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Abstract
One spin excitation states are involved in the transmission of quantum states and
entanglement through a quantum spin chain, the localization properties of these
states are crucial to achieve the transfer of information from one extreme of the
chain to the other. We investigate the bipartite entanglement and localization
of the one excitation states in a quantum XX chain with one impurity. The
bipartite entanglement is obtained using the concurrence and the localization
is analyzed using the inverse participation ratio (IPR). Changing the strength
of the exchange coupling of the impurity allows us to control the number of
localized or extended states. The analysis of the IPR allows us to identify
scenarios where the transmission of quantum states or entanglement can be
achieved with a high degree of fidelity. In particular, we identify a regime
where the transmission of quantum states between the extremes of the chain is
executed in a short transmission time ∼ N/2, where N is the number of spins
in the chain, and with a large fidelity.

PACS numbers: 75.10.Pq, 03.67.Hk, 03.67.Mn, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the first works dealing with the entanglement shared by pairs of spins on a quantum
chain, the translational invariance of the chain (and its states) has been exploited to facilitate the
analysis of the problem [1–3]. Anyway, there are a number of problems which do not possess
the property of being translationally invariant: semi-infinite chains, chains with impurities
[4] or, in a more abstract sense, random quantum states [5]. These problems have localized
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quantum states whose properties strongly differ from those of translationally invariant quantum
states.

Localized quantum states can be used to storage quantum information [6] and play an
important role in the propagation of entanglement through a quantum spin chain [7]. These
kind of states also appear in some models of quantum computers in the presence of static
disorder [8].

Since the localization of a quantum state is a global property it seems natural to study
its properties using a global entanglement measure as, for example, the one proposed by
Meyer and Wallach [9]. Giraud et al [10] derived exact expressions for the mean value of
the Meyer–Wallach entanglement for localized random vectors and studied the dependence
of this measure with the localization length of the states. Viola and Brown [11] studied the
relationship between generalized entanglement and the delocalization of pure quantum states.
Of course there are other possibilities of studying the relationship between localization of
quantum states and entanglement. The bipartite entanglement and localization of one-particle
states in the Harper model has been addressed by Li et al [12], the entanglement entropy at
localization transitions is studied in [13] and the localized entanglement in the one-dimensional
Anderson model in [14].

In many proposals of quantum computers the qubit energies can be often individually
controlled, this corresponds to controllable disorder of a spin system. Besides, in these
models, the effective spin–spin interaction is usually strongly anisotropic, it varies from the
Ising coupling in the nuclear magnetic resonance and other systems [15] to the XY -type or
the XXZ-type coupling in some Josephson-junction-based systems [16]. The localization
properties of one and two excitation states in the XXZ spin chain with a defect was studied
with some detail by Santos and Dykman [17], but they did not study the entanglement of the
one and two excitation states.

In this paper we are interested in the behavior of the localization and the bipartite
entanglement of the pure eigenstates of a quantum chain with one impurity located in one
extreme. It is well known that the presence of one impurity results in the presence of a
localized state. If the strength of the impurity is large enough the energy of the localized state
lies outside the band of magnons, also known as one-spin excitation states [17]. The one spin
magnons in a homogeneous chain are extended states [17].

As we will show, if the localization of a given state is measured with the inverse
participation ratio (IPR) there are two kinds of localized states, (a) exponentially localized
states that lie outside the band of magnons, and (b) localized states that lie inside the band,
whose number depends on the length of the chain and the strength of the impurity. This
second kind plays a fundamental role in the transmission of quantum states through the chain.
In most quantum state transfer protocols the state to be transferred is localized at one end of
the quantum chain and the transmission is successful when the time evolution of the system
produces an equally localized state at the other end of the chain. So it seems natural to
investigate the time evolution of a localization measure to gain some insight about the problem
of quantum state transfer.

So, the analysis of the time evolution of the IPR, when the initial state consists in a single
excitation located in one impurity, allows the identification of scenarios where the transmission
of quantum states can be achieved for (comparatively) short times and with a very good fidelity.
In this sense we extend some results obtained by Wójcik et al [18].

The paper is organized as follows, in section 2 we present the XX model describing the
quantum spin chain with an impurity. In section 3, we analyze in some detail the spectrum
of the one spin excitations and the eigenstates. In section 4, we present the results obtained
for the IPR for each one spin excitation eigenstate while the bipartite entanglement of the
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eigenstates is analyzed in section 5. Finally, in section 6, we discuss the relationship between
localization and transmission of quantum states.

