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We propose a GARCH model to represent the clutter in radar applications. We fit this model to real
sea clutter data and we show that it represents adequately the statistics of the data. Then, we develop
a detection test based on this model. Using synthetic and real radar data, we evaluate its performance
and we show that the proposed detector offers higher probability of detection for a specified value of
probability of false alarm than tests based on Gaussian and Weibull models, especially for low signal to
clutter ratios.
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1. Introduction

In radar applications the term clutter is used to denote all
unwanted radar returns. In general clutter is considered an in-
terference source affecting a desired signal and its effects should
be mitigated. Due to its random nature it is usually modeled as a
stochastic process. Depending on the application, mostly used dis-
tributions are Gaussian, Log-normal, Weibull, K [1,2], Pareto [3],
the generalized compound probability density function [4–7] or
clutter is modeled as a spherically invariant random process [8].
Some of these distribution may achieve a good fit to the clut-
ter distribution, but they are time invariant, and in many cases
the radar environment may change abruptly, resulting in a de-
graded performance in real scenarios. The clutter could then be
modeled as an nonstationary autoregressive (AR) process [9], to
model the changes in time, but in this case the distribution would
in many cases be a poor fit to impulsive, or heavy-tailed clutter.
For these reasons, we propose modeling the clutter as a time se-
ries, using Generalized Autoregressive Conditional Heteroscedastic
(GARCH) processes [10,11]. These models use the process history
to improve their characterization at current time and future pre-
dictions. They are often used in econometrics to describe financial
records whose variance changes over time and they have been also
used to model the underwater noise in sonar applications [12].
Two of their main characteristics are heavy tailed probability den-
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sity function, which is desirable for a clutter distribution [1,4] and
volatility clustering, i.e., large changes tend to follow large changes
and small changes tend to follow small ones, property compatible
with several types of clutter in a natural environment.

First, we give a brief introduction to complex GARCH processes
and describe the quasi-maximum likelihood procedure for estimat-
ing their parameters. This estimation method has been described
in detail in [13,14] and has been used in different applications
in [12,15]. We study the estimation error as a function of the
number of samples. Since the number of samples of the process
required to obtain good estimates of its parameters may be too
large in practical situations, we modify the estimation method to
use several short time series instead of a long one. Using this
method we fit a GARCH model to real sea clutter data and per-
form a statistical comparison between real, GARCH, Gaussian and
Weibull clutters, showing that our model represents adequately the
statistics of the data.

Based on a GARCH model for the clutter we develop a detec-
tion algorithm. The philosophy of the detector is different from
that of the generalized likelihood ratio test (GLRT) detector [16] or
the adaptive linear quadratic (ALQ) detector [17]. These detectors
model the clutter in slow time and take a decision using informa-
tion of several pulses for each range cell under test. In our case,
we model the clutter considering the realizations in range (or fast
time), i.e. we have a realization for each transmitted pulse, and
the detection is performed for all the range cells in each pulse.
This has the advantage of not requiring to wait several pulses to
make the decision. We carry out a theoretical analysis to deter-
mine our detection scheme performance by means of Monte Carlo
simulations to evaluate its detection and false alarm probabilities.
Finally, we test the detector in a real situation using sea data mea-
surements. We compare the performances of our method with a

http://dx.doi.org/10.1016/j.dsp.2013.02.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:juanpablo.pascual@ing.unlp.edu.ar
mailto:nellen@ieee.org
mailto:martin.hurtado@ing.unlp.edu.ar
mailto:carlosm@ing.unlp.edu.ar
http://dx.doi.org/10.1016/j.dsp.2013.02.017
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dsp.2013.02.017&domain=pdf


1256 J.P. Pascual et al. / Digital Signal Processing 23 (2013) 1255–1264
detector obtained by assuming the data is Gaussian, and a third
detector based on Weibull clutter envelope. For low values of false
alarm probability, our method results in a higher detection prob-
ability than the others detectors, independently of the value of
signal to clutter ratio (SCR). For high SCR and high false alarm
probability, any detector achieves more or less the same detection
probability.

2. Estimation problem and detection scheme

2.1. GARCH process

The class of stochastic processes that presents autoregressive
conditional heteroscedasticity (ARCH) was proposed in [10]. This
processes have been widely used in econometrics to model dif-
ferent financial variables. Their main feature is that they present
a Gaussian conditional distribution whose variance changes over
time, but their unconditional variance is constant. Later, an ex-
tension of the ARCH processes to GARCH processes was intro-
duced [11], similar to the extension of the AR processes to ARMA
processes in time series theory. An advantage of the last ones is
that they allow a more flexible delays structure, especially with
long memory structures.

A stochastic process is heteroscedastic if its variance changes
over time. In the case of GARCH processes, the conditional het-
eroscedasticity implies a dependence on past observations, and it
is the conditional variance what changes over time. On the other
hand the term autoregressive describes the mechanism whereby
the past information is incorporated into the present variance.

Before proceeding, it is important to mention that the complex
valued data correspond to the in-phase and quadrature compo-
nents of the received radar signal.

