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Environmentally induced quantum dynamical phase transition
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Quantum information processing relies on coherent quantum dynamics for a precise control of its
basic operations. A swapping gate in a two-spin system exchanges the degenerate states �↑, ↓� and
�↓, ↑�. In NMR, this is achieved turning on and off the spin-spin interaction b=�E that splits the
energy levels and induces an oscillation with a natural frequency �E /�. Interaction of strength
� /�SE, with an environment of neighboring spins, degrades this oscillation within a decoherence
time scale ��. While the experimental frequency � and decoherence time �� were expected to be
roughly proportional to b /� and �SE, respectively, we present here experiments that show drastic
deviations in both � and ��. By solving the many spin dynamics, we prove that the swapping regime
is restricted to �E�SE��. Beyond a critical interaction with the environment the swapping freezes
and the decoherence rate drops as 1/��� �b /��2�SE. The transition between quantum dynamical

phases occurs when ����b /��2− �k /�SE�2 becomes imaginary, resembling an overdamped classical
oscillator. Here, 0�k2�1 depends only on the anisotropy of the system-environment interaction,
being 0 for isotropic and 1 for XY interactions. This critical onset of a phase dominated by the
quantum Zeno effect opens up new opportunities for controlling quantum dynamics. © 2006
American Institute of Physics. �DOI: 10.1063/1.2193518�
I. INTRODUCTION

Experiments on quantum information processing1 in-
volve atoms in optical traps,2 superconducting circuits,3 and
nuclear spins4,5 among others. Typically, the system to be
manipulated interacts with an environment2,6–8 that perturbs
it, smoothly degrading its quantum dynamics with a decoher-
ence rate, 1 /��, proportional to the system-environment �SE�
interaction � /�SE. Strikingly, there are conditions where the
decoherence rate can become perturbation independent.9

This phenomenon is interpreted10–12 as the onset of a
Lyapunov phase, where 1/��=min�1/�SE,	� is controlled by
the system’s own complexity 	. Describing such a transition
requires expressing the observables �outputs� in terms of the
controlled parameters and interactions �inputs� beyond the
perturbation theory. We are going to show that this is also the
case of the simple swapping gate, an essential building block
for quantum information processing, where puzzling experi-
ments require a substantially improved description. While
the swapping operation was recently addressed in the field of
NMR in liquids13,14 with a focus on quantum computation,
the pioneer experiments were performed in solid state NMR
�Ref. 15� by Müller, Kumar, Baumann, and Ernst �MKBE�.
They obtained a swapping frequency � determined by a two-
spin dipolar interaction b, and a decoherence rate 1 / �2���
�R that, in their model, was fixed by interactions with the
environment 1 / �2�SE�. This dynamical description was ob-
tained by solving a generalized Liouville–von Neumann
equation. As usual, the degrees of freedom of the environ-
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ment were traced out to yield a quantum master equation.16

More recent experiments, spanning the internal interaction
strength,17 hinted that there is a critical value of this interac-
tion when a drastic change in the behavior of the swapping
frequency and relaxation rates occurs. Since this is not pre-
dicted by the standard approximations in the quantum master
equation,15 this motivates to deepen into the physics of the
phenomenon.

In this paper, we present a set of 13C– 1H cross-
polarization NMR data, swept over a wide range of a control
parameter �the ratio between internal interactions and SE in-
teraction strengths�. These results clearly show that the tran-
sition between the two expected dynamical regimes for the
13C polarization, an oscillating regime and an overdamped
regime, is not a smooth crossover. Indeed, it has the charac-
teristics of critical phenomena where a divergence of the
oscillation period at a given critical strength of the control
parameter is indicative of the nonanalyticity of this
observable.18,19 The data are interpreted by solving the swap-
ping dynamics between two coupled spins �qubits� interact-
ing with a spin bath. With this purpose the environment is
represented as a stroboscopic process. With certain probabil-
ity, this instantaneous interaction interrupts the system evo-
lution through measurements and/or injections. This simple
picture, emerging naturally20,21 from the quantum theory of
irreversible processes in the Keldysh formalism,22,23 enables
us to distinguish the interaction parts that lead to dissipation
from those giving pure decoherence. Within this picture, the
overdamped regime arises because of the quantum Zeno
effect,24–26 i.e., environment “measures” the system so fre-

quently that prevents evolution. The analytical solution con-
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firms that there is a critical value of the control parameter
where a bifurcation occurs. This is associated with the switch
among dynamical regimes: the swapping and the Zeno
phase. In consequence, we call this phenomenon a quantum
dynamical phase transition.

