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Abstract

Throughout the adult life of all mammals including humans, new neurons are incorporated to the 

dentate gyrus of the hippocampus. During a critical window that lasts about two weeks, adult-born 

immature neurons are more excitable and plastic than mature ones, and they respond to a wider 

range of inputs. In apparent contradiction, new neurons have been shown to be crucial to solve 

behavioral tasks that involve the discrimination of very similar situations, which would instead 

require high input specificity. We propose that immature neurons are initially unspecific because 

their task is to identify novel elements inside a high dimensional input space. With maturation, 

they would specialize to represent details of these novel inputs, favoring discrimination.

Introduction

Among cortical structures, the dentate gyrus (DG) of the hippocampus presents a unique 

degree of plasticity conferred by the continuous production of new principal neurons, the 

adult-born dentate granule cells (GCs) [1–3]. Thousands of new GCs are produced every 

day and develop over several weeks, generating millions of new connections that modify the 

preexisting circuits [4]. Extensive evidence accumulated over the last decade has 

demonstrated that adult-born GCs can modify signal processing in the DG and that they are 

necessary to perform specific tasks requiring discrimination of very similar situations [5,6]. 

In this review we focus on the hypothesis that the functional role played by adult-born GCs 

depends on their developmental stage. We propose a mechanism for the involvement of new 

GCs in novel input discrimination based on recent electrophysiological, behavioral and 

computational modeling evidence.

Network Remodeling by Adult Neurogenesis

A remarkable and unique process takes place in the subgranular zone of the DG, a thin layer 

where neural stem cells self-amplify and give rise to new GCs that become integrated to the 

preexisting circuit. Most of what is known about their functional characteristics comes from 
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research in rodents where adult-born GCs develop in living animals and their morpho-

functional properties are studied in acute slices (electrophysiology) or fixed tissue sections 

(microscopy). Recently, the use of transgenic mice and retroviral vectors targeting dividing 

progenitor cells has allowed the selective expression of fluorescent reporters and light-

activated channels into developing GCs to study their function, both in vitro and in vivo.

The development of adult-born GCs is remarkably slow, lasting about 6 – 7 weeks. Over this 

time, morphology, intrinsic electrical properties and synaptic connections evolve in parallel 

towards a mature neuronal phenotype [7–12]. Dendritic GABAergic synaptogenesis occurs 

during the second week (w2) and it is the earliest event that connects developing GCs with 

the circuit. The initial combination of a high input resistance and the depolarizing effect of 

GABA facilitates functional glutamatergic synaptogenesis, which displays a delayed onset 

in comparison to GABA [13–15]. At this early stage of GC development, activation of 

GABAergic networks upon brief exploratory behavior in an enriched environment (EE) 

promotes unsilencing of immature excitatory contacts, which incorporate AMPA-subtype of 

glutamate receptors into NMDAR-only synapses and become capable of fast transmission 

[16]. With time, developing GCs undergo a substantial decrease in membrane resistance that 

is accompanied by a switch that transforms GABA-mediated signaling from excitatory to 

inhibitory [8]. Around w4, GABAergic transmission is already inhibitory, but GCs continue 

to be functionally immature due to their membrane resistance (still higher than what is 

typically found in mature GCs) and lack of perisomatic GABAergic connections, resulting 

in a high neuronal gain. This peculiar combination of intrinsic and network properties spans 

from about w4 to w7, during which young (immature) GC activity is characterized by low 

spiking threshold and poor input specificity [17,18]. Coincidently, GCs at w4 also display 

enhanced activity-dependent potentiation of glutamatergic synapses that only lasts for about 

two weeks, suggesting extensive remodeling of input and output connections during this 

period [19,20]. This remodeling is likely to determine the role of each new GC in 

information processing. The output of young (w4) and mature (w8) GCs was recently 

compared using optogenetic stimulation and electrophysiological recordings in the dentate 

and CA3 areas [21]. While mature GCs can reliably recruit both CA3 networks and 

feedback inhibition onto the granule cell layer, young GCs can activate CA3 networks but 

exert poor recruitment of proximal feedback interneurons. Also recently, Bergami and 

colleagues (2015) showed that the input can be modulated by experience in an EE, 

producing a dramatic expansion in the number of excitatory and inhibitory neurons that 

synapse onto developing GCs [22]. Interestingly, sensitivity to EE is highest in GCs within 

w2 to w6, a window that overlaps with the developmental stages of high excitability, 

enhanced synaptic plasticity, and poor coupling to inhibitory loops.