A complex GARCH(p,q) process, vt , is defined as [15]

vt = σt zt, zt ∼ CN (0,1) iid, (1)

σ 2
t = k +

p∑
j=1

α jσ
2
t− j +

q∑
j=1

β j|vt− j|2, (2)

where CN denotes circular normal distribution and k, α j and β j
are the process coefficients. The GARCH(p,q) models the return as
a Gaussian white noise process with nonconstant conditional vari-
ance (1), and the current value of that conditional variance, σ 2

t ,
is a linear function of its p past values, σ 2

t−1, . . . , σ
2
t−p , and a

quadratic function of the q past values of the return process en-
velope, |vt−1|, . . . , |vt−q|, (2).

We must impose some constraints on the model coefficients to
obtain desirable properties. The natural constraints are [11]

k > 0, α j � 0, j = 1, . . . , p, β j � 0, j = 1, . . . ,q, (3)

to ensure that the conditional variance is always positive.
Let ψt denote the set of all information up to time t , i.e., σ 2

τ
and vτ for τ � t − 1, then

vt/ψt ∼ CN
(
0,σ 2

t

)
. (4)

This justifies the name conditional variance used for σ 2
t . Moreover

it is possible to show that E{vt} = 0, and if

p∑
j=1

α j +
q∑

j=1

β j < 1, (5)

its unconditional variance is finite and equal to [11]

Var{vt} = 1

1 − ∑p
α j − ∑q

β j
. (6)
j=1 j=1
In this case, because GARCH processes are serially uncorrelated, vt

is a wide sense stationary process.
It is not possible to find an explicit expression for the probabil-

ity density function (pdf) of this kind of processes. However there
are conditions such as (5) which ensure that the process moments
of any order exist [10,11].

2.2. Quasi-maximum likelihood estimation

One of the aims of this work is to model the clutter as a
GARCH process, that is fitting a GARCH model to signal samples
from clutter measured by the radar. By fit we mean to estimate
the coefficients of the process conditional variance. A possible way
to perform this estimation would be using the maximum like-
lihood method, but there is no explicit expression for the pdf
of a GARCH(p,q) vector v = [v1 · · · vn]T , since the distribution
of [σ1 · · · σn]T is not known. To overcome this difficulty, sev-
eral authors consider instead the conditional likelihood function,
given the r = max{p,q} first process observations, v0, . . . , v1−r ,
f (v/v0, . . . , v1−r) [14]. This function may be written as the prod-
uct of the conditional pdfs f (vt/vt−1, . . . , vt−r) which are given
by (4).

Importantly, to start the recursion procedure we have to know
the values of σ 2

0 , . . . , σ 2
1−r . In the literature authors suggest dif-

ferent alternatives, we chose to assign them the value of the
sample variance of the measurement data [11]. Finally, we obtain
an expression for the conditional log-likelihood function, �(θ) =
− ln( f (v/v0, . . . , v1−r)),

�(θ) = n ln(π) +
n∑

t=1

[
ln

(
σ 2

t

) + |vt |2
σ 2

t

]
, (7)

where θ = [k α1 · · · αp β1 · · · βq]T is the parameter vector that
we want to estimate.

Then, the quasi-maximum likelihood estimator (QMLE), θ̂ , is
the value of θ that maximizes f (v/v0, . . . , v1−r), or, equivalently,
that minimizes �(θ) [13]. This estimator must also satisfy the con-
straints for the coefficients (3) and (5). In summary, we may write

θ̂ = arg min
θ∈Θ

�(θ), (8)

where Θ ⊂ (0,∞) × Ω with Ω = {[α1 · · · αp]T ∈ [0,1)p ∧
[β1 · · · βq]T ∈ [0,1)q/

∑p
j=1 α j + ∑q

j=1 β j < 1}.

2.2.1. QMLE asymptotic properties
Let vt be the stationary GARCH(p,q) process defined by (1)

and (2) with parameter vector θ0 = [k0 α0
1 · · · α0

p β0
1 · · · β0

q ]T ∈ Θ .

Suppose the polynomials α0(z) = α0
1 z + · · · + α0

p zp and β0(z) =
1 − β0

1 z − · · · − β0
q zq do not have common zeros. Then the QMLE

obtained from (8) is strongly consistent [13,14], i.e.,

θ̂ →
a.s.

θ0 when n → ∞.

Since zt is an iid normal sequence, and assuming that θ0 is in
Θ , it is possible to show that the estimator θ̂ is also asymptotically
normal [13,14]. However, it is not possible to establish a number
of samples needed to get a desired estimation error, because it
is impossible to explicitly compute the covariance matrix of this
asymptotic distribution.

2.3. Alternative method for coefficient estimation

As we shall see later on, to achieve an acceptable estimation
error the method presented in the former subsection requires a
number of samples that can be larger than the number available
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in realistic radar applications. To overcome this limitation, in this
subsection we propose the use of several independent process re-
alizations of short length instead of a single long one to estimate
the values of the coefficients, and we derive the likelihood function
using this approach.

