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Signatures of a quantum dynamical phase transition
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Abstract

We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental

swapping gate [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of

the coupled states j";#i and j#;"i gives an oscillation with a Rabi frequency b=_ (the spin-spin coupling). The interaction, _=tSE with a

spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to

btSE\_. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno

dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-

spin system coupled to a spin-bath within a Liouville–von Neumann quantum master equation and we compare the results with our

previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to

the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and

relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely

XY to an Ising interaction form.
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The control of quantum dynamics started to receive
much attention because of its relevance to several applica-
tions ranging from quantum information processing [1] to
nanotechnology [2]. Since the environment usually acts
degrading the quantum dynamics of a system [3], its
decoupling becomes a major challenge. Many techniques
[2,4,5] are developed to avoid this loss of information that
is characterized by a decoherence rate 1=tf. Spin systems
are ideal candidates to test the procedures for QIP.
Recently, we observed an environmentally induced quan-
tum dynamical phase transition in the dynamics of a two-
spin experimental swapping gate [6]. There, the exchange
of the coupled states j";#i and j#;"i gives an oscillation
with a Rabi frequency b=_ (i.e the spin-spin coupling).
We showed that the swapping regime is restricted only
to btSE\_, where _=tSE is the system-environment (SE)
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interaction, and essentially within this regime 1=tf�1=tSE.
However, beyond a critical interaction with the environ-
ment, the swapping freezes and the system enters to a
Quantum Zeno dynamical phase where the relaxation rate
decreases as the coupling with the environment increases
1=tf�b2tSE. Here, we will show how this criticality is
useful to ‘‘isolate’’ a spin-pair.
Firstly, we solve the quantum evolution of a two-spin

system coupled to a spin-bath within the Liouville–von
Neumann quantum master equation [7,8], and compare the
result with our previous one [6] using the Keldysh
formalism [9]. Then, we extend the model to a three
interacting spin system where only one is coupled to the
environment. Beyond a critical interaction, the two spins
not directly coupled to the environment oscillate with
their bare frequency and relax more slowly. In a two-spin
system there is always a critical point that depends on
the anisotropy relation of the SE interaction quantified as
the ratio between Ising and XY terms. However, in the
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three-spin system, the decoherence rate has a smooth cross-
over from proportional to the SE interaction to inversely
proportional to it. This cross-over approaches a critical
transition as the anisotropy of the SE interaction goes from
purely XY to Ising.

Experiments in Ref. [6] focus on two interacting spins
1=2 coupled to a spin-bath as modeled by the Hamiltonian
H ¼HS þHSE þHE, with

HS ¼ _ozðI
z
1 þ Iz

2Þ þ bðIþ1 I�2 þ I�1 Iþ2 Þ=2, (1)

HSE ¼ aIz
2Fz þ bðIþ2 F� þ I�2 FþÞ=2, (2)

HE ¼ _oz

X
2oi

I z
i

þ
X

2oioj

bij ½2Iz
i Iz

j �
1
2
ðIþi I�j þ I�i Iþj Þ�, ð3Þ

where HS is the system Hamiltonian of the two coupled
spins, HE is the spin-bath Hamiltonian with a truncated
dipolar interaction and HSE is the SE interaction with
Fu ¼

P
l b2l I

u
l , u ¼ x; y; z and F� ¼ ðF x � iFyÞ. HSE is an

Ising interaction if b=a ¼ 0 and a XY, isotropic (Heisen-
berg) or the truncated dipolar interaction if a=b ¼ 0; 1;�2,
respectively. We use the model proposed by Müller et al.
[10] to calculate the spin dynamics in the experimental
system of Ref. [6]. The model assumes that only one spin
interact with the spin-bath which is described in a
phenomenological way. In a quantum mechanical relaxa-
tion theory the terms F u are bath operators while in the
semi-classical theory [7,8] F uðtÞ represent classical stochas-
tic forces. As the experimental conditions justify a high
temperature approximation, the semiclassical theory coin-
cides with a quantum treatment. By tracing on the bath
variables the random SE interaction Hamiltonian is

HSEðtÞ ¼ aF zðtÞIz
2 þ b½F�ðtÞIþ2 þ FþðtÞI�2 �. (4)

