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A B S T R A C T

In this study, Spirulina biochar obtained from fast pyrolysis was evaluated as an alternative to commercial acti-
vated carbon for lactic acid (LA) purification from a fermentation broth. Thermally (350 and 400 �C treatment of
the biochar in N2 atmosphere for 4 h) and chemically (KOH solution impregnation of the algal material and fast
pyrolysis to obtain the biochar) activated Spirulina biochars were also tested. The biochars were previously
characterized using SEM and FT-IR. Two purification methodologies were evaluated: filtration and stirring. The
stirring method prove to be simpler, faster and chipper, with excellent purification results. All the evaluated
biochars presented a performance comparable to that of activated carbon in the stirring methodology. Spirulina
biochar and the KOH activated biochar were the once with the best results, with 92 and 82% LA recovery and 82
and 90% protein removal efficiencies, respectively.
1. Introduction

Lactic acid (LA), is an organic acid widely used in various industry
sectors. In the pharmaceutical industry lactic acid can be used as a raw
material in the production of cosmetics, ointment and lotion formulation;
in the chemical industry it is used in the production of chemical bases and
organic solvents and in the food industry it acts as acidulants, flavorings
and emulsifiers [1,2]. Another major field of interest for lactic acid is the
production of renewable and biodegradable plastics from polylactic acid
(PLA). Polymers made from lactic acid have shown physical and me-
chanical properties comparable to plastics produced from petroleum, but
with high biodegradability rates, such as food packaging and various
plastic utensils [3–5]. In addition, PLA biopolymers, because they are
bioresorbable, can be used in medicine, tissue regeneration, sutures,
fracture fixation, bone replacement, cartilage repair, meniscal repair,
ligament fixation and implants [6–8].

Lactic acid can be manufactured by both chemical and biotechno-
logical synthesis through fermentative processes. The process of
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obtaining lactic acid by chemical synthesis is based on lactonitrile. Hy-
drocyanic acid is added to acetaldehyde in the presence of a base to
produce lactonitrile, and this reaction occurs in liquid phase under high
atmospheric pressure. Lactonitrile is recovered and purified by distilla-
tion and then hydrolyzed to lactic acid by the application of hydrochloric
acid or sulfuric acid, producing ammonium salts and lactic acid. Pro-
duction by chemical synthesis results in a racemic mixture of lactic acid
[9].

On the other hand, fermentative processes (bacteria, fungi and yeast)
are more advantageous due to the lower reaction temperatures and
pressures (which means lower energy consumption) and the process is
friendlier with the environment. In addition, fermentative production
offers a great advantage in obtaining L (þ) and D (�) optically pure lactic
acid as well as DL lactic acid, depending on the strain selected for
fermentation [10,11]. Approximately 90% of the total lactic acid pro-
duced in the world is produced by fermentation using bacteria [4,12].

For the production of lactic acid by fermentation process to be viable,
it is necessary to achieve better operational conditions inside the reactor,
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Table 1
Different methodologies used in LA recovery from fermentation broth.

Purification
method

Conditions LA recovery
efficiency

Ref.

Precipitation Reflux of ammonium lactate with
methanol and sulfuric acid. Filtration of
ammonium sulfate and recovery of
methyl lactate

~80% of
methyl lactate

[15]

Precipitation of lactate using Ca(OH)2,
Na(OH) and NH4(OH)

65.4% with
Na(OH)
64.6% with
NH4(OH)
80.6% with
Ca(OH)2

[16]

Solvent
extraction

Broth vortexed with ammonium sulfate
and n-butanol. Separation with funnel
and solvent evaporation

86% [17]

Ultrasonic solvent extraction with ethyl
acetate and solvent evaporation

57% [18]

Electrodialysis Continuous electrodialysis
fermentation with GC control of
glucose

77% [19]

In situ fermentation and purification
with bipolar membranes

86% [20]

Nanofiltration Composite polyamide nanofiltration
membrane

32% [21]

Nanofiltration membrane, ion
exchange and vacuum distillation

65% [22]

Ion exchange
resins

IRA-67 and IR-120 91% [23]
IRA-400 and IR-120 73% [24]
IRA-67 74% [25]

Activated
carbon

Commercial Activated carbon 69% [25]
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reducing costs in the lactic acid purification and extraction stage. The
technological barriers to low-cost lactic acid production are mainly in the
process of recovery and purification of lactic acid from the fermentative
medium. These two process steps represent approximately 50% of the
total cost of lactic acid production and the reduction of this cost is one of
the most important challenges of lactic acid production [11–14].