2. Model

We consider a linear chain of N-qubits with XX interaction. The coupling strengths are
homogeneous except at one site, the impurity, where the coupling strength is different. The
system is described by the Hamiltonian

H(α) = αJ
(
σx

1 σx
2 + σ

y

1 σ
y

2

)
+

∑
i>1

J
(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
, (1)

where σγ are the Pauli matrices, J < 0 is the exchange coupling coefficient and αJ is the
impurity exchange strength, α = 1 corresponds to the homogeneous case.

Since the Hamiltonian commutes with Sz = �iσ
z
i , the Hamiltonian H(α) has a block

structure where each of them is characterized by the number of excited spins in the chain.
Because we are interested in the transmission of a state with one excited spin from one end of
the chain to the other, we focus on the eigenvectors of the one excitation subspace where the
complete dynamics take place. To describe the eigenstates, we choose a basis described by
the computational states of this subspace |n〉 = (↑↑ · · · ↑↓n↑ · · · ↑), where n = 1, . . . , N

given a basis set size equals to the number of spins of the chain.
In this basis, the Hamiltonian H is represented by an N × N matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

0 αJ 0 . . . 0
αJ 0 J . . . 0
0 J 0 . . . 0
...

...
...

. . . J

0 0 0 J 0

⎞
⎟⎟⎟⎟⎟⎠

. (2)

Implementations of this model could be realized, for example, with cold atoms confined
in optical lattices [19–22] or with nuclear spin systems in NMR [23, 24]. While in the first
case an initial pure state in the one excitation subspace can be realized, in the spin ensemble
situations of NMR an effective one excitation subspace is achieved by creating pseudo pure
states where an excess of magnetization is localized on a given spin.

3. Energy spectrum and eigenstates

In this section, we briefly recall some known results about the spectrum and the eigenstates of
the model emphasizing those features that are of interest in the following sections.

The one excitation spectrum consists of N eigenenergies denoted by {E1 � E2 � · · · �
EN }. Choosing the total number of spins even the spectrum results symmetrical with respect
to 0 (E = 0 is not an eigenvalue), for any value of α. Then {E1, . . . , EM} are negative
values whereas {EM+1, . . . , EN } are positive, where M = N/2. In the homogeneous case
(α = αJ ≡ 1), the energy spectrum lies between the values ±2|J |, this interval is usually
called the band of eigenvalues. The size of the chain only changes the number of eigenvalues
between those extreme values, becoming a continuous spectrum when N → ∞.

The inhomogeneous case shows a different behavior. For large enough α the minimal
and maximal eigenenergies become isolated from the band. There is a critical value αc which
separates the region of the spectrum where the energies make a band (0 < α < αc) from the
region where the energies make a band with two isolated energies (α > αc). The critical point
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Figure 1. The one excitation spectrum versus α for a spin chain with 40 spins. For α large
enough the spectrum shows two isolated eigenenergies and one band |E| � 2|J |. The two isolated
curves correspond to the minimal eigenenergy E1 (continuous line) and the maximal eigenenergy
EN (dashed line). At the critical value αc the isolated energies go into the band causing a slight
distortion on the behavior of energies inside the band. In this figure we use |J | = 1.

αc can be obtained analytically, and for large values of N, αc 	 √
2. We will further analyze

this point later on.
For α � αc the minimal and maximal energies move apart from the band proportionally

to −α and +α, respectively. This behavior is depicted in figure 1.
Figure 1 shows that most of the eigenenergies seem to be fairly independent of α, except

for the minimal and maximal energies. But a more detailed study of the derivative of the
eigenenergies with respect to α (see section 5) shows two regions where the changes in the
spectrum are more noticeable: (i) for α ∼ 0 two eigenenergies become degenerate because
the system changes from a chain with N coupled spins to a chain with N −1 coupled spins and
an uncoupled spin; (ii) for α � αc there is a number of avoided crossings between successive
eigenenergies, because of the ‘collision’ among the minimal (or maximal) eigenenergy and
the band.