II. EXPERIMENTAL EVIDENCE

Our cross-polarization experiments exploit the fact that
in polycrystalline ferrocene Fe�C5H5�2, one can select a pair
of interacting spins, i.e., a 13C and its directly bonded 1H,
arising on a molecule with a particular orientation. This is
because the cyclopentadienyl rings perform fast thermal ro-
tations �	ps� around the fivefold symmetry axis, leading to a
time averaged 13C– 1H interaction. The new dipolar constant
depends27 only on the angle 
 between the molecular axis
and the external magnetic field B0 and the angles between the
internuclear vectors and the rotating axis, which in this case
are 90°. Thus, the effective coupling constant is

b =
1

2

�0�H�C�2

4rHC
3


3 cos2 
 − 1�
2

, �1�

where �’s are the gyromagnetic factors and rHC the internu-
clear distance. Notice that b�
� cancels out at the magic
angle 
m�54.74°. As the chemical shift anisotropy of 13C is
also averaged by the rotation and also depends on 
 as

3 cos2 
−1�, it is straightforward to assign each frequency
in the 13C spectrum to a dipolar coupling b. Thus, all pos-
sible b values are present in a single polycrystalline spec-

FIG. 1. �Color online� Spin swapping dynamics in 13C– 1H. �a� Experimenta
coupling b�
�. �b�: Numerical simulations of the 13C polarization obtained
��� /��=2� and a constant value for �SE ��SE=0.275 ms� obtained by fittin
Projection plots in the b-t plane show a canyon where the oscillation period
trum. The swapping induced by b is turned on during the
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“contact time” t, when the sample is irradiated with two ra-
dio frequencies fulfilling the Hartmann-Hahn condition.27

Experimental details have been given elsewhere.17 At t=0,
there is no polarization at 13C while the 1H system is polar-
ized. The polarization is transferred back and forth in the
13C– 1H pairs while the other protons inject polarization into
these pairs. In Fig. 1�a�, we show the raw experimental data
of 13C polarization as a function of the contact time and b�
�.
The polarizations have been normalized to their respective
values at the maximum contact time �3 ms� for each 
 when
it saturates. It can be appreciated in the figure that the oscil-
lation frequency is roughly proportional to �b�, showing that
this is the dominant interaction in the dynamics. This is con-
sistent with the fact that the next 13C– 1H coupling strength
with a nondirectly bonded proton is roughly b /8 and, as all
the intramolecular interactions, also scales with the angular
factor 
3 cos2 
−1�.

A noticeable feature in these experimental data is the
presence of a “canyon,” in the region �b��2 kHz, where os-
cillations �swapping� disappear. The white hyperbolic stripes
in the contour plot at the bottom evidence a swapping period
2 /� that diverges for a nonzero critical interaction. This
divergence is the signature of a critical behavior.

The standard procedure to characterize the cross-
polarization experiment in ferrocene and similar
compounds17 is derived from the MKBE model. There the
13C polarization exchanges with that of its directly bonded
1H, which, in turn, interacts isotropically with other protons

15

polarization in Fe�C5H5�2 as a function of the contact time t and spin-spin
Eq. �7� for different values of b, a dipolar system-environment interaction
e experimental data in the regime where the MKBE expression is valid.
rges indicating a quantum dynamical phase transition.
l 13C
from
g th
dive
that constitute the environment. Their solution is
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PMKBE�t� = 1 − 1
2 exp�− t/�2����

− 1
2 cos��t�exp�− 3

2 t/�2���� , �2�

where the decoherence rate becomes determined by the rate
of interaction with the environment 1 / �2�SE�→1/ �2����R,
while the swapping frequency is given by the two-spin dipo-
lar interaction, b /�→�. A dependence of the inputs b and
�SE on 
 should manifest in the observables � and ��. How-
ever, working on a polycrystal, each �SE�
� value involves a
cone of orientations of neighboring molecules and a rough
description with a single average value for the SE interaction
rate is suitable.

We have performed nonlinear least square fittings of the
experimental points to the equation PMKBE�t� for the whole
13C spectra of ferrocene in steps of 	80 Hz and contact
times ranging from 2 �s to 3 ms. The 1/ �2��� and � param-
eters obtained from these fits are shown as dots in Fig. 2. The
proportionality of the frequency with b for orientations that
are far from the magic angle is verified. In this region a weak
variation of 1 / �2��� around 2.2 kHz reflects the fact that
1 / �2�SE� does not depend on 
. A drawback of this simple
characterization is that it tends to overestimate the width of
the canyon because of limitations of the fitting procedure
when Eq. �2� is used around the magic angle.