Let v(1), v(2), . . . , v(M) be M independent process realizations,
then the likelihood function, f (v(1), . . . , v(M)/v(1)

0 , . . . , v(M)
0 , . . . ,

v(1)
1−r, . . . , v(M)

1−r), may be written as the product of the M pdfs

{ f (v(i)/v(i)
0 , . . . , v(i)

1−r)}M
i=1, which have the form of f (v/v0, . . . ,

v1−r).
The log-likelihood function is in this case

�(θ) =
M∑

i=1

[
n ln(π) +

n∑
t=1

[
ln

(
h(i)

t

) + |v(i)
t |2

h(i)
t

]]
, (9)

where ht = σ 2
t .

Then, we obtain the QMLE of θ solving the optimization prob-
lem (8) with �(θ) given by (9).

2.4. Detection

In a general setup, the radar transmits a pulse and the receiver
samples the reflected signal at the output of the matched filter.
If we denote the complex sample at the output of the quadrature
demodulator stage as yt , then the detection procedure is given by
the decision between the two hypotheses H0 and H1 after yt has
been received from the range cell under test

H0: yt = vt,

H1: yt = xt + vt . (10)

Under the null hypothesis H0 it is assumed that the data con-
sist only of clutter vt which is modeled as a GARCH(p,q) process.
We assume that the electronic noise is negligible or is part of the
clutter model. Under the hypothesis H1 it is assumed that the
measurement is the combined result of clutter and echoes from
a target, xt . Since yt is the sample at the output of the matched
filter we can think that xt is a constant proportional to the energy
of the signal. However, a perfect knowledge of the received sig-
nal implies knowing the range of the target very precisely. Because
at microwave frequencies this precision is not feasible, it is more
realistic to assume that it is known only to within a timing-error
factor e jθ , where θ is a random variable uniformly distributed over
(0,2π ] [18]. Then the resulting signal model is xt = Ee jθ , where E
is a deterministic constant.

Under the well-known Neyman–Pearson criterion, the decision
is designed to maximize the probability of detection, P D , under
the constraint that the probability of false alarm, PFA , does not
exceed a given value. The solution of this optimization problem
leads directly to the decision rule [18,19]

Λ(yt) = f y(yt/H1)

f y(yt/H0)

H1
≷
H0

η, (11)

known as likelihood ratio test, where Λ(yt) is called the likelihood
ratio, f y(yt/H1) and f y(yt/H0) are the pdfs of yt given that the
target was present and given that target was not present, respec-
tively, and η is the decision threshold to be determined.

2.4.1. GARCH model of clutter and unknown parameters
Several issues make our problem depart from the classical hy-

pothesis test above. First, we highlight that it is not possible to
find an explicit expression of the pdf of a GARCH process. Thus
we cannot find an expression for the likelihood ratio to obtain
the decision rule. To overcome this difficulty, one can consider in-
stead the conditional pdf given the process observations up to the
range cell under test, yt−1, . . . , y1, in the same way we did in Sec-
tion 2.2. This is a reasonable approach because, except for the first
cell, the previous samples to the range cell under test are known.
If we define ψ t = [yt−1 · · · y1]T , then, we use a conditional likeli-
hood ratio, Λ(yt/ψ t), given by

Λ(yt/ψt) = f y(yt/ψ t; H1)

f y(yt/ψt; H0)
, (12)

to make the decision.
On the other hand, we do not have a perfect knowledge of

the conditional pdfs. Regarding the clutter model, we do not know
the coefficients of the GARCH process and the phase of the signal
model. This leads to a composite hypothesis testing problem.

We adopt a Bayesian approach for the signal phase [18] and a
generalized likelihood ratio test (GLRT) [19] for the clutter coeffi-
cients.

If we denote the prior pdf of θ as fθ (θ), the conditional pdfs of
the data are

f y(yt/ψt; Hi) =
∫

f yθ (yt, θ/ψ t; Hi)dθ

=
∫

f y(yt/ψ t, θ; Hi) fθ (θ)dθ, i = 0,1. (13)

From (4) and (10), f y(yt/ψ t , θ; H0) and f y(yt/ψ t, θ; H1) are
the pdfs of the distributions CN (0, σ 2

t ) and CN (Ee jθ , σ 2
t ), respec-

tively, with σ 2
t = k̂ + α̂1σ

2
t−1 + · · · + α̂pσ

2
t−p + β̂1|vt−1|2 + · · · +

β̂q|vt−q|2, where k̂, α̂1, . . . , α̂p, β̂1, . . . , β̂q are the quasi-maximum
likelihood estimates of the coefficients.

We see that f y(yt/ψ t; H0) = f y(yt/ψ t , θ; H0) because it does
not depend of θ . Furthermore, as in the Gaussian case [18], after
integrating (13) over θ for the hypothesis H1 we get

f y(yt/ψt; H1) = 1

πσ 2
t

e−(|yt |2−E2)/σ 2
t I0

(
2E|yt |
σ 2

t

)
, (14)

where I0(·) is the modified Bessel function of the first kind.
We obtain then the following decision rule

ln

[
I0

(
2E|yt |
σ 2

t

)]
H1
≷
H0

ln(η) + E2

σ 2
t

= λ. (15)

Since the function ln[I0(·)] is monotonically increasing, the
same detection results can be obtained by simply comparing its
argument to a modified threshold. The decision rule then becomes

|yt |
H1
≷
H0

λ′. (16)

We obtained a decision criterion but the specific value of the
threshold, η or λ′ , that will ensure that the false alarm probability
does not exceed a given value has to be found.