The eigenstates in the one excitation subspace |�E(α)〉, whose eigenvalue equation is

H(α)|�E(α)〉 = E|�E(α)〉, (3)

can be written as a superposition of the one excitation states

|�Ej
(α)〉 =

N∑
n=1

�(j)
n |n〉, (4)

where due to the symmetries of the spectrum

�(j)
n = (−1)n�(N−j+1)

n . (5)

These coefficients �
(j)
n contain information about localization and entanglement

properties of the eigenstates and can be written as [17]

�(j)
n = d eiθn + d ′ e−iθn. (6)

In a homogeneous chain, the eigenstates are wave-like superpositions of the one excitation
state where the coefficients of the superpositions are given by (6) with θ real. In other case,
α = 1, the eigenstates within the band are very similar to the states of the homogeneous case
(figure 2 shows �(M)

n for α = 0.1), but they differ in their coefficient on the impurity site.
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Figure 2. The coefficients �i for two different eigenstates, |�E1 (α)〉 with α = 1.6 (black squares)
and |�EM

(α)〉 with α = 0.1 (red circles). The lines are a guide to the eye. The states and the
values of α were chosen to obtain equal values for their inverse participation ratios. The inset
shows a zoom of the region near i = 1.

For α > αc the minimal eigenenergy state |�E1〉 is quite different (similarly for |�EN
〉), its

coefficients �(1)
n decay exponentially (figure 2 shows �(1)

n for α = 1.6).
It is rather simple to show the existence of a localized state when α �

√
2. Using the

ansatz �1 = u1 and �n = (−1)n+1e−nκ , for n � 2, to construct a state |�〉, and replacing this
state in equation (3), after some algebra we obtain that

e2κ = α2 − 1, (7)

so, to obtain a localized state, the condition e2κ � 1 implies that α �
√

2. This has been
discussed previously see, for example, the work of Stolze and Vogel [25]. In [25], the authors
exploits the mapping between the XX model with one excitation and a non-interacting fermion
model with one particle.

The density matrix for each eigenstate is given by

ρ̂E(α) = |�E(α)〉〈�E(α)|, (8)

which is a N × N matrix in the one excitation subspace.

4. Localization of the eigenstates

As stated above, the eigenenergies and eigenstates change according to the strength of the
impurity considered in the system. To quantify and study their changes, we calculate the
eigenstate localization as a function of the impurity strength. For that purpose we use the IPR
[10]:

LIPR(|�〉) =
∑N

n �2
n∑N

n �4
n

, (9)

where �i are the coefficients of superposition (4) of the state. When the state is highly
localized (i.e. �i is nonzero for only one particular value of i) LIPR(|�〉) has its minimum
value, 1, and when the state is uniformly distributed (i.e. �i = 1/

√
N for all i) the IPR attains

its maximum value, N. We call a state |�〉 extended if LIPR(|�〉) ∼ O(N), i.e. the IPR is of
the same order of magnitude than the length of the chain.
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Figure 3. Localization measure (LIPR = ∑
n �2

n/
∑

n �4
n) of different one-excitation eigenstates

versus α, for chain with N = 200 spins. The values of αJ and αc are shown. For α � αc , the
curves of the IPR for the all eigenstates, except those corresponding to the minimal and maximal
eigenenergies, collapse into a single curve. For α > αc the curves with LIPR ∼ 1 correspond to
the minimal and maximal eigenenergy states. The steep behavior of these curves when α → α+

c

shows the change from well localized to extended states. The localized states, with the low IPR,
that appear for α < αc correspond to states with eigenenergies near the center of the band. Near
α = 0 there are several localized states. Each curve is double as explained in the text.

From (5), two states whose eigenenergies are symmetric with respect to 0, say |�Ej
〉

and |�EN−j+1〉 where j � N/2, have the same IPR, i.e. LIPR(|�Ej
〉) = LIPR(|�EN+1−j

〉). As
a consequence, each curve in figure 3 is double and we consider the IPR only for the states
{|�E1〉, . . . , |�EM

〉}.
Figure 3 shows the IPR LIPR of several eigenstates {|�E1〉, . . . , |�EN

〉} as a function of
the impurity coupling α. We can identify three regions where the behavior of the LIPR is
qualitatively different. These regions are separated by αJ and αc, where at those values all
eigenstates are equally localized.