In spite of the MKBE theoretical prediction, one ob-
serves that the frequency becomes zero abruptly and the re-
laxation rate suddenly drops with a quadratic behavior when
bc�2 kHz. The minimum of the parabola occurs at the
magic angle, when b=0. Then, all the polarization reaching
the 13C at this orientation originates from protons outside the
molecule. Then, the rate of 0.5 kHz obtained at this mini-
mum constitutes an experimental estimation of this mecha-
nism. This has to be compared with the almost constant
value of 1 / �2�SE�=1/ �2����2.2 kHz observed outside the
magic angle neighborhood. This justifies neglecting the J
coupling and the direct relaxation of the 13C polarization

FIG. 2. �Color online� Decoherence rate 1 / �2��� and frequency � in the
spin swapping of a 13C– 1H system. Data points are obtained by fitting
cross-polarization experiments to the expression PMKBE�t�. The zero plateau
in the frequency and the parabolic behavior of 1 / �2��� in the region b�SE

�� are indicative of an overdamped Zeno phase. The solid lines are the
prediction of our model assuming a constant �SE=0.275 ms.
through the dipolar interaction with protons outside the mol-
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ecule. In the following we describe our stroboscopic model
that accounts for the “anomalous” experimental behavior.

III. THEORETICAL DESCRIPTION

A. The system

Let us consider M coupled 1/2 spins with a Hamil-
tonian,

H = HZ + �
i�j

�aijIi
zIj

z + bij�Ii
+Ij

− + Ii
−Ij

+�/2� , �3�

where HZ=�i=1
M ���L+��i�Ii

z is the Zeeman energy, with a
mean Larmor frequency �L. The second term is the spin-spin
interaction: bij /aij =0 is Ising, and aij /bij =0,1 ,−2 gives an
XY, an isotropic �Heisenberg� or the truncated dipolar �secu-
lar�, respectively. This last case is typical in solid-state NMR
experiments16 where ���i ,aij ,bij ���L.

In order to describe the experimental system let us take
the first N=2 spins, I1 �a 13C� and I2 �its directly bonded 1H�,
as the “system” where the swapping �↓1↑2�� �↑1↓2� occurs
under the action of b12. The other M −N spins �all the other
1H�, with M→�, are the spin bath or “environment.” This
limit enables the application of the Fermi golden rule or a
more sophisticated procedure to obtain a meanlife �SE for the
system levels. We will not need much detail for the param-
eters of the spin bath in Eq. �3� except for stating that it is
characterized by an energy scale dB which leads to a very
short correlation time �B�� /dB.

B. Spin^ fermion mapping

The spin system can be mapped into a fermion particle
system using the Jordan-Wigner transformation,28,29 Ii

+

=ci
+ expi� j=1

i−1cj
+cj�. Under the experimental conditions,

��i=0, a12=0, and b12=b, the system Hamiltonian becomes

HS = ��L�c1
+c1 + c2

+c2 − 1� + b�c1
+c2 + c2

+c1�/2. �4�

The Jordan-Wigner transformation maps a linear many-body
XY spin Hamiltonian into a system of noninteracting fermi-
ons. This leads us to solve a one-body problem, reducing the
dimension of the Hilbert space from 2N to N states that rep-
resent local excitations.28,29 To simplify the presentation, and
without loss of generality, we consider a single connection
between the system and the spin bath, a23=�d23 and b23

=�d23 with a2j =b2j =0, j=4. . .� and a1j =b1j =0, j=3. . .�.
Spins Ii with 3� i�M are interacting among them. The SE
interaction becomes

V = d23���c2
+c2 − 1

2��c3
+c3 − 1

2� + ��c2
+c3 + c3

+c2�/2� . �5�

In the first �Ising� term, the first factor “measures” if there is
a particle at site 2, while the second “measures” at site 3.
Hence, polarization at site 2 is “detected” by the environ-
ment. The hopping term swaps particles between bath and
system.