Several methodologies have been and are currently evaluated for
lactic acid purification from fermentation broths (see Table 1).

In the conventional method of purification of lactic acid occurs cal-
cium lactate precipitation, with esterification and hydrolysis through
reactive distillation. It is an economic process, simple and reliable, but
generates large amounts of CaSO4, which is considered an environmental
contaminant [26]. For this reason, it has sought alternative and ecolog-
ically correct methods for purification, as for example, methods involving
adsorbents in general: activated carbon, ion exchange resins, etc.

Activated carbon has being reported as an adsorbent for solutions
clarification and purification [27–29], due to his abundant surface
functional groups and high surface-to-volume ratio [30,31]. In this
context, biochar appeared as a low cost, renewable and ecological
alternative as adsorption material in replacement of commercial acti-
vated carbon, which 45% of the worldwide supply is produced from coal,
a non-renewable source [32]. Biochar is one of the three biomass py-
rolysis products. During pyrolysis studies, bio-oil is the product that has
received most attention, but now biochars are also extensively studied
[33–35]. Many studies proved that biochars have lots and different active
sites, most of them oxygen-containing functional groups [36]. Regarding
to broth purification, it is known that the adsorption of sugars and pro-
teins on activated carbon it is much greater than the adsorption of lactic
acid [37]. Also, the process is easy to handle, has low cost and can be
performed in any laboratory.

In the present work, biochar obtained from fast pyrolysis of Arthro-
spira patensis – Spirulina was evaluated as adsorption material in the
purification process of lactic acid obtained through bacterial fermenta-
tion. Spirulina was extensively studied as pyrolysis biomass source for
bio-oil production in order to achieve biofuels [38–41]. The purpose of
this study is to take advantage of biochar formed during Spirulina py-
rolysis and which is the secondary product of the process. Different
treatments of both the starting material and the carbon obtained in the
purification of lactic acid have been evaluated.

2. Materials and methods

2.1. Reagents

Arthrospira patensis – Spirulina was commercially acquired and used
without further treatment. KOH was directly purchase from Biopack and
use to prepare an aqueous solution 7% KOH (w/v). Commercial activated
carbon (CAC) was purchase from Sigma-Aldrich and used as reference
material. Bacillus coagulans arr4 was isolated from Ruta graveolens
rhizosphere (S~ao Paulo, Brazil) and used to LA production.

2.2. Lactic acid production and broth characterization

Exponential fed-batch culture was used to obtain the fermentation
broth. The feed rate (F) was calculated as previously reported [42]. The
fermentation fed batch were performed in a INFORS HT fermenter. The
temperature and agitation were 50 �C and 100 rpm, respectively, and the
pH was kept constant at 6.5 by adding a solution of Ca(OH)2.

A N2 flow of 0.5 mL/min was added for 12 h to maintain anaerobic
conditions during fermentation. Fermentation started with around 109
g/L of sucrose, a concentration that does not inhibit the microorganism,
according to preliminary studies; 30 g/L of yeast extract and 5 mL/L of
salts of GYP medium, that consists of (g/L): MnSO4 (2.0), MgSO4 (40.0),
NaCl (2.0), and FeSO4⋅7H2O (2.0). The feed solution contained 900 g/L
of granulated sugar and 1% of yeast extract, and started at 10 h of
fermentation and lasted 6 h and 30 min, adding to the reactor 930 mL of
2

this feed solution. Centrifugation of the broth was performed at 7000�g
at 20 �C for 10min to remove some cell debris and non-soluble impurities
from fermentation. The broth was characterized, for which the content of
LA, sucrose, total proteins and pH was determined.