The first region 0 < α < αJ shows several localized eigenstates corresponding
to energies close to 0, i.e. the center of the band. Calling αm

Ej
the value of α such

that LIPR(Ej , α) = LIPR(|�Ej
(α)〉) attains its minimum, the numerical results show that

LIPR
(
αm

EM

)
< LIPR

(
αm

EM−1

)
< · · · where αm

EM
< αm

EM−1
< · · ·, i.e. the eigenstate is more

localized as it is closer to E = 0. Besides, the number of localized states increase with N.
In the second region αJ < α < αc, the eigenstates with energies close to the border of

the band become more extended acquiring a IPR maximum near to αc. These peaks become
sharper when N grows. At αc, these eigenstates are again equally localized, but for values
of α larger than αc, but very close to this value, the eigenstates become more localized. The
size of the interval around αc in which this critical behavior can be observed depends on
the size of the chain. Such localization changes seem to be related to the avoided crossings in
the spectrum previously described.

In the last region α > αc there are only two eigenstates highly localized that correspond
to the minimal and maximal eigenenergies, E1 and EN. The other states are extended through
N − 1 sites of the chain.

We want to stress that the IPR gives a coarse description of the eigenstates, for example
the states in figure 2, despite their very different behavior, are equally localized if the measure
of localization is the IPR, effectively LIPR(�E1) = LIPR(�EM

) 	 5.6 for both states. This
indicates that the IPR cannot distinguish the exponentially localized state from the state with
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a wave-like superposition extended over the chain if the latter has its coefficient �1 large
enough.

This shows that the IPR is a good tool to quantify changes in the system due to the
introduction of a impurity spin; however, it does not give information about where the
eigenstate is localized. Moreover, it does not distinguish between quite different states as
those described in figure 2. Studying the coefficients of the eigenstates, we can observe where
they are localized. In the present case they are mainly localized on the impurity site (see
figure 2). However, since we are interested in the transmission of initially localized quantum
states, and that a successful transmission results in another localized state, the IPR could
provide an easy way to identify when the transmission has taken place.

Since the IPR does not distinguish between the exponentially localized states that lie
outside the band of magnons and the localized states inside the band it is necessary to study
both kinds of states using a local quantity. In the next section we study the entanglement
between the impurity site and its first neighbor, this will allow us to classify the different
eigenstates accordingly with its entanglement content.

5. Entanglement of the eigenstates

The bipartite entanglement between two qubits can be calculated using the concurrence [28].
The Ccncurrence of two qubits in an arbitrary state characterized by the density matrix ρ is
given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (10)

where λi are the square roots of the eigenvalues, in decreasing order, of the non-Hermitian
matrix ρρ̃. The spin-flipped state ρ̃ is defined as

ρ̃ = (σ y ⊗ σy)ρ∗(σ y ⊗ σy), (11)

were ρ∗ is the complex conjugate of ρ and is taken in the computational basis {| ↑↑〉,
| ↑↓〉 | ↓↑〉, | ↓↓〉}. The concurrence takes values between 0 and 1, where 0 means that the
state is disentangled whereas 1 means a maximally entangled state.

When considering a subsystem of two qubits on the chain, the concurrence is calculated
with the reduced density matrix. The reduced density matrix for the spin pair (i, j), ρ

(i,j)

E (α),
corresponding to the eigenstate |�E(α)〉 is given by

ρ
(i,j)

E (α) = Tr|�E(α)〉〈�E(α)| = Trρ̂E(α), (12)

where the trace is taken over the remaining N − 2 spins leading to a 4 × 4 matrix.
The structure of the reduced density matrix follows from the symmetry properties of the

Hamiltonian. Thus, in our case the concurrence C
(
ρ

(i,j)

Ek

)
depends on i and j , i.e. the indexes

of the sites where the spin pair lies. Note that in the translationally invariant case C
(
ρ

(i,j)

Ek

)
depends only on |i − j |. In what follows Ci,j = Ci,j (ρEk

) = C
(
ρ

(i,j)

Ek

)
.