In the experimental initial condition, all spins are polar-
ized with the exception of I1.15,30 In the high temperature
limit ���L /kBT�s�1�, the reduced density operator
is ��0�= �� / i�G��0�= �1+sI2

z� / tr1� which under the

Jordan-Wigner transformation becomes ��1−s /2� / tr1��1
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+ �s / tr1��c2
+c2. Since the first term does not contribute to the

dynamics, we retain only the second term and normalize it to
the occupation factor. This means that site 1 is empty while
site 2 and sites at the particle reservoir are “full.” This de-
scribes the tiny excess above the mean occupation 1/2. To
find the dynamics of the reduced density matrix of the “sys-
tem” ��t�= �� / i�G��t�, we will take advantage of the particle
representation and use an integral form22,23 of the Keldysh
formalism instead of the standard Liouville–von Neumann
differential equation. There, any perturbation term is ac-
counted to infinite order ensuring the proper density normal-
ization. The interaction with the bath is local and, because of
the fast dynamics in the bath, it can be taken as instanta-
neous. Hence, the evolution is further simplified into an in-
tegral form of the generalized Landauer Büttiker
equation20,21 �GLBE� for the particle density. There, the en-
vironment plays the role of a local measurement apparatus.
First, we discuss the physics in this GLBE by developing a
discrete time version where the measurements occur at a
stroboscopic time �str.

C. Stroboscopic decoherent model

We introduce our computational procedure operationally
for an Ising form �� /�=0� of V. The initial state of the
isolated two-spin system evolves with HS. At �str, the spin
bath interacts instantaneously with the system interrupting it
with a probability p. The actual physical time for the SE
interaction is then obtained as �SE=�str / p. Considering that
the dynamical time scale of the bath ��B�� /dB� is much
faster than that of the system �fast fluctuation approxima-
tion�, the dynamics of site 3 produces an energy fluctuation
on site 2 that destroys the coherence of the two-spin system.
This represents the “measurement” process that collapses the
system state. At time �str, the system evolution splits into
three alternatives: with probability 1− p the state survives the
interruption and continues its undisturbed evolution, while
with probability p the system is effectively interrupted and
its evolution starts again from each of the two eigenstates of
c2

+c2. These three possible states at �str evolve freely until the
system is monitored again at time 2�str and a new branching
of alternatives is produced, as represented in the scheme of
Fig. 3�a�.

A similar reasoning holds when ��0. The sequence for
isotropic interaction ��=�� is shown in Fig. 3�b�. The XY
part of V can inject a particle. When an interruption occurs,
the bath “measures” at site 2 and, if found empty, it injects a
particle. In the figure, this can be interpreted as a “pruning”
of some incoherent branches increasing the global coherence.
This explains why the rate of decoherence is greater when
the Ising part of V dominates over the XY part. This occurs
with the dipolar interaction and, in less degree, with the iso-
tropic one. This contrasts with a pure XY interaction where
the survival of spin coherences is manifested by a “spin
wave” behavior.31 The empty site of the bath is refilled and
decorrelates in a time much shorter than the swapping be-
tween sites 1 and 2 �fast fluctuation approximation�. Conse-
quently, the injection can only occur from the bath toward

the system.
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D. Analytical solution

The free evolution between interruptions is govern-
ed by the system’s propagators US�t�=exp�−iHSt /��
=−�� / i�G0R�t�. The spin bath interacts with the system stro-
boscopically through an instantaneous interruption function

�̃��t�= �1/ i����str / p����t�. The reduced density function is

��t� = US�t���0�US
†�t��1 − p�n

+ �
m=1

n

US�t − tm��̃��tm�US
†�t − tm�p�1 − p�n−m, �6�

where n=int�t /�str� is the number of interruptions and tm

=m�str. The first term in the right-hand side is the coherent
system evolution weighted by its survival probability
�1− p�n. This is the upper branch in Fig. 3. The second term
is the incoherent evolution involving all the decoherent
branches. The mth term in the sum represents the evolution
that had its last interruption at m�str and survived coherently
from m�str to n�str. Each of these is composed by all the
interrupted branches in Fig. 3 with a single state at the hier-
archy level m with whom the paired state in the upper
branch, generated at time �m+1��str, keeps coherence up to
n�str.

In a continuous time process ��SE=�str / p with p→0 and
�str→0�, the above procedure gives a physical meaning for
the Keldysh’s self-energy20,21 as an instantaneous interrup-
tion function: ���t�=�m

��t�+�i
��t� �see Appendix�. Dissipa-

tion processes are in �i
��t� while �m

��t� involves only deco-
herence. The term �i

��t� injects a particle, increasing the
system density, provided that site 2 is empty. This occurs at
an injection rate pXY /�SE=�XY /� with pXY = ��2 / ��2+�2��,
the XY interaction weight. The decoherent part, �m