The time average of these random processes satisfy

FuðtÞ ¼ 0, where their correlation functions are

gðu;vÞðtÞ ¼ FuðtÞFv�ðtþ tÞ. Following the usual treatment
to second order approximation, the dynamics of the
reduced density operator is given by [7,8]

d

dt
sðtÞ ¼ �

i

_
½HS; sðtÞ� �

bbGfsðtÞ � s0g, (5)

where the relaxation superoperator
bbG contains the SE

interaction. It accounts for the dissipative interactions
between the reduced spin system and the spin-bath and
imposes the relaxation of the density operator towards its
equilibrium value s0. We assume that the correlation times
of the fluctuations are extremely short compared with all
the relevant transition rates between eigenstates of the
Hamiltonian. In this extreme narrowing regime or fast
fluctuation approximation we obtain

bbGfsg ¼ 1

2

X
u;v

xu;vJ
ðu;vÞð0Þ½Iu

2; ½I
v
2;s��, (6)
where Jðu;vÞðoÞ ¼
R1
�1

dtgðu;vÞðtÞ expf�iotg is the spectral
density and xu;v ¼ ðadu;z þ bðdu;x þ du;yÞÞ ðadv;z þ bðdv;xþ

dv;yÞÞ. The spatial directions are statistically independent,
i.e. gðu;vÞðtÞ ¼ 0 if uav. Notice that the axial symmetry of
HS around the z axis leads to the impossibility to evaluate
separately Jx and Jy, where Ju ¼

1
2
Jðu;uÞð0Þ. Thus, they

will appear only as the averaged value Jxy ¼ ðJx þJyÞ=2.
The superoperator now can be written as

bbGfsg ¼ GZZ½I
z
2; ½I

z
2;s��

þ GXYð½I
x
2 ; ½I

x
2 ;s�� þ ½I

y
2; ½I

y
2;s��Þ, ð7Þ

where GZZ ¼ a2Jz and GXY ¼ b2Jxy. Note that GZZ and
GXY contain the different sources of anisotropy. The usual
approximation considers Jx ¼ Jy ¼ Jz (identical correla-
tions in all the spatial directions) and a ¼ b ¼ 1 (isotropic
interaction Hamiltonian) [10]. A better approximation
considers a dipolar interaction Hamiltonian, i.e. a ¼
�2b ¼ 2 [6,11]. We consider the experimental initial local
polarization on site 2, sð0Þ ¼ ½1þ bB_o0I Iz

2�=Trf1g and the
spin-bath polarized, where bB ¼ 1=ðkBTÞ. As the final
state reaches the temperature of the spin-bath,
s0 ¼ ½1þ bB_o0I ðI

z
1 þ Iz

2Þ�=Trf1g. Here, s0 commutes with
HS, not containing coherences with DMX1.
Following the standard formalism [7,8], we write the

superoperator
bbG using the basis of eigenstates of the system

Hamiltonian (1). After neglecting the rapidly oscillating
non-secular terms with respect to the Hamiltonian, i.e. GZZ,
GXY5b, we solve Eq. (5) and we calculate the magnetiza-
tion of the spin 1 obtaining an extension of the result of
Ref. [10]. Our essential contribution is that we specifically
account for the anisotropy arising from the nature of SE
interaction reflecting it in GZZ ¼ a2Jz and GXY ¼ b2Jxy,

MIz
1
ðtÞ ¼ TrfIz

1sðtÞg ¼M0½1�
1
2 e
�b2Jxyt

� 1
2
cosðo0tÞ e�ð2b

2Jxyþa
2JzÞt=2�, ð8Þ

where o0 ¼ b=_ and M0 ¼ bB_o0I=4.
If we relax the condition GZZ, GXY5b, i.e. we do not

neglect the non-secular terms for the superoperator
bbG, the

dynamics still occurs in the Liouville space of the
populations and ZQT. We obtain exactly the same solution
derived in Ref. [6] within the Keldysh formalism:

MIz
1
ðtÞ

M0
¼ ð1� a0e

�R0t � a1 cos½ðoþ iR2Þtþ f0�e
�R1tÞ, (9)

where the real functions o, R0, R1 and R2 as well as a0, a1

and f0 depend exclusively on b, 1=tSE ¼ GZZ þ GXY and
pXY ¼ GXY=ðGZZ þ GXYÞ. The complete analytical expres-
sion is given in Ref. [6]. There, we showed that if the SE
interaction is anisotropic ðGXYaGZZÞ, the functional
dependence of o on tSE and b yields a critical value for
their product, btSE=_ ¼ kpXY

, where the dynamical regime

changes. We called this phenomenon a quantum dynamical
phase transition [6,9] ensured by the condition oR2 � 0.
This is evidenced by the functional change (non-analyti-
city) of the dependence of the observables (e.g. the



ARTICLE IN PRESS

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

(bτSE/ )-1

ω°2

ω°3

ω2

ω3

ω0

R1

R2

R3

R
i 
  

/b
ω

i 
  

/b

Fig. 1. (Color online) (a) Frequencies involved in the time evolution of the

polarization in the three-spin system as a function of ðbtSE=_Þ
�1. Dashed

lines represent the isolated system. Dot line corresponds to two spins

decoupled from the environment. (b) Different relaxation rates of the

polarization.
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Fig. 2. (Color online) (a) Coefficients (weights) of the different terms of

Eq. (12). At the critical region there is a switch between the two-spin and

the three-spin regime. (b) and (c) Temporal evolutions of the polarization

in the two-spin and three-spin regimes respectively for different tSE. In (b)

b=_ ¼ 2p� 1 kHz and tSE ¼ 1:43ms for the thick line and tSE ¼ 10ms for

the thin line. In (c) b=_ ¼ 2p� 1kHz and tSE ¼ 0:1ms for the thick line

and tSE ¼ 0:01ms for the thin line.
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swapping frequency o) on the control parameter btSE=_.
This non-analyticity is enabled by taking the thermody-
namic limit of an infinite number of spins [12]. One
identifies two parametric regimes: (1) The swapping phase,
which is a form of sub-damped dynamics, when
btSE=kpXY

4_ (R2 ¼ 0 in Eq. (9)). (2) A Zeno phase, with

an over-damped dynamics for btSE=kpXY
o_ arising on the

strong coupling with the environment (zero frequency, i.e.
o ¼ 0, in Eq. (9)). In the neighborhood of the critical point
the swapping frequency takes the form:

o ¼
apXY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=_Þ2 � k2

pXY
=t2SE

q
btSE=kpXY

4_;

0 btSE=kpXY
p_:

8<
: (10)

The parameters apXY
and kpXY

only depend on pXY which

is determined by the anisotropy of the interaction
Hamiltonian.

Three-spin system: The system Hamiltonian is

HS ¼ _oLðI
z
0 þ Iz

1 þ Iz
2Þ

þ bðIþ0 I�1 þ I�0 Iþ1 Þ=2þ bðIþ1 I�2 þ I�1 Iþ2 Þ=2, ð11Þ

and the environment and SE Hamiltonian remains as
before. Also, the environment is coupled to only one spin
of the system. We solve Eq. (5) as before, without
neglecting non-secular terms of the relaxation super-
operator. Considering the initial condition sð0Þ ¼ ð1þ
b_o0I Iz

0Þ=Trf1g and a polarized spin-bath, the magnetiza-
tion at site 0 is

MIz
0
ðtÞ ¼ TrfIz

0sðtÞg ¼M0½1� a0e
�R0t � a1e

�R1t

þ a2 sinðo2tþ f2Þe
�R2t

þ a3 sinðo3tþ f3Þe
�R3t�. ð12Þ

The coefficients ai, Ri, oi and fi are real and they are
functions of b, 1=tSE and pXY. If pXYa0 the final state has
all the spins polarized because a net transfer of magnetiza-
tion from the spin-bath is possible. However, for an Ising

SE interaction, pXY ¼ 0, we obtain that R0 ¼ 0 and 1�

a0 ¼
1
3
(the asymptotic polarization) because the final state

is the quasi-equilibrium of the three-spin system [11]. In
Fig. 1 we show the frequencies o2 and o3 and the different

relaxation rates as a function of ðbtSE=_Þ
�1 when the SE

interaction is Ising ðpXY ¼ 0Þ. Two changes, resembling the
critical behavior of two-spin systems are observed. The
same phenomenon occurs in Fig. 2(a) where the coefficients
ai are shown. The polarization evolution of an isolated
three-spin system is MIz

0
ðtÞ ¼ ðM0=8Þ½3þ 4 cosðoo

2tÞ þ

cosðoo
3tÞ� where oo

2 ¼ ð
ffiffiffi
2
p

=4Þb=_ and oo
3 ¼ ð

ffiffiffi
2
p

=2Þb=_ are

the natural frequencies. When ðbtSE=_Þ
�1
51, we observe

that o2! oo
2, o3 ! oo

3, a1!
1
3�

3
8, a2!