Using the definition 〈Â〉 = Tr(ρ̂Â), we can express all the matrix elements of the density
matrix ρ(i,j) in terms of different spin–spin correlation functions. In particular, for nearest
neighbors spins and the eigenstate |�Ej

〉, we get

ρ
(i,i+1)
Ej

=

⎛
⎜⎜⎝

aj 0 0 0
0 bj 〈σ +

i σ−
i+1〉Ej

0
0 〈σ +

i σ−
i+1〉∗Ej

dj 0

0 0 0 0

⎞
⎟⎟⎠ , (13)

where
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aj = 1
4 〈(σ z + I )i(σ

z + I )i+1〉Ej
, (14)

bj = 1
4 〈(σ z + I )i(I − σ z)i+1〉Ej

, (15)

dj = 1
4 〈(I − σ z)i(σ

z + I )i+1〉Ej
, (16)

where I is the 2 × 2 identity matrix, σ±
i = (

σx
i ± iσ

y

i

)/
2, and

〈. . .〉Ej
= 〈�Ej

| . . . |�Ej
〉. (17)

Thus, the concurrence results become

Ci,i+1(ρEj
) = max{0, 2 | 〈σ +

i σ−
i+1〉Ej

|, 2
√|bjdj |}. (18)

For the set of eigenstates that we are considering, the expression for the concurrence can be
further simplified. After some algebra we get

bj = (
�

(j)

i+1

)2
, dj = (

�
(j)

i

)2
, (19)

and that

〈σ +
i σ−

i+1〉Ej
= �

(j)

i+1�
(j)

i . (20)

So, we get that

Ci,i+1(ρEj
) = 2

∣∣�(j)

i+1�
(j)

i

∣∣. (21)

Using the Hellmann–Feynman theorem, and the symmetry properties of the Hamiltonian,
we find that

∂Ej

∂α
= 2J 〈�Ej

|σ +
1 σ−

2 |�Ej
〉. (22)

From the expression for the reduced density matrix ρ(i,i+1), (13), it is clear that when
〈σ +

i σ−
i+1〉 = 0 the reduced density matrix is diagonal and the bipartite entanglement is 0.

Moreover, from (22), when ∂Ej

∂α
= 0 we have that C12(ρEj

) = 0.
So, the concurrence for the first two spins in the eigenstate |�Ej

〉 is given by

C12 =
∣∣∣∣ 1

J

∂Ej

∂α

∣∣∣∣ . (23)

We are interested in the relationship between localization and entanglement for the whole
one spin excitation spectrum. In particular, we want to show that the bipartite entanglement
of a given eigenstate, which is a local quantity, between the impurity site and its first neighbor
detects the type of localization that the eigenstate possess.

First, we proceed to analyze the concurrence of the minimal eigenenergy state, C1,2(ρE1)

as a function of α, the behavior of this quantity is shown in figure 4. At first sight, it is clear
that C1,2(ρE1) is different from zero where LIPR(|�E1〉) (see figure 3) is notable, and that
C1,2(ρE1) → 0 when the eigenvalue enters into the band and, consequently, the eigenstate
becomes extended.

So, when the minimal eigenenergy state is extended for α < αc, the first two spins are
disentangled and C1,2(ρE1) = 0 consistently with ∂E1

∂α
= 0 from (23). At the critical point αc,

the state starts to become localized increasing its degree of localization when α � αc; in the
same way, the pair of spins starts to became entangled and almost disentangled from the rest
of the chain, i.e. C1,2(ρE1) ∼ 1.

Actually, the data shown in figure 4 correspond too to C1,2(ρEN
(α)), this can be seen by

the following argument.

8
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Figure 4. Entanglement between the first spin (the impurity site) and its nearest neighbor for
the eigenstate of the minimal eigenenergy E1. It is measured by the concurrence C1,2(ρE1 ) as a
function of α. When the state is localized, α > αc , spins 1 and 2 are also entangled. Before the
critical point (α � αc) when the state is extended, C1,2(ρE1 ) = 0 consistently with ∂E1

∂α
= 0 for

α � αc .

As in the case of the IPR, the concurrence C12 for eigenstates with symmetrical
eigenenergies respect to 0 (Ej and EN−j+1) is the same. From equations (5) and (23), it
is straightforward to demonstrate the latter affirmation where

C12(ρEj
) = C12(ρEN−j+1), j = 1, . . . ,M, (24)

since
∂Ej

∂α
= −∂EN−j+1

∂α
. (25)

Following with the analysis of the entanglement between the first two spin in the chain,
we calculate the concurrence of the states with energies inside the bands. Figure 5 shows
C12(ρEj

) as a function of α for j = 2, . . . , M . Note that the same scenario is observed for
C12(ρEj

) with j = N − 1, . . . , M + 1.
From figure 5, and calling αm

i the abscissa where C12(ρEi
(α)) has its maximum, we

observe that αm
M < · · · < αm

2 and C12
(
ρEM

(
αm

M

))
> · · · > C12

(
ρE2

(
αm

2

))
. This observation

suggests that the ordering of the maxima of the concurrence C12 for the different eigenstates
follows closely the ordering dictated by the amount of localization of these eigenstates, i.e.
only the most localized states around the impurity site has a noticeable entanglement. We will
use this observation as a guide to formulate a transmission protocol in the next section.