��t�, is a

FIG. 3. Quantum branching sequence for the swapping dynamics. Panel �a�
stands for an Ising system-environment interaction and �b� an isotropic one.
Single states represent states with interrupted evolution �incoherent� while
pairs of states are coherent superpositions. Notice the self-similar structure.
consequence of the “measurement” �or interruption� per-
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formed by the environment. It collapses the state vanishing
the nondiagonal terms �coherences� with a measurement rate
�ZZ /�= �1− pXY� /�SE. This also occurs with the XY interac-
tion with rate �XY /� regardless of the fact that an effective
injection takes place. Then, the inverse of the survival time
or interruption rate is � /�SE=�SE=�ZZ+�XY. Unlike �i

��t�,
this process conserves the total polarization. We denote by
� /� the rate associated with the isotropic interaction ��=�
=1�. Then, the anisotropic rates are �ZZ=�2� and �XY

=�2�, then � /�SE=�SE= ��2+�2��. The rates can be calcu-
lated to infinite order in perturbation theory from the solution
of the bath dynamics in a chain of spins with XY
interactions,32 which in the limit d23/dB→0 gives �XY

=2�2d23
2 �dB�−1=�2� which recovers a Fermi golden rule

evaluation.
The anisotropy ratio �� /��2 accounts for the observed

competition30 between the Ising and XY terms of V. The
Ising interaction drives the system to the internal quasiequi-
librium. In contrast, the XY term allows the thermal equili-
bration with the bath.30 Solving Eq. �6� in the limit of con-
tinuos time processes we obtain our main analytical result for
the swapping probability �experimental 13C polarization�,

P�t� = 1 − a0e−R0t − a1 cos��� + iR2�t + �0�e−R1t, �7�

which, in spite of appearance, has a single fitting parameter.
This is because the real functions �, R0, R1, and R2 as well as
a0, a1, and �0 depend exclusively on b, �SE, and pXY. Be-
sides, b and pXY are determined from crystallography and the
anisotropy of the magnetic interaction �pXY =1/5 for dipolar�,
respectively. The phase transition is ensured by the condition
�R2�0. The complete analytical expression is given in the
Appendix.

E. Limiting cases

Typical solutions of the quantum master equation16 for a
spin swapping30 follow that of MKBE.15 They considered an
isotropic interaction with the spin environment, represented
by a phenomenological relaxation rate 1 / �2�SE�. Within the
fast fluctuation approximation and neglecting nonsecular
terms, this leads to PMKBE�t�, used in most of the experimen-
tal fittings. Our Eq. �7� reproduces this result with 1/ �2���
�R�1/ �2�SE� by considering an isotropic interaction
Hamiltonian �=�=1 under the condition 1/ �2�SE��b /�.
However, at short times t��SE, the MKBE swapping prob-
ability growths exponentially with a rate 1 / �2�SE�. In con-
trast, our solution manifests the quadratic polarization
growth in time, � 1

2b /��2t2. In Eq. �7� this is made possible by
the phase �0 in the cosine. In the opposite parametric region,
b�SE��, our model enables the manifestation of the quan-
tum Zeno effect.24–26 This means that the bath interrupts the
system through measurements too frequently, freezing its
evolution. At longer times, t��SE, one gets 1− P�t���1
+ 1

2 �b /��2�SE
2 �exp�− 1

2 �b /��2�SEt�, and the quantum Zeno ef-
fect is manifested in the reduction of the decay rate
1 / �2���� �b /��2�SE as �SE gets smaller than � /b. This sur-
prising dependence deserves some interpretation. First, we
notice that a strong interaction with the bath makes the 1H

spin to fluctuate, according to the Fermi golden rule, at a rate
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1/�SE. The effect on the 13C is again estimated in a
fast fluctuation approximation as 1/��� �b /��2�SE

� �b /��2��d23/��2�B�−1. This “nesting” of two Fermi golden
rule rates is formally obtained from a continued fraction
evaluation of the self-energies32,33 involving an infinite order
perturbation theory. Another relevant result is that the fre-
quency depends not only on b but also on �SE. A remarkable
difference between the quantum master equation and our for-
mulation concerns the final state. In the quantum master
equation ���� must be hinted beforehand, while here it is
reached dynamically from the interaction with the spin bath.
Here, the reduced density, whose trace gives the system po-
larization, can fluctuate until it reaches its equilibrium value.

F. Comparison with the experiments

In order to see how well our model reproduces the ex-
perimental behavior we plot the 13C polarization with realis-
tic parameters. Since the system is dominated by the dipolar
SE interaction,30 we take �� /��=2. We introduce b with its
angular dependence according to Eq. �1� and we select a
constant value for �SE=0.275 ms representative of the b
�� /�SE regime. Since in this work, we are only interested in
the qualitative aspects of the critical behavior of the dynam-
ics, there is no need to introduce �SE�
� as a fitting parameter.
These evolutions are normalized at the maximum contact
time �3 ms� experimentally acquired. They are shown in Fig.
1�b� where the qualitative agreement with the experimental
observation of a canyon is evident. Notice that the experi-
mental canyon is less deep than the theoretical one. This is
due to intermolecular 13C– 1H couplings neglected in the
model. We will show that the analytical expression of Eq. �7�
allows one to determine the edges of the canyon which are
the critical points of what we will call a quantum dynamical
phase transition.