The classic way to evaluate the performance of a detector is by
means of its detection and false alarm probabilities. Once an ex-
pression for the PFA in terms of λ′ is obtained, it is inverted to
obtain the threshold setting in terms of the PFA . Thus the distri-
bution of ut = |yt | under each of the two hypotheses is needed.
Again, we do not have explicit expressions of the pdfs of vt or yt .
Thus, to determine a threshold we resort to the conditional false
alarm probability given yt−1, . . . , y1, denoted PFA/ψ t .

Under the hypothesis H0 the conditional pdf of ut given ψ t ,
fu(u/ψ t; H0), is Rayleigh with parameter σ 2

t /2. Then the PFA/ψ t
is given by

PFA/ψt =
∞∫
′

fu(u/ψt; H0)du = e−λ′2/σ 2
t . (17)
λ
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Table 1
Coefficient estimates of a GARCH(0,1) process.

N Coeff. Mean Std. dev.

250 k 20.2676 3.2321
β1 0.7874 0.1045

1000 k 20.2198 1.3927
β1 0.7904 0.0485

2500 k 20.0780 0.9642
β1 0.7959 0.0339

7000 k 20.0364 0.5613
β1 0.7986 0.0198

10 000 k 20.0121 0.4891
β1 0.7995 0.0159

Finally, we can solve (17) to obtain the threshold λ′ , which re-
sults

λ′ =
√

−σ 2
t ln(PFA/ψt). (18)

If we set the PFA/ψ t then from (18) we obtain a value for the
threshold in each cell. With this procedure we get an adaptive
threshold λ′ which depends on the previous clutter samples for
each cell under test. A problem arises when the decision has to be
made in a cell after a detection, because when the signal received
by the radar corresponds to signal plus clutter, it is not possible to
separate the contribution of the clutter. In this work we consider
isolated point targets, so this is not a problem. The decision algo-
rithm can be modified for extended targets by changing the way
in the threshold is set after a presumed detection. An alternative
would be to restart the detection algorithm after the statistic ex-
ceeds the threshold using the unconditional standard deviation, or
to set the threshold after a presumed detection based on the last
sample for which no detection occurred.

3. Simulations

3.1. Estimation error versus number of samples

In order to have a guideline to the estimation quality when real
data are used, we performed an analysis of the estimation error
as a function of the number of samples of the observation vec-
tor. This analysis was done through numerical simulations which
consisted in the generation of independent process realizations of
different length, N , and the estimation of the model coefficients for
each realization. The estimation technique, described in (8), was
solved using the Matlab Active Set Algorithm, implemented through
the method SQP (Sequential Quadratic Programming) [20]. This pro-
cedure was repeated 500 times for each case, i.e., we obtained 500
values of the coefficient estimates for each value of N . We only in-
clude results corresponding to the GARCH(0,1) process, but similar
results were obtained for different process orders, (p,q). The real-
izations were generated with coefficients k0 = 20 and β0

1 = 0.8.
Table 1 shows mean and standard deviation values of the esti-
mates as a function of N . It can be seen that the results verify the
mentioned asymptotic behavior, with a rate of convergence close
to

√
N . However, note that to achieve a reasonable estimation er-

ror, the number of required spatial samples may be larger than the
number available in radar realistic situations.

To compare the original estimation method with the alterna-
tive method proposed in Section 2.3, numeric simulations were
performed to compute mean, standard deviation and RMS error
of the estimates. This simulations consisted in the generation of
M independent realizations of length N of a GARCH(0,1) process
and the estimation of its coefficients solving the optimization prob-
lem (8) with �(θ) given by (9). The values of the coefficients with
Table 2
Comparison between estimates.

M N Coeff. Mean Std. dev. RMS error

40 250 k 20.0211 0.4738 0.4738
β1 0.7990 0.0153 0.0153

1 10 000 k 20.0121 0.4891 0.4887
β1 0.7995 0.0159 0.0159

which the process realizations were generated are k0 = 20 and
β0

1 = 0.8. This procedure was repeated 500 times again. The re-
sults are summarized in Table 2. This table also includes the same
parameters computed for the estimator determined by the original
method with a realization of 10 000 samples. Note that the estima-
tors obtained with this procedure show a behavior similar to those
obtained by the original method when the total number of sam-
ples is the same. It can be seen that the estimators are unbiased
and that the orders of the magnitude of the error are equal. This
gives an idea of the number of independent realizations of fixed
length needed to achieve a given estimation error.