To determine the production of the optical isomers of lactic acid, a
high-performance liquid chromatograph was used, equipped with an
ultra-violet detector at 254 nm, Chirex 3126 Phenomenex column (150
� 4.6 mm) eluted with 1 mM of copper sulfate II in aqueous solution as a
mobile phase, flow of 1 mL/min and temperature of 26 �C. The propor-
tion of enantiomers is 80.71% L-(þ) LA and 19.29% D-(�) LA.

2.3. Biochar production

A fixed bed fast pyrolysis reactor was used, previously reported
[43–45]. The amount of 1 g of Arthrospira patensis – Spirulina was placed
in ceramic boat and introduced into a quartz tubular reactor when all the
reaction conditions such as pressure, temperature and flow of transport
gas (ultra-dry nitrogen) have been achieved. At the opposite side of the
reactor, a condensation trap and a vacuum pump are connected to the
system. The reaction took place at 300 �C for 20min, with a nitrogen flow
of 0.2 mL s�1 and a vacuum of 50–100 mTorr. Once the reaction was
finished, the system pressure was compensated and the reactor was
allowed to cool. The solid product (BC-Sp) was removed, weighed and
washed with distilled water.

Physical and chemical activations of the biochars were also studied to
analyze the performance of this materials. For chemical activation,
Spirulina was impregnated with 7% KOH (w/v) at 80 �C for 30 min, dyed
and then pyrolyzed at 300 �C for 20 min. After pyrolysis, the biochar was
washed with distilled water and dried (BC–KOH). For the physically
activated carbons, BC-Sp was heated at 350 (BC-350) and 400 �C (BC-
400) under N2 atmosphere for 4 h.



Table 2
- Characterization of bacterial fermentation broth.

Broth properties

pH 7.07
LA (g.L�1) 68.32
Proteins (g.L�1) 3.39
Saccharose (g.L�1) 0

R.V. Piloni et al. Current Research in Green and Sustainable Chemistry 4 (2021) 100084
2.4. Biochars characterization

The morphological characteristics of the biochars were analyzed by a
field emission scanning electron microscopy (FE-SEM) with a Jeol JSM
7500 F semi-in-lens detector, installed in the Advanced Microscopy
Laboratory (LMA) of the Institute of Chemistry, of the S~ao Paulo State
University (UNESP), S~ao Paulo, Brazil. The samples were previously
metallized with a 20 nm layer of Au/Pd.

Specific surface area, pore volume and average pore size of the bio-
chars were assessed by N2 physisorption. The adsorption-desorption
isotherms were obtained at 77 K using a Micrometrics ASAP 2010 in-
strument, with relative pressures between 0.001 and 0.998. Previously,
the samples were maintained for 24 h under vacuum of 10 μPa, at 200 �C,
in order to remove water and other physisorbed gases. Functional groups
present on the surface of these materials were studied by FTIR, using an
FT-IR microscope (Thermo Scientific™Nicolet™ iN™10) in its reflection
mode.
2.5. Purification experiments

For the purification of the broth, two sets of experiments were tested.
The first purification technique evaluated, consisted of taking a 10 mL
aliquot of the broth and subjected to vacuum filtration using a funnel
with sintered glass plate (3.5 cm in diameter and 5.0 cm in height)
containing 1 cm of height of carbon (about 1.3 g), similar to previous
purification experiments [42]. Three filtrations of the same aliquot were
performed; each with 2 washes of 10 mL of Milli-Q water. Between one
filtration and the other, the carbon was dried 24 h in an oven at 70 �C.
The experiments were carried out in duplicate, reporting the average of
the two replicates with the standard error.