IV. QUANTUM DYNAMICAL PHASE TRANSITION

Our quantum observable �the local spin polarization� is a
binary random variable. The dynamics of its ensemble aver-
age �swapping probability�, as described by Eq. �7�, depends
parametrically on the “noisy” fluctuations of the environment
through �SE. Thus, following Horsthemke and Lefever,18 one
can identify the precise value for �SE where a qualitative
change in the functional form of this probability occurs as
the critical point of a phase transition. This is evidenced by
the functional change �nonanalyticity� of the dependence of
the observables �e.g., the swapping frequency �� on the con-
trol parameter b�SE/�. Since the control parameter switches
among dynamical regimes we call this phenomenon a quan-
tum dynamical phase transition.

It should be remarked that the effect of other spins on the
two-spin system introduces noncommuting perturbing opera-
tors �symmetry breaking perturbations� which produce non-
linear dependences of the observables. While this could ac-
count for the limiting dynamical regimes, it does not ensure
a phase transition. A true phase transition needs a nonanaly-
ticity in these functions which is only enabled by taking the

19
thermodynamic limit of an infinite number of spins. In our
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formalism, this is incorporated through the imaginary part of
the energy, � /�SE, evaluated from the Fermi golden rule.32

When the SE interaction is anisotropic �����, there is a
functional dependence of � on �SE and b yielding a critical
value for their product, b�SE/�=kpXY

, where the dynamical
regime switches. One identifies two parametric regimes: �1�
The swapping phase, which is a form of subdamped dynam-
ics, when b�SE/kpXY

�� �R2=0 in Eq. �7��. �2� A zeno phase,
with an overdamped dynamics for b�SE/kpXY

�� as a conse-
quence of the strong coupling with the environment �zero
frequency, i.e., �=0, in Eq. �7��. In the neighborhood of the
critical point the swapping frequency takes the form �see
Appendix�

� =�apXY
��b/��2 − kpXY

2 /�SE
2 b�SE/kpXY

� �

0 b�SE/kpXY
� � .

� �8�

The parameters apXY
and kpXY

only depend on pXY which is
determined by the origin of the interaction Hamiltonian.
For typical interaction Hamiltonians the values of these
parameters �pXY ,kpXY

,apXY
� are Ising �0, 1

2 ,1�, dipolar
� 1

5 ,0.3564,0.8755�, isotropic � 1
2 ,0 , 1

�2
�, and XY �1,1,1�. The

swapping period is

T �
T0c

3/2

�2apXY

�T0c − T0�−1/2, �9�

where T0=2� /b is the isolated two-spin period and its criti-
cal value T0c=2�SE/kpXY

determines the region where the
period T diverges, as is observed in Fig. 1. The estimated
value of �SE=0.275 ms and dipolar SE interactions yield a
critical value for the 13C– 1H coupling of bc /�=2 /T0c

=1.3 kHz.
The complete phase diagram that accounts for the aniso-

tropy of the SE interactions is shown in Fig. 4. There, the
frequency dependence on pXY and b�SE/� is displayed. At the
critical line the frequency becomes zero setting the limits
between both dynamical phases.

The two dynamical phases can now be identified in the
NMR experiments which up to date defied an explanation.
The experimental setup provides a full scan of the parameter
b�SE through the phase transition that is manifested when the
frequency goes suddenly to zero �Fig. 2�b�� and the relax-
ation rate �Fig. 2�a�� changes its behavior decaying abruptly.
The fact that 1 / �2��� tends to zero when b�� /�SE confirms
the Zeno phase predicted by our model. In this regime,
1 / �2��� is quadratic on b as prescribed. To make the com-
parison between the two panels of Fig. 1 quantitative, we fit
the predicted dynamics of Fig. 1�b� with PMKBE�t�, following
the same procedure used to fit the experimental data. The
solid line in Fig. 2 shows the fitting parameters 1 / �2��� and
� in excellent agreement with the experimental ones.