3.2. Detection and false alarm probabilities

In order to evaluate the performance of the detector presented
in Section 2.4, which we call GARCH detector, Monte Carlo simu-
lations were performed to estimate the P D for different values
of SCR, and the PFA . They consisted of generating realizations of
a GARCH(0,1) process of N samples, where each sample corre-
sponds to a range cell. The coefficients were set equal to those of
Section 3.1 with an unconditional variance equal to 100. In a range
cell, chosen at random, we added a sample signal modeled as
described in Section 2.4. The threshold obtained in (18) was eval-
uated, where we fixed PFA/ψ t = 10−3. Note that for these process
orders the threshold only depends on the previous sample of the
range cell under test, i.e., ψ t = yt−1. Thus, we used yt−1 instead of
vt−1, regardless if the statistic exceeds the detection threshold in
the previous range cell or not. To calculate the first threshold we
used the standard deviation calculated from (6). Then, the samples
were compared with the threshold and we estimated the P D and
the PFA by their relative frequencies.

We set a number of independents process realizations large
enough to ensure that the detection and false alarm probabilities
are accurately estimated [19], each one of length N = 200 samples.
We repeat the simulations to estimate the P D for different values
of SCR, keeping the noise power constant and varying the value of
the signal energy, E .

For comparison purposes, we also consider a detector resulting
from assuming that the data have normal distribution, which we
call Gaussian detector. Assuming a normal distribution with zero
mean and variance σ 2 for the clutter and the signal model de-
scribed in Section 2.4, we get for the Gaussian detector a decision
rule equal to (16) but with a threshold given by

λ′
g =

√
−σ 2 ln(PFA), (19)

note that in this case the resulting threshold is constant (the
derivation is analogous to the GARCH detector, except that pdfs
of the data model are used instead of the conditional pdfs [18]).

The simulations to determine the P D and the PFA were re-
peated with the Gaussian detector. However, for this detector sim-
ulations were made in two different ways. In the first we used
the Gaussian detector with clutter generated from a normal dis-
tribution and in the second this detector was used with clutter
generated as a GARCH(0,1) process. In both cases the variance was
set equal to 100.
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Fig. 1. Comparison of detectors performance: probability of detection.

Table 3
Comparison of detectors performance: probability of false alarm.

Detector – data PFA

GARCH detector – GARCH data 1.10×10−3

Gaussian detector – GARCH data 16.70×10−3

Gaussian detector – Gaussian data 0.99×10−3

Fig. 1 shows the estimated values of the P D obtained by means
of numerical simulations for both detectors. We observe that the
P D of the GARCH detector is greater than that of the Gaussian de-
tector for low SCR. Table 3 shows the estimated values of the PFA ,
where it can be seen that for GARCH clutter and Gaussian detec-
tor the PFA is higher than expected. Note that since the Gaussian
is a particular case of a GARCH process (GARCH(0,0)), the GARCH
detector for Gaussian data will behave as a Gaussian detector.
In fact, it can be seen that if the variance is constant in time, the
GARCH detector threshold (18) is the same as the Gaussian detec-
tor threshold (19).

In a similar way, we construct the receiver operating charac-
teristic (ROC) curve using GARCH data for both detectors. A pair
(P D , PFA) corresponds to a point on the curve. By changing the
threshold, any point of the ROC is computed. This curves are
shown in Fig. 2. We can see the performance degradation that suf-
fers the Gaussian detector compared to the GARCH detector for low
values of the PFA .

3.3. Sensibility analysis

A desired characteristic for a radar detector is that the variance
of any unknown parameter does not affect significantly the detec-
tion and the false alarm probabilities. Thus, in the presence of an
estimation error or small changes in the parameters the perfor-
mance of the detector should not vary. For the GARCH detector, a
lower sensibility would allow us to estimate the coefficients with
a smaller number of samples or to maintain the coefficients for a
longer period of time before updating them.

We performed a simulation where we computed the P D and
the PFA , assuming the coefficients were corrupted due to esti-
mation errors. Since we cannot obtain the true distribution of
the coefficient estimators, we assume for them a normal dis-
tribution. The parameters of these distributions are those ob-
tained in the asymptotic analysis performed in Section 3.1, in
particular we use the values obtained for N = 7000 samples, i.e.,
k ∼ N (20, (0.5613)2) and β1 ∼ N (0.8, (0.0198)2). For the P D the
Fig. 2. ROC of the GARCH detector and the Gaussian detector with GARCH data.

Fig. 3. Effect of the coefficients estimation errors over the P D of the GARCH detector.

simulation was repeated 10 times, i.e., for ten different values
of the coefficients. Fig. 3 shows the relative error of the P D ,
(P D − P̂ D)/P D , obtained for different values of SCR. We observe
that it has low P D error for a wide range of SCR values. In the
case of the PFA the simulation was repeated 100 times. The mean
and standard deviation of the PFA estimates are 1.10 × 10−3 and
1.34 × 10−4 respectively. This shows that the detector is robust to
small changes in the parameters.