As we have shown, the concurrence and the derivative of the energy are related in a
simple way, see (23). On the other hand, it is well known that the eigenvalues Ei(α) inside the
band are rather insensitive to changes in α, indeed ∂Ei(α)/∂α 	 0 almost everywhere, except
near an avoided crossing with other eigenvalue. In this sense, the behavior shown by the
concurrence in figure 5 reflects the presence of successive avoided crossings between E1(α)

and E2(α), between E2(α) and E3(α), and so on. The abscissa of the peak in the concurrence
of a given eigenstate roughly corresponds to the point where the eigenvalue becomes almost
degenerate.

As a matter of fact, the scenario depicted in figure 5 is not only a manifestation of the
avoided crossings in the spectrum, indeed it can be considered as a precursor of the resonance
state that appears in the system when N → ∞. Recently, Ferrón et al [29] have shown how
the behavior of an entanglement measure can be used to detect a resonance state. In a chain a
resonance state appears in the limit N → ∞; however, the peaks in the concurrence obtained
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Figure 5. Concurrence C12(ρEj
(α)) as a function of the impurity strength α, for j = 2, 3, . . . , 100.

The results were obtained for a chain of N = 200 spins. Each curve C12(ρEj
(α)) has a single peak.

The peaks are ordered by eigenenergy, the rightmost peak corresponds to C12(ρE2 (α)) (red dashed
line), the peak to its left corresponds to C12(ρE3 (α)), and so on. The leftmost peak corresponds
to the curve with the highest eigenenergy shown in the figure, E100 (blue dashed–dotted line),
belong to the energy of the center of the band. The inset shows the concurrence C12(ρEj

(α)) for
j = 2, . . . , 70.

for N large, but finite, can be used to obtain approximately the energy of the resonance state
[29, 30].

6. Transmission of states and entanglement

The effect of the localized states in the one magnon band is best appreciated looking at the
dynamical behavior of the IPR. Figure 6 shows the behavior of LIPR(|ψ(t)〉), where |ψ(t)〉
satisfies that

i
d|ψ(t)〉

dt
= H |ψ(t)〉, |ψ(t = 0)〉 = |1〉, (26)

for different values of α. There are, at least, three well-defined dynamical behaviours, each
one associated with the number of localized states in the system, see figure 3. Figure 6(a)
(α = 0.1) shows the behavior of LIPR when there is only one localized state at the center of
the band; figure 6(b) (α = 0.4) shows the dynamical behavior of LIPR when there are several
localized states; the panels (c), (d) and (e) show the dynamical behavior near the transition
zone and, finally, (f ) shows the dynamical behavior when the system have exponentially
localized states.

We do not want to analyze completely the rich dynamical behavior of LIPR, however,
from the point of view of the transmission of quantum states, it is clear that the regime shown
in panel (b) seems to be particularly useful. Panel (b) shows that when the system has several
localized eigenstates |ψ(t)〉 consists in a superposition of a reduced number of elements of
the one excitation states, i.e. the number of significant coefficients �i is small compared with
N. Besides, the refocusing of the state when the ‘signal’ reaches the end of the chain (near
t 	 100) leads to a smaller LIPR when α = 0.4 than for the other values of α; compare
panel (b) with (a), (c), (d) and (e). The case shown in (f ) is rather different, in this case
the superposition between the initial state |1〉 and the localized state is rather big, so |ψ(t)〉
remains localized even for very long times. This dynamical regime has been proposed to store
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Figure 6. The panels show the dynamical behavior of LIPR versus t, for different values of α. (a)
α = 0.1, (b) α = 0.4, (c) α = 1, (d) α = 1.4, (e) α = 1.5, and (f ) α = 3. In all the cases |1〉 is
the initial condition. The inset in (f ) shows the small oscillations that characterize the behavior
of LIPR for α = 3, in this case the state of the system is localized even for very long times. In (f )
the initial excitation goes back and forth between the impurity site and the rest of the chain with
a frequency given, basically, by the difference of energy between the two lowest eigenenergies.
The steep change near t ∼ 100, that can be observed in all the panels except in (f ), signals the
‘arrival’ of the excitation to the end of the chain. Note that the refocusing, i.e. that the value of
LIPR drops, is different in each regime, but in (b) the refocusing leads to LIPR ∼ O(1). The results
were obtained for a chain with N = 200.