We point out that Eq. �2� is used to fit both the experi-
ments and the theoretical prediction of Eq. �7� because it
constitutes a simple, thought imperfect, way to extract the
“outputs” �oscillation frequency � and a decoherence time
���. While the systematic errors shift the actual critical value
of the control parameter, b /�, from 1.3 to 2 kHz, Eq. �2�

yields a simplified way to “observe” the transition.
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V. CONCLUSIONS

We found experimental evidence that environmental in-
teractions can drive a swapping gate through a quantum dy-
namical phase transition towards an overdamped or Zeno
phase. The NMR experiments in spin swapping in a 13C– 1H
system enable the identification and characterization of this
phase transition as function of the ratio b�SE/� between the
internal and SE interactions. We developed a model that de-
scribes both phases and the critical region with great detail,
showing that it depends only on the nature of the interaction.
In particular, the phase transition does not occur if the SE
interaction is restricted to isotropic spin coupling. The phase
transition is manifested not only in the observable swapping
frequency but also in the decoherence rate 1 /��. While a
standard Fermi golden rule perturbative estimation would
tend to identify this rate with the SE interaction, i.e., 1 /��

�1/�SE��d23/��2�B, as it occurs well inside the swapping
phase, both rates differ substantially as the system enters the
Zeno phase �b�SE�kpXY

��. Here the decoherence rate
switches to the behavior 1 /��� �b /��2�SE. In the Zeno phase,
the system’s free evolution decays very fast with a rate �SE

−1.
In spite of this, one can see that the initial state as a whole
has a slow decay �its dynamics becomes almost frozen� be-
cause it is continuously fed by the environment. Since the
�SE has become the correlation time for the spin directly
coupled to the environment, 1 /�� provided by our calcula-
tion can be interpreted as a “nested” Fermi golden rule rate
emphasizing the nonperturbative nature of the result. Based
on the wealth of this simple swapping dynamics, we can
foresee applications that range from tailoring the environ-

FIG. 4. �Color online� Quantum dynamical phase diagram for the spin
swapping operation. The figure shows the frequency dependence on system-
environment �SE� interaction anisotropy pXY and the ratio among the inter-
nal and the SE interaction b�SE/�. The projection over the b�SE/�-pXY plane
determines the phase diagram where the transition between the swapping
phase into the Zeno phase ��=0� is manifested. Values of pXY for typical SE
interaction Hamiltonian are indicated in the contour plot.
ments for a reduction of their decoherence on a given process
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to using the observed critical transition in frequency and de-
coherence rate as a tracer of the environment’s nature. These
applications open new opportunities for both the field of
quantum information processing and the general physics and
chemistry of open quantum systems.34
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APPENDIX: DETAILED SOLUTION

1. Discrete time process

It is convenient to rewrite Eq. �6� within the Keldysh
formalism where G��t�= �i /����t� and the evolution opera-
tor for the isolated system is G0R�t�=−�i /��US�t�, where

G0A�t�=G0R�t�†, and the interruption function �̃��t�
= �1/ i����str / p����t�. We rearrange expression �6�, for n�str

� t� �n+1��str, in terms of n�str, the last interruption time,

1

�2G��t� = G0R�t − tn�G��tn�G0A�t − tn��1 − p�

+
i

�
G0R�t − tn��̃��tn�G0A�t − tn�p , �A1�

which takes advantage of the self-similarity of the hierarchy
levels and is simple to iterate. It not only reproduces the
results obtained from the quantum theory of continuous irre-
versible processes20,21 discussed below but also provides a
very efficient algorithm which reduces memory storage and
calculation time substantially.

2. Continuous time process

In the limit p→0 and �str→0 with constant ratio, one
gets a continuous process where �SE=�str / p defines a sur-
vival time for the evolution of the isolated two-spin “sys-
tem.” Equation �6� becomes

G��t� = �2G0R�t�G��0�G0A�t�e−t/�SE

+ �
0

t

dtnG0R�t − tn����tn�G0A�t − tn�e−�t−tn�/�SE,

�A2�

a new form of the GLBE �Refs. 20 and 21� that includes
correlations �nondiagonal terms in G� and ���. Moreover,

keeping �SE constant, under the conditions of finite �str
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�� /d23 and p�d23/dB �here dB is a mean intrabath interac-
tion�, there is no significant difference between the strobo-
scopic approximation and the continuous time description.
Thus, the physics of a quantum theory of irreversible
processes35 is obtained by adapting a collapse theory36 into
the probabilistic branching scheme represented in Fig. 3. The
solutions of Eqs. �6� and �A2� are both computationally de-
manding since they involve a storage of all the previous time
steps and reiterated summations. However, Eq. �A1� pro-
vides a new computation procedure that only requires the
information of a single previous step. Besides, it avoids re-
sorting to the random averages required by models that in-
clude decoherence through stochastic or kicked like
perturbations.37,38 Thus, it becomes a very practical tool to
compute the dynamics in the presence of decoherent and
dissipation processes.

