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This paper is focused on the optimal design of Safety Instrumented ‘Systems. A
o cornbinatorial optimisation problem is formulated that involves as design variables the
:dina architecture and type of components of the three subsystems (sensors, logic solvers,
found final clements) and their test intervals. The life cycle cost is minimized subject to safety
yields and spurious trip constraints. An evolutionary technique based on Genetic Algorithms is
presented to solve the problem. Application results are reported for case studies.
eased
o 1. Introduction
n e If existing protective layers arc insufficient to prevent a potential hazard, the installation
: they of a Safety Instrumented System (SIS) is next considered. The SIS reads sensors, docs
the calculations required to recognize potentially dangerous events, and produces an _
output to actuators to mitigate the dangerous situation. Because international standards ;
on SIS’s design are performance oriented rather than prescriptive, the designer should ‘
select the S1S’s acceptable level of risk, called Safety Integrity Level (SIL), and then
Ty in specify the system architecture, maintenance works, test intervals, etc., in order to
, satisfy the tequired SIL. An iterative design procedure is followed until the SIL is
ted), verified. In this context, the optimal design of SIS's emerges as an attractive way to
perform the selection efficientty.
/lenes
( ) The optimal evaluation of discrete test intervals for fixed architectures was reported by
wylene Martorell et al. (2000} and Giuggioli et al. (2001), that provided optimization criteria in
) terms of cost and availability. Recently a general formulation for the optimal SIS design
ensity . . is presented in Noya et. al (2003), where it is proposed to minimize the SIS life cycle
L198. ] i cost subject to SIL and probability of safe failure constraints. The structure of
using redundant components and discrete test intervals of each subsystem are considered
il and simultaneously as design variables.
n of In this work the aforementioned optimal SIS design formulation is extended to
incorporate both redundant and diverse components in subsystem architectures. The
on of pumber of alternative arrangements to be analysed increases significantly because
Lett. o subsysterns are built selecting components from a discrete set of different elements, ]
arbon which can be accommodated in redundant or diverse architectures. Also test intervals i
2002, constitute a discrete set. Due to the combinatorial nature of the optimization problem, an
evolutionary strategy of solution is proposed based on Genetic Algorithms, that
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satisfactorily approaches the optimal solution. The paper 18 structured as follows. In the
next section the formulation of the optimal SIS desi gn for diverse component structures
is formulated. Then the proposed solution procedure is presented , followed by a section
that contains application results for case studies. Finally conclusions and future research
work are addressed.

2. Optimal Design of Safety Instrumented Systems

A SIS consists of sensors, controllers and final elements that work together to provide
the safety function. Each subsystem is made up of components that can be configured
in different architectures. Goble (1998) provides a good survey of these arrangements.
Moreover, configuration components can be selected from a set of discrete elements
with particular failure rates, maintenance and cost features, Consequently redundant
(equal components) and diverse (different components} structures are generated.

In this work the optimal SIS design for redundant and diverse subsysterms 1s formulated
as a constrained optimization problem. The objective function is the life cycle cost of
the three subsystems that composed the SIS. Regarding the constraints, safety or
environmental control is important but so is the economic impact of spurious trips,
which are not always nuisance events. In consequence, SIS average probability of
failure on demand (PFDgg) and SIS average probability of spurious trips (PFSgs) are
incorporated as restrictions. They are calculated in terms of the contributions from each
subsystem. Problem formulation is as follows
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PES*(Hy,)+ PESC(H{)+ PFS/ (H]) < PFS*

PEDY(Hy )+ PFDY(H{ Y+ PFDY(HT )< PFD*

where:

K = number of discrete time intervals of inspection 7/

NSS, NCS and NFS = number of feasible architectures selected for sensors, controllers
and final elements

C(NS,J{)= number of arrangements of NS available sensors, such that the total
number of sensors of configuration i ( J; ) is verified, considering cases of redundant

and diverse structures.
C(NC,J7), C(NF,J! ) =idem C(NS, J}) for controllers and final elements