quantum states [7] and, more generally, this kind of states with isolated eigenvalues has been
proposed as a possible scenario to implement practically a stable qubit [31].

We want to remark some points: (1) for very small α there is a ‘refocusing’ such that
LIPR ∼ 1 for t ∼ O(104) when N = 200. (2) The initial excitation that is localized in the
impurities diffuses over the chain [32] so, for a given time t, the number of sites on the chain
that are excited is given, approximately, by LIPR(t). The presence of localized states reduces
this number and the speed of propagation. For 0.3 � α < αc the refocusing of the signal
appears as t ∼ N/2, this time is roughly independent of α. For α � 0.3 the time behavior is
more complicated but the refocusing times scales as 1/α, approximately, for fixed N, we will
consider back this last point later.

We will use regime (b) identified in figure 6 to implement the simplest transmission
protocol, as suggested by Bose [26, 27], and the transmission of an entangled state. But,
as our results suggest, we will place a second impurity at the end of the chain where the
transmission should be detected. Locating an impurity at the end of the chain introduces
a set of localized states around this site. The overall properties of the spectrum do not
change; however, the presence of localized states at the end of the chain would facilitate the
transmission of states (or entanglement) from one end of the chain to the other.
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Figure 7. The concurrence, CA,N (solid black line) and the fidelity F1,N (dashed black line) versus
t for a chain with N = 200 spins.

In the simplest protocol of transmission (as described in [27]) the initial state, |1〉, evolves
following the Hamiltonian dynamics, and the quality of the transmission is measured with the
fidelity

F = 〈1|ρout(t)|1〉, (27)

where ρout(t) is the state at the end of the chain where the transmission is received, and t is the
‘arrival’ time.

For the transmission of an entangled state the protocol is slightly different, again we
follow the protocol described in [27]. Using an auxiliary qubit A, and the first spin of the
chain, the state

|ψ+〉 = 1√
2
(| ↑A↓1〉 + | ↓A↑1〉) (28)

is prepared. After the preparation of the initial state the systems evolves accordingly with its
Hamiltonian and the concurrence between A and the spin at the receiving end of the chain,
CA,N(t), is evaluated.

Figure 7 shows the fidelity for the simplest transmission protocol and the concurrence
between the auxiliary qubit and the last spin of the chain both as functions of the time. The
strength of the interaction between the first and the second spin is the same that between the
last and its neighbor, αJ , with α = 0.4, and the chain has N = 200 spins. The maximum
value of the fidelity and the concurrence are remarkably high. For our chain Cmax 	 0.9,
while for an unmodulated chain (with 200 spins) Cun

max 	 0.23 [26, 27]. It is worthy to
remark that this large value of the fidelity is not necessarily the larger possible tuning the value
of α.

As a matter of fact, that a chain with two symmetrical impurities outperforms a
homogeneous one as a transmission device has been already reported in [18]. In that work,
Wójcik et al analyzed the transmission of quantum states modulating the coupling between
the source and destination qubits. They shown that using small values of the coupling it
is possible to obtain a fidelity of transmission arbitrarily close to one with the transfer time
scaling linearly with the length N. Regrettably the resulting transfer time obtained in their
work is quite large. Here we will extend their results showing that the transfer of quantum
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Figure 8. The fidelity of transmission versus the strength of the impurities and time. The fidelity
presents a peak near α 	 0.6 and t 	 15 for N = 31. In this peak the fidelity is rather big.

states is feasible for shorter transfer times with a very good fidelity ( � 0.9) while keeping the
linear scaling between the transfer time and the length of the chain. To achieve this transfer
scenario we will exploit the information provided by the IPR: for large enough values of α

there is a time of order N/2 such that LIPR ∼ 1.
The identification of regimes where the transmission of quantum states can be achieved

with large fidelity and for (relatively) short times is of great importance. The different
dynamical regimes of the fidelity in a chain with two impurities is rather difficult to analyze
except when α → 0, see [18]. Figure 8 shows the complex landscape of the fidelity of
transmission versus the strength of the impurities and time. Some of the features shown by
the fidelity in figure 8 are best understood using the IPR. In particular, for α fixed, the first
maximum of the fidelity as a function of the time coincides with a minimum of LIPR. This
observation, once systematized, provides the dynamical regime where the transmission can be
achieved with large fidelity and always for times ∼ N/2.