In the second designed experiment, 0.5 g of biochar, 5 mL of broth
and a magnetic stirrer were placed in 50 mL centrifuge tubes. The
mixture was allowed to stir at 21 �C for 24 h. Then, the mixture was
centrifuged at 10,000�g for 20 min and the supernatant was removed.
The solid material was washed two times with Milli-Q water of 3 mL
each, separating the supernatant by centrifugation. The experiments
were carried out in triplicate and results were expressed as mean of three
replicates with the standard deviation.

Both the supernatant and the washes from the different experiments
were analyzed for lactic acid and protein content.
2.6. Lactic acid and protein quantification

For L (þ)-LA and saccharose determination, High Pressure Liquid
Chromatography (HPLC) was used. The equipment, Shimadzu Promi-
nence brand equipped with UV detector and Refractive Index detector,
was used with a Phenomenex Rezex ROA column (300 � 7.8 mm) using
the conditions already described in previous work [14]. L (þ)-LA was
detected at 210 nm UV detection wavelength. The samples were previ-
ously filtered through a 0.2 μm cellulose acetate membrane. The mobile
phase was prepared with Milli-Q water, filtered with funnel with sintered
glass plate and 0.2 μm cellulose acetate filter, and sonicated for 10 min,
with the aim of eliminating impurities and dissolved gases. L (þ)-LA and
saccharose calibration curves were performed to quantification.

Total protein quantification was performed using the Lowry method
described by Peterson, with modifications proposed by Waterborg [46,
47]. The reactions result in a strong blue color, whose absorbance was
determined by UV Visible Spectroscopy at a wavelength of 550 nm.

Finally, the L (þ)-LA recovery efficiency and protein removal effi-
ciency of the purification methodologies were calculated using the
equations below:

L (þ) – LA recovery efficiency (%) ¼ (final LA mass/initial LA mass) x100

Protein removal efficiency (%)¼ [(initial protein mass-final protein mass)/initial
protein mass] x100
3

3. Results and discussions

3.1. Broth characterization

The results of the characterization of the fermentation broth are
summarized in Table 2.

The fermentation broth did not show dissolved saccharose, so puri-
fication focused on the elimination of proteins, that came mainly from
cell debris and yeast extract that wasn’t able to be eliminated in the
centrifugation process. The pH value indicates that LA is present in the
broth as lactate (pKaLA ¼ 3.86).

3.2. Biochar production and characterization

Biochars characterization was performed. Porosity of carbonaceous
materials is one of the main parameter in the adsorption efficiency [48],
so morphological characterization by SEM of the evaluated carbons was
determined (Fig. 1).

Fig. 1 shows that all the studied biochars presented a heterogeneous
surface, being BC-Sp the one with a reduced porosity, compared to the
other samples. Different pore sizes and larger diameter channels were
observed in the thermally activated carbons, BC-350 and BC-400. BC-
KOH presented a very irregular surface, also with a high pore density.

The Brunauer-Emmet-Teller (BET) specific surface area and pore
volume are presented in Table 3, provided through N2 adsorption.

Surface area and pore volume increased with the thermal treatment at
400 �C, as expected [49]. BC-350 data was unable to determine with the
equipment used in the analysis. In the case of BC-KOH it wasn’t possible
to measure, but based on the available bibliography, it is expected that
the surface area and pore volume are much higher than untreated sam-
ples [35,50,51].

Functional groups present on the surface of the biochars were
analyzed by Infrared Spectroscopy (Fig. 2).

All the biochars presented a peak at 3000-3600 cm�1 corresponding
to O–H hydroxyl stretching of alcohols and phenols [36,52]. In BC-350
and BC-400 biochars, this peak decrease gradually with the increase of
activation temperature and almost disappear in BC-400. This might be
because the heat treatments reduce part of the functional groups presents
in the surface, due to bonding destruction [49]. Peaks between 1040 and
1250 cm�1 can also been observed, corresponding to C–O stretching of
oxygenated groups like alcohol, ester and phenol. In BC-KOH a peak
between 1580 and 1740 cm�1 indicates the presence of C¼O stretching
from carboxylic acids [52]. This functional groups probably will interact
with the components of the broth, allowing the purification of it.