LCC,; = sensor subsystem life cycle cost evaluated considering k-th inspection interval,

i-th sensor architecture and j-th sensor arrangement.
LCCyy, LCCY, == idemas LCC;; for controllers and final elements
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a the H ;= binary variable, Hj, =1 means the corresponding LCCy; participates in SIS’s
thlir:Hs cost, H,, =0 otherwise.
:arch
The life cost of each subsystem is defined as the sum of the procurement cost (PC) cost
and the present value of the ownership cost (OC) considering a life period of 1 years
wide LCC:PC+i—ocwy—,.zPCﬁ-i(FC+CMC+CT+CCMCi+CCT+RC+ FTC) @)
red : = (1+R) ) {1+ R)
ents.
sents- where R = discount rate; Ocy = annual cost of ownership; FC = Fixed Operation cost
1dan} (consumption and fixed maintenance costs); CMC = Corrective Maintenance Cost, cost
associated with the repair of failures detected before inspection; CT = Test Cost, cost of
SIS inspection at intervals 77 and the repair cost of fatlures found during test. Moreover,
lated if a process demand occurs and the SIS is unavailable due io repair tasks or test, a
st of dangerous condition arises. Thus there exist Consequence Costs associated with the
y or corrective maintenance (CCMC) and test (CCT). A dangerous situation alse appears if
rips, the SIS fails in a dangerous undetected way. A Risk Cost (RC) is associated with the
y of occurrence of this event. In addition, the cost of a false trip (FTC) should be evaluated,
) are because it generates start-up operations, which are less safe conditions than normal
each operation, and production downtime costs.
Expressions to calculate the cosl terms involved in Ocy are provided in Noya (2003).
Except FC, they depend on subsystem probability of being in a partially or fully
degraded state. For example, CMC is calculated using the average probability of being
in a detected partially or fully degraded state over T1, and RC is evaluated in terms of
(H ' the average probability of being in an undetected fully degraded state.

. Markow models are applied to evaluate the aforementioned probabilities. Each
( _ architecture is represented by a Markov diagram (Goble, 1998) and state evolutions are
calculated between t=0 and t=T7, then average probabilities for intermediate and final
states are evaluated at 77. The model assumes constant failures rates and repair rates,
. safe and dangerous modes of failure, on-line diagnostic capabilities and common cause,
' quick repair of detected system failures without shutting down the process and perfect

lers inspection and repair.

In this work, state probabilities for diverse architectures are calculated using the same
redundant-architecture Markov models, but transitions between states are modified to
dant take into account different individual failure rates as follows,

a) the product of equal failure rates is replaced by the sum of the individual ones

b) single failure rates are changed by the maximum failure rate among all components

¢) the product of two equal failure rates in 2003 architectures is swapped by the
irval, maximurn sum of failure rates among all pairs of components.

total
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To evaluate PFD for each architecture, the SIS unavailability due to testing and repair
tasks for failures found during test is added to the average unavailability on demand
over 77 obtained using Markov models. The PFS is calculated as the average probability
of being in the safe state over T1.

3. An Evolutionary Solution Procedure

The proposed formulation of the optimal SIS design results in a combinatorial
optimisation problem. Stochastic methods arise as a good alternative to tackle them, and
among these techniques, Genetic Algorithms (GA) have been extensively explored for
the resclution of problems involving decisions about the structure or sequence of
chemical engineering process. Consequently, an evolutionary technique based on GA is
developed to solve it. : .

An evolutionary technique is a probabilistic algorithm that maintains a population of
individuals P(}={p,(t), pa(?),...} for iteration . Each individual represents a potential

solution to the problem. Each solution pf is evaluated to give some measure of its

fitness. Then a new population (iteration +1) is formed by selecting the individuals that
 fit better. Some members of the new population undergo transformations by means of
genetic operators to form new solutions. There are unary transformations (mutation)
which produce new individuals by a small change on a single individual, and higher
order transformations (crossover) which form new individuals by combining parts from
several individuals. The program converges after some number of generations. The best
individual is considered a near optimum solution (Michalewicz, 1996).

