and dynamics), MaxEnt approaches, and
possibly other methods. Given the assumptions
these methods make, would you take the union
or intersection of the set of results produced by
Bayesian methods and ARACNe? MaxEnt and
CLR? Other combinations? When do you think
crowdsourcing in general is a good strategy?
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[132] G. Tkačik, O. Marre, T. Mora, D. Amodei, M. J.

Berry II, and W. Bialek, J Stat Mech: Thy Exp 2013,
P03011 (2013).

[133] J. M. Beggs and D. Plenz, J Neurosci 23, 11167 (2003).
[134] J. M. Beggs, Philosophical Trans R Soc London A:

Math, Phys, Eng Sci 366, 329 (2008).
[135] W. L. Shew and D. Plenz, Neuroscientist 19, 88 (2013).
[136] D. J. Schwab, I. Nemenman, and P. Mehta, Phys Rev

Lett 113, 068102 (2014).
[137] A. de la Fuente, Trends Genet 26, 326 (2010).
[138] T. Ideker and N. J. Krogan, Mol Syst Biol 8, 565 (2012).
[139] M. Grechkin, B. A. Logsdon, A. J. Gentles, and S.-I.

Lee, PLOS Comp Biol 12, e1004888 (2016).
[140] I. W. Taylor, R. Linding, D. Warde-Farley, Y. Liu,

C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris,
and J. L. Wrana, Nature Biotechn 27, 199 (2009).

[141] M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and
T. Hwa, Proc Natl Acad Sci (USA) 106, 67 (2009).

[142] D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf,
A. Pagnani, R. Zecchina, and C. Sander, PLOS ONE
6, e28766 (2011).

[143] L. J. Colwell, M. P. Brenner, and A. W. Murray, PLOS
ONE 9, e107723 (2014).

[144] W. L. Shew, H. Yang, T. Petermann, R. Roy, and
D. Plenz, J Neurosci 29, 15595 (2009).
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