3.3. LA purification

For purification experiments, vacuum filtration using commercial
activated carbon (CAC) and Spirulina biochar (BC-Sp) was evaluated for
the purification of LA. Results are shown in Table 4.

After the treatment with both carbons, a decrease in the color was
observed, achieving with CAC an almost clear solution. Applying a single
filtration and their corresponding washes, it was possible to eliminate a
moderate amount of protein, with high recovery rates of LA when BC-Sp
and CAC were used as adsorbents. Subsequent filtrations managed to



Fig. 1. - SEM images of the studied biochars: a) BC-Sp, b) BC-KOH, c) BC-350, d) BC-400.

Table 3
Surface area and pore volume of the studied biochars.

Sample SBET (m2.g�1) Pore volume (cm3.g�1) Average pore size (nm)

BC-Sp 2.2 � 0.1 0.0019 3.40
BC-350 – – –

BC-400 4.0 � 0.2 0.0032 3.22

Fig. 2. - FT-IR spectrums of the studied biochars.
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eliminate greater amounts of protein, resulting also in a loss of recovered
LA. Considering that the time spent in the filtrations was high (1 h a day
for 3 days) due to the compaction of the carbon inside the funnel and the
drying times of the material, we decided to dismiss this test for the
4

evaluation of the remain biochars.
Subsequently, the purification of broth was performed by the stirring

technique using CAC, Bc-Sp and the activated biochars BC-KOH, BC-350
and BC-400. The results are shown in Table 5.

In this case, the broth color also decreases after treatment, but not
with the same efficiency as the vacuum experiments. Regarding the pu-
rification, all the biochars evaluated had very good recovery values of LA
and protein elimination. This could be due to two main factors: the fact
that LA, being present as a lactate, had a negative net charge, which
generated an electrostatic repulsion with the biochars, also negatively
charged [35,53,54], thus allowing its separation from proteins; and
longer contact time between the broth and the biochar, which may have
favored the adsorption of the proteins to the biochar surface [33,34,55].

BC-Sp managed to recover almost the total LA present in the broth,
but the ability to eliminate proteins was regular. BC-KOH allowed to
retain a higher percentage of proteins. This turned out to be the biochar
that showed a behavior similar to CAC, managing to separate a high
percentage of LA from proteins. BC-350 and BC-400 had the lowest
performance for LA purification.

According to these results, the functional groups may have a major
effect in the purification of LA than porosity. With BC-Sp and BC-KOH,
major interactions are established between the functional groups and
the proteins in the broth, which gives better protein removal percentages.
With the thermally activated biochars, the increase in the activation
temperature diminish the number of functional groups in the surface
[49], resulting in a decrease in the interactions between BC-350 and
BC-400 and the proteins, hence in a reduction in the efficiency of
purification.

4. Conclusions

In the present work, it was decided to use biochars for the purification
of LA on bacterial fermentation broth. Of the methodologies evaluated,
stirring proved to be the simplest, fastest and most efficient option in the
recovery of LA and protein elimination, compared to the vacuum filtra-
tion technique. The morphological characterization carried out by SEM



Table 4
- Purification of broth by vacuum filtration using Spirulina-derived carbon BC-Sp
and CAC as adsorbents.

Carbon Stage LA (g) Proteins
(mg)

LA recovery
efficiency (%)

Protein
removal
efficiency (%)