For the optimal SIS design, the relevant features of the new evolutionary procedure are
considered next.

3.1 Selution Representation and Initial Population
An individual is represented by a string of discrete numbers that follows the order

indicated in Fig. 1. The first position corresponds to sensor architecture index
(F"=1:NSS). A block of NS integers that can take values between 0 and 3 follows. A zero
value indicates the component is not present in the architecture, a non-zero value
represents how many components of this type participate in the arrangement. The
representation is repeated for controllers and final elements. The last three positions
correspond to the interval test index for each subsystem.

An initial population is randomly generated for each subsystem architecture. The blocks
of NS, NC and NF components are also filled randomly, but taking into account that the
amonnt of comnponents of each subsystemn should be satisfied.

Fig.1: Chromosome representation
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3.2 Fitness evaluation
In this work the constraint handling approach proposed by Deb(1998) is applied. The
fitness function is defined as the SIS life cycle cost for a feasible solution. Otherwise, it
is obtained adding the constraints violations to the highest objective function value of
all feasible solutions for the current generation.

3.3 Genetic Operators
The selection of some individuals from the population to be parents in the reproduction

stage is conducted using the ranking method, considering the selective pressure
parameter equal to 0.08. Regarding the crossover and mutation operators, Simple
Crossover and Uniform Mutation are applied. The corresponding probability parameters
are 0.6 and 0.1 respectively.

4. Case Study

In this section a case study is presented to show the application of the proposed
evolutionary strategy. lLet us suppose the hardware components in Table 1 constitute

-the candidate set of elements to become part of the SIS subsystems under design. In this

table, A represents the total failure rate and CY the coverage factor of dangerous
failures. Another parameters used to categorize the different types of fatlure rates are the

following:

a) % safe failurcs for sensors and controllers = 50%

b) % safe failures for final clements = 80%

¢) Common Cause B factor for redundant architectures = (.05, (.03 and (.10 for
sensors, controllers and final elements respectively. These values reduces to 0.025, 0.01
and 0.05 for diverse architectures.

d) Regarding the parameters involved in cost function, PFD and PFS evaluation, see
Noya et al. (2003) for details.

¢) The set of discrete allowable inspection times considered in this example 1s [4320
8760 13140 175201}k and is fixed for all the subsystems.

Runs are conducted for PFS=0.1 and PFD={0.01, 0.001}, considering a downtime cost
CLP=500 $/h and the cost of a dangerous event, Crisk = 1e6§. Results are reported in
Table 2 and Table 3. '

Table 1: Hardware Elements

Sensors Controllers Final Elements

A c? Cost A 9 Cost X [ Cost

[h1x10° $  [f/h)x10° $  [f/hlx10° %

2.85 0.9 400 5.00 (.98 6000 10.0 0.8 400
5.70 0.5 180 1.30 0.98 15000 13.0 0.0 250
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Table 2: Optimal SIS structure

Sensors Controllers Final Elements Cost
PFD Arch. Typel Type2 Arch. Typel Type2 Arch. Typel Type2 $
0.01 1loo2D 0 2 loold 1 0 2002 2 ] 20726
0.01 loo2D 2 0 loo2D 2 0 Too2 2 0 43451

Table 3: Optimal Test Interval

PFD TF Tr 77
0.01 8760 13140 4320
0,001 17520 17520 13140

5. Conclusions

In this paper, the optimal SIS design for redundant and diverse subsystems is

formulated. The SIS life cycle cost is minimized subject to constraints that take into
“account both safety and the impact of spurious trips. To consider diverse subsystems, a

methodology is proposed to calculate the state probabilities of Markov Models.

Regarding problem solution, an evolutionary strategy is developed to solve the resulting

combinatorial problem. It successfully approaches towards the optimal solution,

Future work will addressed the impact on the design of imperfect repair and test tasks.
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