4. Real sea data

4.1. Clutter modeling

Below we present the results of the fit of a GARCH process to
real clutter data. By fit we mean the procedure to choose the pro-
cess orders and estimate the coefficients of the process conditional
variance using real sea clutter measurements. We use data of the
McMaster University IPIX radar, collected at the Osborne Head
Gunnery Range (OHGR), Dartmouth, Nova Scotia, Canada [21].
Specifically, we use the data recorded on November 11, 1993, at
4:11 p.m. that correspond to the data set stare0. The IPIX radar
has polarimetric information, the shown results correspond to the
vertical polarization (VV). Data corresponds to echoes from a small
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Fig. 4. Estimate of the autocorrelation function of the channel VV data.

target in inhomogeneous sea clutter. The height of the sea waves
was of approximately 0.7 m. The target consists of a beach ball
wrapped with aluminum foil. Its nominal location is 2691 m.
The fast time or range dimension consists of 54 samples, the sam-
pling interval is 15 m and the radar range resolution is 30 m.
The number of transmitted pulses, i.e., the number of samples
of the slow time dimension, is 2048 with a pulse repetition fre-
quency of 200 Hz. In our case the process realizations are taken in
range, i.e., we have a realization for each transmitted pulse. How-
ever, because we are only interested in fitting the GARCH model
to the clutter data, we consider that the realizations extend up to
cell 45, as to exclude the cells that contain the target. We use the
first 1024 realizations for the estimation procedure. The rest of the
data set will be used for validation purposes to evaluate the per-
formance of the detection algorithm.

In principle there is no reason to believe that the realizations
are independent, an hypotheses needed to perform the estima-
tion by the alternative method proposed in Section 2.3. However,
we can think that after a time the environment changes and this
consideration is approximately valid. In order to have a quantita-
tive idea, we estimate the data autocorrelation function by means
of the average of their temporal autocorrelation functions. Fig. 4
shows the estimated autocorrelation function results for the data
of the channel VV. As we can see after 30 ms, or equivalently af-
ter six pulses, the autocorrelation function is approximately zero;
in other words samples from two pulses separated a time interval
longer than 30 ms are not correlated. While this does not nec-
essarily imply independence, it sets a lower bound to the time
between pulses so that independence may exist. We assume that
realizations separated by six pulses or more will produce estima-
tion results similar to independent realizations.

The coefficients estimation was performed using the alternative
method proposed in Section 2.3. We chose M = 156 realizations,
separated each six pulses, which as mentioned consists of N = 45
samples. A priori we do not know the orders of the process that
we want to fit to the data, for this reason the estimate was made
for different orders starting with p = 0 and q = 1. Initially, we
evaluated the possibility of using some model selection criteria,
such as BIC (Bayesian Information Criterion), to determine the or-
der. However, this idea was rejected for two reasons: i) because
the deduction of the BIC assumes that the gradient of the like-
lihood function is zero for θ = θ̂ [22], which in this case is not
necessarily true since θ̂ is a constrained maximum of this function;
ii) when we perform the fit for higher model orders the estimators
Fig. 5. Histograms of the magnitude of measured clutter, a GARCH(0,1) process, a
Gaussian process and a process with Weibull envelope distribution.

corresponding to the coefficients k and β1 take the same values as
in the case of the GARCH(0,1) process fit and the estimates of the
new coefficients do not appear to be statistically significant. This
behavior was common not only for this data set, but also when we
performed the fit to other available measurements not included in
this paper. The values of the estimates k̂ and β̂1 resulting from the
fit of the GARCH(0,1) process to the real data are 5.3675 × 10−3

and 0.7463, respectively.
GARCH processes tend to be impulsive (volatile in the eco-

nomic literature). A small value of k̂ indicates that the conditional
variance of the noise floor will be small and the value of β̂1 is
responsible for the frequency and magnitude with which the im-
pulses occur, for larger values of β̂1 impulses are more likely to
occur. Since the process orders are (0,1) the conditional variance
depends only on the last value of the innovations and most im-
pulses will be of short duration.

Fig. 5 shows the magnitude histograms of the real data, of a
GARCH(0,1) process, of a circularly symmetric Gaussian process
and of a process whose envelope distribution is Weibull. The phase
is uniformly distributed in the first three cases. The samples of
the GARCH(0,1) process were generated with the value of the
estimated coefficients, the samples of the gaussian process were
generated from a normal distribution with zero mean and vari-
ance equal to the data sample variance and the parameters of the
Weibull density function were estimated by the maximum likeli-
hood estimation method [23]. We can see the similarity between
the histograms of the actual data and the histograms of the GARCH
process. To measure the goodness of fit, we evaluated the root
mean-squared error (RMSE) defined as [24]

RMSE =

√√√√√1

L

L∑
j=1

∣∣ f ( j) − h( j)
∣∣2

, (20)

where f (·) is the generic pdf whose parameters are estimated
from the real data, h(·) is the real data histogram and j is the
generic point of the amplitude in which both the pdf and the his-
togram are evaluated. The pdf that gives the smallest RMSE value
is considered to be the best fit to the data. In our case the GARCH
model gives the smallest RMSE for all the data sets considered.
It is also important to note that the data generated by the normal
distribution have a low probability of taking values above three
times the standard deviation, while actual clutter measurements
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are more likely to take these values, as we discussed in the previ-
ous paragraph. Thus, from the results obtained in Section 3.2 it
is expected that the GARCH detector will present a better per-
formance than the Gaussian detector when used with real data.
The Weibull distribution shows a good fit on the tail, but with less
flexibility at low magnitudes.