The instantaneous interruption function: ���t�=�m
��t�

+�i
��t� becomes, in matrix form,

�m
��t� = i

�

�SE
���/i�G11

� �t� 0

0 ��/i�G22
� �t�

� , �A3�

�i
��t� = 2i

�pXY

�SE
�0 0

0 �1 − ��/i�G22
� �t��

� , �A4�

where the physical meaning of the Keldysh’s self-energy20,21

becomes evident.
Inserting Eqs. �A3� and �A4� in Eq. �A2� we obtain our

main analytical result, Eq. �7�,

P�t� =
�

i
G11

� �t�

= 1 − a0e−R0t − a1 cos��� + iR2�t + �0�e−R1t, �A5�

here all parameters are real with

� + iR2 =
�3

2x
�1

6
��pXY,x� + 6

��pXY,x�
��pXY,x� �b , �A6�

where �R2�0 and are evaluated with x=b�SE/� using

��pXY,x� = 1
3�x2 − pXY

2 − 1
3 �1 − pXY�2� ,

and

��pXY,x� = 4�1 − pXY��9x2 − 2�1 − pXY�2 + 18pXY
2 �

+ 12�3�4x6 − ��1 − pXY�2 + 12pXY
2 �x4

+ 4pXY
2 �5�1 − pXY�2 + 3pXY

2 �x2

− 4pXY
2 ��1 − pXY�2 − pXY

2 �2��1/2�1/3.

Also,

R0 = �6
��pXY,x�
��pXY,x�

−
1

6
��pXY,x� + pXY +

1

3
�1 − pXY�� 1

�SE
,

�A7�

R1 =
3

2
�pXY + 1

3 �1 − pXY�� 1

�SE
−

R0

2
, �A8�
and
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a0 =
1

2

2��2 − R2
2� + 2R1

2 − b2

��2 − R2
2�+ �R0 − R1�2 ,

a2 =
1

2�� + iR2�
�2R0R1 − b2��R0 − R1� + 2��2 − R2

2�R0

��2 − R2
2� + �R0 − R1�2 ,

a3 =
1

2

b2 + 2R0
2 − 4R0R1

��2 − R2
2� + �R0 − R1�2 ,

a1
2 = a2

2 + a3
2, tan��0� = −

a2

a3
.

The parametric dependence of the swapping frequency
�, Eq. �A6�, has a critical point at x=kpXY

, where the transi-
tion occurs. In the neighborhood of this critical point � and
R2 take the forms

� =�apXY
��b/��2 − kpXY

2 /�SE
2 , b�SE/kpXY

� �

0, b�SE/kpXY
� �

� �A9�

and

R2 =� 0, b�SE/kpXY
� �

apXY
�kpXY

2 /�SE
2 − �b/��2, b�SE/kpXY

� � ,�
where

kpXY

2 =
1

12
���pXY − 1�2��pXY��1/3 + ��pXY� + 19pXY

2

+
�pXY − 1�4/3��pXY�

���pXY��1/3 � , �A10�

��pXY� = − 5291pXY
4 − 1084pXY

3 + 546pXY
2 − 4pXY + 1

+ 24�3pXY
��28pXY

2 − 2pXY + 1�3,

��pXY� = − 215pXY
2 − 2pXY + 1,

and

apXY

2 =
1

2

�f1
2/3 + 36f2��− f3f1

2/3 + 36f2f3 + f1f4�
f1

5/3f4
,

f1 = 36kpXY
− 8 + 24pXY + 48pXY

2 − 36kpXY
pXY − 64pXY

3

+ 12f4,

f2 = 1/3kpXY
− 1/3pXY

2 − 1/9�1 − pXY�2,

f3 = − f4 + pXYf4 − 6kpXY
− 16pXY

4 + 20pXY
3 − 10pXY

2

+ 13pXY
2 kpXY

− 2kpXY
pXY + kpXY

, �A11�

f4 = �12kpXY
+ 96pXY

4 kpXY
− 120pXY

3 kpXY
+ 60pXY

2 kpXY

− 39kpXY
pXY

2 + 6kpXY
pXY − 3kpXY

− 48pXY
4 + 48pXY

3

− 12p2 �1/2.
XY
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In Eq. �A11� the functions f1, f2, f3, and f4 only depend on
pXY.
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