Our results about the time behavior of the IPR show that for tIPR ∼ O(N/2) there is
always a local minimum of the IPR (see figure 6(b)). Since the state that is being transferred
is well localized it is rather clear that we should look for times when the IPR attain local
minima to identify where it is possible to achieve a good transmission. The time tIPR is rather
independent of α. So, optimizing the value of α in order to minimize the value of the minimum
of the IPR at times ∼ tIPR allow us to find the best fidelity achievable for time ttr ∼ tIPR. We
call αopt(N) the value such that the the fidelity F(ttr) attains its maximum for a given N and
for ttr ∼ N/2.

As figure 7 shows, when the transfer of a given state takes place the fidelity presents a
well-defined maximum at time ttr ∼ tIPR ∼ O(N/2). The height of the maximum, Fmax, is a
smooth function of α for α > 0.3, and the same is valid for the transfer time ttr.

Figure 9 summarizes our findings about the fidelity of transmission following the recipe
outlined in the two paragraphs above. The upper panel shows the maximum transmission
fidelity achievable for a chain of length N and the corresponding optimum value of α. As can
be appreciated F � 0.8 even for N = 400. The maximum value of the fidelity is also well
above the predicted for an unmodulated chain and above 2/3 that is the highest fidelity for
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Figure 9. The data shown in the upper panel correspond to the maximum fidelity of transmission
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(triangles) and the concurrence CA,N (diamonds). The protocol of transmission is described in
the text.

classical transmission of a quantum state. The lower panel shows the transmission time ttr
versus N. The linear scaling of ttr with N is rather clear.

It is clear that for an isolated chain the availability of a regime where F ∼ 1, regardless of
the time required to achieve the transfer, is interesting. However, in the presence of dynamical
disorder or an ‘environment’, achieving a moderate fidelity for the transfer at shorter times
seems a better option.

7. Discussion

There is enough evidence to affirm that the entanglement of quantum states whose
eigenenergies present avoided crossings will show steep changes near them ([29, 33], this
work). In our case there is a number of avoided crossings that appears between successive
levels, when E1 comes into the band as α decreases from values larger than the critical. The
avoided crossing between E1 and E2 is nearer to αc than the avoided crossing between E2 and
E3, and so on. This is the behavior depicted in figure 5. The width of the peak in C12 of a
given state (see figure 5) is related to the magnitude of the derivative of the eigenenergy of the
state; the peak is sharper for C12(ρE2) and the successive peaks are more and more rounded.

As we have shown, locating impurities at both extremes of the chain allows us to transfer
more entanglement that an unmodulated chain if both impurities produce a number of localized
eigenstates at each end of the chain. If a initially localized state is transmitted through the chain,
at a posterior time the state is composed by the superposition of many propagating modes. The
optimization of the couplings at the end of the chain allows for the coherent superposition of
many of those modes at some time, ttr, resulting in a large fidelity of transmission. The arrival
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time ttr is always � N/2. It could be interesting to compare the results presented in this work
with the findings of Plastina and Apollaro ([34]) in the case of two diagonal impurities.

While IPR is an appealing quantity since it is very easy to calculate, we have shown that
it is not possible to guess how much entanglement a given state has. The examples analyzed
show that based on the IPR it is not possible to guess from it how much entanglement has
a given state, anyway it remains an appealing quantity since it could be useful to identify
dynamical regimes where the transmission of quantum states can be achieved. The example
presented above, in which the tuning of the interaction between only a couple of spins improves
the transmission, is encouraging. Of course the protocols for perfect transmission perform
this task better, but at the cost of modulating all the interactions between the spins.

There is not, to our knowledge, a simple quantity that allows us to relate, in a direct way,
localization and entanglement. This subject will be object of further investigation.
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