1
2 and a3!

1
8 as

expected for an isolated three-spin dynamics. The depen-

dence of o3 as a function of ðbtSE=_Þ
�1 is similar to that of

the swapping frequency in Ref. [6]. However, instead of
becoming zero when the SE interaction increases, it
suddenly stabilizes at o0 ¼ b=_, the bare two-spin Rabi
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frequency. At the same point o2, R2 and R3 also have a
sudden change. While R2 and R3 initially grow as

ðbtSE=_Þ
�1, there R2 increases the growing speed while R3

begins to decay as in the Zeno phase of Ref. [6]. Moreover,
the coefficients a2 and a3 switch between them, a2 suddenly
goes down and a3 goes up. These coefficients are the
weights of the different frequency contributions in the time
evolution. The changes on the decoherence rates and on the
weight coefficients of the different oscillatory terms beyond
the critical interaction (region) lead the system to oscillate
with the bare Rabi frequency of two spins decoupled from
the environment. If we keep increasing the control

parameter ðbtSE=_Þ
�1, this effect is enhanced by the next

transition. After the second transition, R1 begins to
decrease as in the Zeno phase behavior of Ref. [6]. As the
term of Eq. (12) that relaxes with R1 leads the system to the
three-spin quasi-equilibrium, when R1 goes down, this final
state is approached much slower. The effect is to avoid the
interaction between the two-spins not coupled to
the environment and I2. After the second transition, the
coefficient a1 goes abruptly to zero leading to a more
pronounced ‘‘isolation’’ of the two-spins. Thus, two
dynamical regimes are observed: One characterized by

the three-spin dynamics for ðbtSE=_Þ
�1t1 and a second

one, for ðbtSE=_Þ
�1
\1, which has a two-spin behavior.

Fig. 2(b) and (c) show the temporal evolution of the
magnetization of Eq. (12) on the three-spin and the two-
spin regimes, respectively. While in Fig. 2(b) the two
frequency contributions are evident, in Fig. 2(c) only the
bare Rabi frequency is manifested. In each graph we show
two curves with different SE interactions. In Fig. 2(b), we
show that increasing the SE interaction the decoherence
rates increase. However, in the two-spin regime (Fig.2(c))
when the SE interaction is increased, the decoherence rate
decreases leading to a better ‘‘isolation’’. It is important to
take into account that while the relaxation rates go to zero
smoothly the swapping frequency acquire the bare value
near the critical point. Another fact to remark is that this
effect is more pronounced when the anisotropy of the SE
interaction is close to a pure Ising SE interaction while an
increase in the XY nature leads to a further smoothing of
the transition. The reason is that, when pXYa0, there is a
net transfer of magnetization to the system which is
redistributed between the three spins, this redistribution
begins to be slower at the second transition when R3 goes
down. In contrast, for a purely Ising interaction, there is no
net polarization transfer and a purely decoherent process at
site 3 freezes its dynamics but its fast energy fluctuations
prevent the interaction with the other spins.
In summary, we found an analytical expression for the

two-spin dynamics plus a spin-bath of the experimental
swapping gate [6], showing that standard density matrix
formalism leads to a quantum dynamical phase transition
as does the Keldysh formalism [6,9]. Here, we extended the
model to a three-spin system and showed that beyond a
critical region the two spins become almost decoupled from
the environment oscillating with the bare Rabi frequency
and relaxing more slowly. While in the two-spin swapping
gate the dynamical transition is critical, when we extend the
system to three-spin the criticality is smoothed out.
However, enough abruptness remains to give the possibi-
lity to use it to ‘‘isolate’’ a two-spin system with a finite SE
interaction.
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