Overall, at around w4 GCs undergo a transition, lasting at most until w6 to w8, during which 

they are very active, poorly coupled to inhibition and highly susceptible to activity-

dependent synaptic modification of input and output connections. As maturation proceeds, 

activation of new GCs becomes input specific and their connections are stabilized.
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Neurogenesis and Pattern Separation

A major challenge in the field is to understand how the network plasticity described above 

may contribute to information processing in the hippocampus. The structure and sparse 

activity of the DG suggest its involvement in pattern separation, i.e. the transformation of 

similar inputs into dissimilar outputs [23,24]. In a way this mechanism acts in the opposite 

direction of pattern completion, a critical process for the retrieval of memories during which 

representations are transformed, presumably by the influence of CA3 recurrent collateral 

connections, to make them similar to a previously stored sample [25,26]. The conflict arises 

during the acquisition of a new memory due to the fact that any influence from previous 

stored representations would introduce spurious correlations among memories, 

compromising their future retrieval. Computational models thus require the prevalence of 

pattern separation at this stage [27], which is thought to occur due to the strength of 

detonator mossy synapses targeting CA3 pyramidal cells [28].

In agreement with the pattern separation hypothesis, mice lacking NMDA receptors 

selectively in GCs show impaired fear-context discrimination for similar but not dissimilar 

contexts [29]. This manipulation also produces a reduced contextual modulation in the firing 

rate of CA3 place cells. Accordingly, GCs in rats can exhibit a particular sensitivity to small 

contextual variations, which is not present in their target CA3 cells [30]. Pattern separation 

has also been studied in the spatial domain. Lesion studies show that the DG is required to 

discriminate between two very proximal positions in physical space, and becomes 

progressively less important with increasing discrimination distance [31,32]. Similar 

conclusions have been reached through the local manipulation of BDNF [33]. However, the 

spatial response of GCs has been a somewhat controversial issue. GCs have been reported to 

be spatially tuned, with response fields as selective as those of CA3 place cells [34], or 

alternatively as bearers of multiple and unstable fields, suggesting a rather low spatial 

information content [30]. This difference could be explained by the recent report of two 

coexisting populations of putative principal cells in the DG, one spatially tuned and one with 

low spatial information [35,36]. Interestingly, Neunuebel and colleagues (2012) [35] provide 

indirect evidence pointing to the identification of the low-spatial-information group with 

immature GCs. This hypothesis agrees with known properties of immature GCs in vitro but 

has not yet been tested in vivo by means of age-tagging techniques.

Only in the last decade it has been possible to address the crucial issue of whether or not 

young GCs are specifically involved in behavioral pattern separation. To achieve this, 

animals with altered levels of neurogenesis were tested in discrimination tasks with varying 

levels of similarity. The manipulation of neurogenesis was attained through x-irradiation 

[37–39], lentiviral expression of dominant-negative Wnt protein [37], expression of 

proapoptotic Bax protein [38,40], deletion of NR2B-containing NMDA receptors [41] or 

voluntary exercise [42]. The behavioral paradigms included delayed non-matching to place 

in a radial arm maze [37,39], two-choice spatial discrimination in a touch-screen system 

[37,42] and contextual fear-discrimination learning [38– 41]. The convergence of results 

obtained through this combination of techniques and tests points to a crucial role of young 

GCs in pattern separation. Animals with ablated neurogenesis were impaired in their 

capability to discriminate situations with a high degree of similarity, while animals with 
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increased neurogenesis outperformed controls. In all studies, as the task became easier by 

making situations more dissimilar, the differences in performance between treated and 

control animals tended to disappear.

These experiments have been fundamental in describing the importance of newborn GCs in 

hippocampal processing. However, the question of the precise developmental phase in 

which young GCs are crucial has remained unaddressed, partly due to the low temporal 

resolution of the manipulations. In all of the experiments discussed above, alteration of 

neurogenesis started 6-16 weeks before training and lasted throughout the testing period. For 

instance, Sahay and colleagues (2011) observed that performance in a contextual fear-

discrimination task correlated with the expansion or reduction of the adult-born GC 

population [38]. The expansion was triggered 8 weeks before training, while the permanent 

ablation through X-ray irradiation occurred with an anticipation of 4 months. A second 

element in common in these experiments is that training and testing were almost 

simultaneous. In such a scheme, it has not been possible to assess the memory stage in 

which young GCs are important: task acquisition, retrieval or both. An insight on these 

time-related issues would be essential to understand mechanistically the proposed role of 

young GCs in pattern separation.

Computational models

As reviewed in the previous sections, young GCs are:

A. specifically involved in pattern separation,

B. hyper-plastic, excitable and input unspecific,

C. only transiently unique.

The first conceptual challenge for modelers is to solve the apparent contradiction between 

points A and B. The separation of very similar patterns of activity would naturally occur if 

young GCs coded for highly specific details of the input, yet they seem to follow the 

opposite strategy. Even if these points were reconciled, a second conceptual challenge, 

posed by point C, would remain. Why are these two populations dynamic instead of stable 

groups with different characteristics? Strategies based on the mere division of labor between 

different neurons are ubiquitous across the brain, but neurogenesis is a costly extravagance.