4.2. Results of the detection algorithm

To evaluate the performance of the detectors in a real appli-
cation situation, we use the same data set stare0 of the McMaster
University IPIX radar, described in Section 4.1. We use the last 1024
realizations (the first 1024 were used to estimate the process co-
efficients). For a first test, to control the SCR, we consider that the
realizations extend up to cell 45 to exclude the cells that contain
the real target, and we add a synthetic target with the model pro-
posed in Section 2.4.

Based on the results of the former section we consider a GARCH
detector of orders (0,1). From (18) the threshold is given by

λ′ =
√

−(
k̂ + β̂1|vt−1|2

)
ln(PFA/ψt), (21)

where k̂ and β̂1 are the coefficient estimates presented in the pre-
vious subsection.

We ran the GARCH detector, the Gaussian detector and a third
detector based in a CFAR algorithm for Weibull background [23].
For the latter detector the threshold is given by [23]

λ′
w = b̂ρ1/ĉ, (22)

where b̂ and ĉ are the maximum likelihood estimates of the pa-
rameters of the Weibull pdf and the coefficient ρ is a function of
the desired probability of false alarm and of the number of sam-
ples used in the estimation procedure, see [23] for more details.

For the Gaussian (19) and Weibull (22) detectors, their param-
eters were estimated using the same data set used to estimate
the GARCH process coefficients. The detection threshold is set for
PFA = 10−3 and the SCR is set to 5 dB. Fig. 6 shows detection maps
for each of the tests. The black pixels correspond to a range cell
where the detection statistic is larger than the threshold. The tar-
get location is indicated on the right side of the figures by the
marker “<”.

We observe that the GARCH detector finds the true position of
the target with only a few false detections despite the strong clut-
ter echoes, which can be appreciated from Fig. 6(a). On the other
hand, the Gaussian detector has lower target detection rate and
higher false alarm rate, as it was anticipated. We mentioned that
the higher false alarm rate is due to the clutter impulsivity not
contemplated by the Gaussian model. These lead us to conclude
that the GARCH model is a better model than the Gaussian for
the clutter. The Weibull distribution models better the heavy tails
than the Gaussian, but to account for the impulsivity associated
to these heavy tails, the detection threshold takes a larger value
than the Gaussian threshold. Thus the Weibull detector reduces the
probability of false alarm at the expense of reducing the detection
probability. Table 4 shows the empirical false alarm and detection
rates for each detection algorithm. We have defined the empiri-
cal false alarm rate as the number of detected pixels, excluding
the target pixels, over the total pixels of the detection map, again
excluding the target pixels. Analogously, we have defined the em-
pirical detection rate as the number of detected pixels in the range
cell where the target is located over the total pixels of this cell.

We performed a second test also using the last 1024 realiza-
tions and all the range cells, including the real target. We ran the
GARCH detector, the Gaussian detector and the Weibull detector,
with the same parameters as those of the former test. Fig. 7 shows
Fig. 6. Detection map in range and time domain for the IPIX radar data set stare0,
channel VV. The target location is the range cell 27, corresponding to 2391 m.
(a) Magnitude of the measurements. (b) GARCH detector. (c) Gaussian detector.
(d) Weibull detector.

Table 4
Empirical false alarm rate and detection rate.

Target Detector P D PFA

Synthetic GARCH 0.4375 0.0056
Gaussian 0.0449 0.0114
Weibull 0.0029 0.0027

Real GARCH 0.2725 0.0048
Gaussian 0.2578 0.0093
Weibull 0.1592 0.0022

detection maps and Table 4 shows the empirical false alarm and
detection rates for each of the tests. In this case we observe that
GARCH and Gaussian detectors have a good target detection rate
but the GARCH detector has a lower false alarm rate than the
Gaussian detector. This is a consequence of the SCR being higher
than SCR used in the previous test. One again, we observe that the
Weibull detector presents a lower false alarm rate than the others
detectors, at the expense of a detection rate reduction.

On the other hand, we can see that the target affects more than
one cell and in the resulting detection map of the GARCH detector
looks as if target masking occurs. This is due to the way in which
we evaluate the threshold after the statistic exceeds it. However, it
is not a problem because the target affects two or three range cells
since the radar resolution is 30 m and the range sampling interval
is 15 m. But it may be a drawback when two targets are near
each other, in which case it may be convenient to use a different
decision rule for selecting the threshold in the range cell after a
presumed detection.

Note that the empirical false alarm rates deviate from the theo-
retical specification. Since the real clutter is not actually generated
by any of the tested models this is expected. The Weibull distribu-
tion has a good fit on the tail of the distribution so it is the model
with better agreement between the empirical and specified false
alarm probabilities. However, as it also has the lowest detection
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Fig. 7. Detection map in range and time domain with real target for the IPIX radar
data set stare0, channel VV. Target location is 2691 m. (a) Magnitude of the mea-
surements. (b) GARCH detector. (c) Gaussian detector. (d) Weibull detector.

probability it is not necessarily the best distribution for the detec-
tion problem. A fair comparison among the proposed model should
not be made based on quality of fit of the probability distributions,
but on a comparison of the overall performance on the solution of
the detection problem. In order to achieve this, we compute the
empirical ROC, i.e. the plot of P D versus PFA calculated from the
data set [25].