Initial
broth

0.66 33.94 –

CAC 1st
filtering

0.60 �
0.05

4 � 2 121 � 8 80 � 5

Wash 1 0.18 �
0.01

1.5 � 0.3

Wash 2 0.011 �
0.007

1.06 �
0.02

WAD 0.011 �
0.004

0.71 �
0.09

Total 0.80 �
0.05

7 � 2

2nd
filtering

0.309 �
0.003

1.3 � 0.2 70 � 2 84 � 1

Wash 1 0.15 �
0.01

2 � 1

Wash 2 0.005 �
0.001

2 � 2

WAD 0.007 �
0.004

0.07 �
0.07

Total 0.466 �
0.004

5.3 � 0.5

3rd
filtering

0.101 �
0.002

1.67 �
0.06

29 � 2 88 � 3

Wash 1 0.086 �
0.005

2.1 � 0.9

Wash 2 0.003 �
0.001

0.1 � 0.1

Total 0.189 �
0.004

3.9 � 0.9

BC-Sp 1st
filtering

0.461 �
0.03

13 � 2 99 � 9 52 � 4

Wash 1 0.15 �
0.01

3.0 � 0.5

Wash 2 0.045 �
0.006

0.5 � 0.5

WAD 0.003 �
0.001

0 � 0

Total 0.66 �
0.04

16 � 1

2nd
filtering

0.29 �
0.04

2.76 �
0.09

62 � 1 89 � 1

Wash 1 0.09 �
0.04

0.99 �
0.04

Wash 2 0.023 �
0.004

0.06 �
0.06

WAD 0.009 �
0.009

0 � 0

Total 0.41 �
0.02

3.808 �
0.002

3rd
filtering

0.12 �
0.03

1.5 � 0.1 27 � 1 95 � 1

Wash 1 0.06 �
0.02

0 � 0

Wash 2 0.003 �
0.003

0.1 � 0.1

Total 0.18 �
0.01

1.6 � 0.2

WAD: Wash after drying. Results expressed as mean � SE, n ¼ 2.

Table 5
- Purification of broth by stirring using CAC and Spirulina-derived carbons BC-Sp,
BC-KOH, BC-350 and BC-400 as adsorbents.

Carbon Stage LA (g) Proteins
(mg)

LA recovery
efficiency (%)

Protein
removal
efficiency (%)

Initial
broth

0.342 16.97 –

CAC Stirring 0.15 �
0.04

0.4 � 0.2 91 � 7 94 � 1

1st wash 0.12 �
0.02

0.2 � 0.1

2nd
wash

0.05 �
0.02

0.3 � 0.2

Total 0.32 �
0.03

1.0 � 0.2

BC-Sp Stirring 0.17 �
0.02

1.2 � 0.7 92 � 9 82 � 9

1st wash 0.12 �
0.02

1.2 � 0.6

2nd
wash

0.026 �
0.006

0.6 � 0.4

Total 0.31 �
0.03

3 � 2

BC-
KOH

Stirring 0.17 �
0.02

0.6 � 0.3 88 � 3 90 � 1

1st wash 0.07 �
0.02

0.7 � 0.3

2nd
wash

0.057 �
0.009

0.4 � 0.2

Total 0.30 �
0.01

1.7 � 0.1

BC-
350

Stirring 0.16 �
0.03

0.9 � 0.3 86 � 8 85 � 3

1st wash 0.10 �
0.02

1.0 � 0.2

2nd
wash

0.029 �
0.002

0.7 � 0.5

Total 0.30 �
0.03

2.5 � 0.6

BC-
400

Stirring 0.17 �
0.01

1.7 � 0.3 87 � 3 75 � 9

1st wash 0.09 �
0.02

2 � 1

2nd
wash

0.036 �
0.006

0.4 � 0.3

Total 0.29 �
0.01

4 � 2

Results expressed as mean � SD, n ¼ 3.
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evidenced the heterogeneity in the surface of all the biochars studied.
The activated biochars, either by physical or chemical methodologies,
presented greater porosity, more irregular surface and the presence of
channels, contrary to what was observed for BC-Sp. The study by IR
Spectroscopy showed the effect of heat treatment on surface functional
groups of BC-350 and BC-400, and their effect on protein removal effi-
ciency. The BC-Sp and BC-KOH materials were the most efficient mate-
rials, since they presented a balance between the ability to purify LA and
to eliminate proteins, recovering approximately amounts of LA greater
5

than 92 and 88% respectively, parallel reducing the protein content
approximately between values of 82 and 90%, respectively.
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