One line of models addresses these issues by focusing on the idea that hyper-plasticity 

would make young GCs code for all events occurring during their critical time window, so 

that all associated representations in DG and CA3 would share a common piece of code, i.e. 

a temporal tag [43]. This tag would help discriminating situations that were not experienced 

during the same period of life but would bring together memories of contemporaneous 

events, encoded by the same cohorts of new GCs [44]. Interestingly, simulations predict that 

the contribution of young GCs to the discrimination of similar contexts would be negative 

[45]. This prediction could be tested by recording specifically young GCs while animals 

face a task involving small contextual variations, such as carried out by Leutgeb and 

colleagues (2007) [30].
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A different line of models assigns to young GCs the task of representing novel experiences, 

characterized by surprising inputs with different statistics than expected from the individual 

history of the animal. As opposed to the temporal tagging idea, distinct features of the novel 

phenomena would be represented by different neurons, so no common piece of code would 

be present in CA3 representations. Simulations show that if input statistics change over time, 

a strategy based on a growing internal chart obtains a better input representation than other 

strategies such as fixed populations of plastic neurons or partial neural turnover [46,47]. 

Young GCs may be unique in their firing properties because they are ready to expand the 

code in any necessary direction, which only becomes specific after a critical time window 

that involves learning and maturation (Fig. 1) [21,48,49]. Thus, although young GCs would 

be essential to learn a novel task, it is only in their mature stage that they would perform 

actual pattern separation, enabled by high input specificity and strong coupling to feedback 

inhibitory networks.

Conclusions

Recent years have witnessed great advances in the description of the course of new GCs 

incorporated to the DG. Important behavioral correlates of the deficit or surplus of young 

GCs were found, allowing us to construct computational models that aim to explain their 

role and importance inside the hippocampal machinery. Models suggest that a new 

generation of experiments should take into account the developmental timing and the 

different stages of memory processing. In an idealized experiment, a specific cohort of new 

GCs could be tagged to express opto- or chemogenetically activated channels, allowing for 

reversible and temporally-restricted silencing. The model by Wiskott and colleagues (2006) 

[46], further developed by Temprana and colleagues (2015) [21], predicts that not all 

silencing of young GCs would result in a pattern separation deficit. Instead, four different 

scenarios arise (Fig. 2). First, coincident training and silencing during the critical window 

would result in a learning deficit (i), affecting all future performance even without further 

silencing. The experiments discussed in the Neurogenesis and Pattern Separation section fit 

into this scenario. Second, if learning took place normally without silencing (ii), a 

performance deficit would only appear at a later stage when silencing this particular cohort 

of (mature) GCs. Finally, training outside the critical window of the tagged GCs (iii-iv) 

would result in no deficit, independently of whether silencing is applied or not.

The confirmation or refutation of these predictions would increase our knowledge on the 

functional role of young GCs in mechanistic terms. However, other questions would remain 

open, such as the nature of the mechanism that recruits young GCs in a task-specific 

manner, perhaps following similarity criteria. Only the combined effort of computational 

and experimental research will allow us to further understand this information-processing 

aspect of neurogenesis.
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Highlights

• New immature neurons are incorporated to pre-existing networks of the dentate 

gyrus

• They are hyper-plastic, excitable, uncoupled from inhibition and input 

unspecific

• They are crucial for tasks involving the discrimination of very similar situations

• While immature they could detect novel input features in a high dimensional 

space

• Only in their mature stage they would engage in input discrimination
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Figure 1. A conceptual model of the functional role of GCs in pattern separation across 
maturation
All possible patterns of inputs to the dentate gyrus are projected into a two-dimensional 

space for visualization purposes. Inputs are divided into familiar (light grey), novel (dark 

grey) and a vast majority of never experienced input combinations (white). Every GC has an 

input field, a region of the input to which it is responsive, represented by solid (mature) or 

dashed (immature) circles. Left: The familiar input space is covered by small and non-

overlapping mature input fields, so that close-by inputs are represented by different neurons, 

reflecting pattern separation. In contrast, immature GCs present wide and overlapping fields 

due to high excitability and low inhibition. Right: Through maturation, learning, and 

coupling to feedback inhibitory networks these GCs acquire mature input fields. This 

strategy allows the coverage of vast regions of unexperienced but potentially novel input by 

a few young GCs, which identify the small novel input regions and learn to represent their 

details in a highly specific way. Upper panels represent developing GCs at immature (left) 

and mature (right) developmental phases. Diagram adapted with permission from ref. [21]. 

GC, granule cell.
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Figure 2. Experimental testing and predictions for the conceptual model presented in Fig. 1
In an idealized experiment, a cohort of young GCs is tagged with opto- or chemogenetically 

activated channels, allowing for a precise control of their silencing. A novel task requiring 

pattern separation is introduced. If training occurs while tagged GCs undergo their critical 

period, silencing these cells during training will generate a learning deficit, compromising 

future performance even without further silencing (i). If no silencing occurs during the 

training stage, future deficits in performance will appear transiently when silencing these 

GCs, even if fully mature (ii). If training occurs outside the critical window, no effect of 

silencing on performance is expected (iii and iv). The upper panel depicts the maturation 

process of a tagged cohort of developing GCs. GC, granule cell.
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