The way in which the proposed GARCH detector works has two
time scales; a slow adaptability given by the estimation of the
model parameters which can be performed as a batch process, and
the fast adaptability inherent to the model, in which the threshold
for each detection is affected by the sample of the previous range
cell. To make a fair comparison with other classical detectors we
include two versions of the Gaussian and Weibull detectors: a slow
adaptive and a fast adaptive version. The slow adaptive detectors
estimate the Gaussian or Weibull parameters in the same way as
the GARCH detector, i.e. using a large block of data of many radar
returns, and use the resulting thresholds for detection while gath-
ering the data for the next model update. On the other hand, the
fast adaptive detectors estimate the Gaussian or Weibull distribu-
tion parameters from a single return with a set of secondary range
cells around the cell under test, with a guard cell around it. These
fast adaptive detector attempt to mimic the time varying threshold
of the GARCH detector.

Fig. 8 shows the empirical ROC curves for actual clutter data
and a synthetic target with different SCR. Fig. 9 shows the empiri-
cal ROC curve obtained for actual clutter data and target. The ROC
curves of the Gaussian and Weibull slow adaptive detectors over-
lap. In fact, the same empirical curve would be obtained for a
detector related to any time invariant distribution which involves
a comparison with a threshold that is fixed (at least during a time
interval). The theoretical ROC curves may differ, but the empirical
curve can be obtain simply by varying the threshold, regardless of
the theoretical false alarm probability associated to each threshold
value. The Gaussian and Weibull fast adaptive thresholds change
Fig. 8. Empirical ROC curves for the IPIX radar data set stare0, channel VV with a
synthetic target.

Fig. 9. Empirical ROC curves for the IPIX radar data set stare0, channel VV with an
actual real target.

in each decision but their performance is degraded since the dis-
tribution parameters are estimated poorly by a small number of
samples. For the Weibull detector two parameters must be esti-
mated from the same small data set, so this effect is aggravated.
From Figs. 8 and 9 we can again conclude that the GARCH model
is a better model than the others presented in this work, if the
detection performance is used for the comparison.

5. Discussion

Whitecaps of the sea waves often produce amplitude peaks.
This sort of impulsive response is not well modeled by a Gaus-
sian process. In this paper we proposed to apply a GARCH process
for a better characterization of the sea statistics. Additionally, we
developed a detection scheme based on this data model.

Since the proposed model considers the realizations in range,
the number of samples required to obtain a reasonable estimation
error is not enough. To solve this problem we presented an alter-
native estimation method for short data sequences, without losing
performance. It is based on the use of several independent process
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realizations. We showed that this procedure presents a behavior
similar to that of the original estimation method.

We developed a detection algorithm based on a GARCH model
of clutter. One of its advantages is that it is an adaptive detection
scheme that depends on the previous clutter samples for each cell
under test, thus it is able to pick up the fast time behavior of the
noise. Also, note that if the clutter is Gaussian then the GARCH
detector reduces to the Gaussian detector, i.e., the estimation pro-
cedure will give a nonzero value of k̂, equal to the clutter variance,
and a near zero value for the estimates of the rest of the coeffi-
cients.

We evaluated the detection and false alarm probabilities by
means of Monte Carlo simulations. We showed that for low val-
ues of SCR our detector presents a better performance than the
Gaussian one, i.e. a higher detection probability with a lower false
alarm rate. In addition, our detector has the advantage of deciding
pulsewise, meaning that it does not need to wait for the signal re-
turns from multiple pulses to take a decision. However, we believe
that if we extend these ideas using information of several pulses
the performance will further improve, without need of standard
stationarity assumptions. This may be accomplished for example
using a 2D-GARCH model [26,27].

Regarding the results for actual clutter data, we showed that
the GARCH detector performs better than Gaussian and Weibull
detectors, except for high SCR and high false alarm probability, un-
der this favorable conditions any detector achieves more or less the
same detection probability. The success of the GARCH detector is
explained by its time variability: the threshold for each comparison
depends on the previous sample magnitude, but the parameters of
the model do not change rapidly. This behavior cannot be obtained
with classical detectors which involve a trade off between quality
in the estimation of the distribution parameters and rate of adapt-
ability.

Finally, for a real time application, the detection algorithm has
a practical amount of computational load. Although we need the
signal returns from multiple pulses for updating the coefficient
estimates, we showed that the detector is robust against small
errors in the parameters. Then, there is no need to estimate the
parameters very often. Actually, the coefficients change when envi-
ronments conditions change drastically. This flexibility allows us to
wait the necessary signal returns to perform the estimation, while
the detector is running. Therefore, comparing only the detection
algorithms the GARCH detector has a slightly computational load
than the Gaussian and Weibull slow adaptive detectors because
their thresholds are constant. However, it has a lower computa-
tional load than the Gaussian and Weibull fast adaptive detectors
because the computation of their adaptive thresholds requires an
estimation of the distribution parameters for each range cell.
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