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Abstract. On finite dimensional spaces, it is apparent that an operator is the

product of two positive operators if and only if it is similar to a positive opera-

tor. Here, the class L+ 2 of bounded operators on separable infinite dimensional

Hilbert spaces which can be written as the product of two bounded positive oper-

ators is studied. The structure is much richer, and connects (but is not equivalent

to) quasi-similarity and quasi-affinity to a positive operator. The spectral proper-

ties of operators in L+ 2 are developed, and membership in L+ 2 among special

classes, including algebraic and compact operators, is examined.
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1. Introduction

This work aims to shed light on two questions, “Which bounded Hilbert space

operators are products of two bounded positive operators?”, and “What properties do

such operators share?” Here, positive means selfadjoint with non-negative spectrum.

This class is denoted throughout by L+ 2. The answer is easily given on finite

dimensional spaces: an operator will be in L+ 2 if and only if it is similar to a positive

operator [22], and this in turn is equivalent to the operator being diagonalizable with

positive spectrum. Answering the questions on infinite dimensional Hilbert spaces

is a much more delicate matter. Similarity no longer suffices.

Apostol [1] studied the question as to which operators are quasi-similar to

normal operators, and his work readily adapts to this setting, making it possible to

construct operators which are quasi-similar to positive operators. Another difficulty

then arises, since not every operator which is quasi-similar to a positive operator

will be the product of two bounded positive operators. For this, something extra is

needed.

http://arxiv.org/abs/2007.00680v3
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This is not the end of the story though, since the quasi-similar operators which

are in L+ 2 only form a part of the whole class. One can relax the quasi-similarity

condition to quasi-affinity. Here again, the class of operators which are in L+ 2 and

which are quasi-affine to a positive operator can be characterized. However, even

this falls short of giving the entire class. Nevertheless, it comes close, and in general

) ∈ L+ 2 has the property that it has both a restriction and extension in L+ 2 which

are quasi-affine to a positive operator.

Despite the fact that similarity to a positive operator fails to capture the whole of

L+ 2, a surprising number of the spectral properties of operators similar to positive

operators do carry over. It is an elementary observation that the spectrum of an

operator in L+ 2 is contained in R+, the non-negative reals. Also, it was observed

by Wu [22] that the only quasi-nilpotent operator in the class is 0. It happens

that operators which are similar to positive operators are spectral operators, and

so decompose as the sum of a scalar operator (having a spectral decomposition)

and a quasi-nilpotent operator. Moreover, in this case the quasi-nilpotent part is 0.

Using local spectral theory, it is possible to define an invariant linear manifold (so

not necessarily closed) on which an operator is quasi-nilpotent [14]. In case the

operator has the single valued extension property, which enables the definition of

a unique local resolvent, this manifold is closed. Since the operators in L+ 2 have

thin spectrum, they also have the single valued extension property. It then follows

that for any operator in L+ 2, the quasi-nilpotent part is the restriction to the kernel.

In addition, for non-zero point spectra, there is no non-trivial (generalized) Jordan

structure. These ideas enable the study operators in L+ 2 which are either algebraic

or compact. While the only operators in L+ 2 which are similar to positive operators

are scalar, all are generalized scalar operators (having a �∞ functional calculus).

Furthermore, the algebraic spectral subspaces for operators in L+ 2 have the same

form as that exhibited by normal operators.

Elements of L+ 2 with closed range are the ones which behave most similarly

to the finite dimensional case, since they are similar to positive operators. In this

case it is possible to explicitly describe the Moore-Penrose inverse of the operator,

and to find a generalized inverse which is also in L+ 2.

A good deal of the paper hinges on a theorem due to Sebestyén [18]. Sebestyén’s

theorem states that for fixed operators � and ) , the equation ) = �- has a positive

solution if and only if ))∗ ≤ _�)∗ for some _ > 0. A proof of a refined version

is given in Section 2 using Schur complement techniques (see also [2]), enabling

) ∈ L+ 2 to be written as ��, �, � ≥ 0, where ran � = ran) and ran � = ran)∗.
Such a pair (�, �) is called optimal for ) . Optimal pairs happen to be extremely

useful.

Section 3 looks at those operators (not necessarily in L+ 2) which are either

quasi-affine or quasi-similar to positive operators. Rigged Hilbert spaces are used to

show that for an operator) quasi-affine to a positive operator, ran)∩ker) = {0} and

ran) ∔ ker) = H . In the quasi-similar case, since this will hold for both ) and )∗,

one has instead that ran) ∔ ker) = H . Work of Hassi, Sebestyén, and de Snoo [10]

plays a key role in describing those operators quasi-affine to a positive operator.
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The paper then turns to describing general properties of the class L+ 2 in

Section 4. Central here are optimal pairs, the properties of which are explored in

detail. Examples are given which show that operators in L+ 2 which are similar to a

positive operator, quasi-similar to a positive operator, and quasi-affine to a positive

operator form strictly increasingly larger subclasses when dimH = ∞, and that

there are operators in L+ 2 which do not fall into any of these, further hinting at the

complexities of the class.

Similarity to a positive operator completely characterizes L+ 2 on finite di-

mensional spaces, and this is examined in Section 6. The closed range operators are

considered as a special sub-category. In Section 7, attention turns to those operators

in L+ 2 which are either quasi-affine or quasi-similar to a positive operator, where

there are characterizations given which are analogous to those found for operators

similar to a positive operator. Generally, there is only a weak connection between the

spectra of quasi-similar operators. However, for an operator in L+ 2, quasi-affinity to

a positive operator preserves the spectrum. It is also proved that not every operator

which is quasi-similar to a positive operator is in L+ 2, by proving that any operator

in L+ 2 which is quasi-similar to a positive operator has a square root which is quasi-

similar to a positive operator, but not all have square roots in L+ 2. In Section 8,

general operators in L+ 2 are considered, and the main point is that for any ) ∈ L+ 2,

there exist both restrictions and extensions (on the same Hilbert space) which are

also in L+ 2 and which are quasi-affine to a positive operator.

A constant refrain throughout is that operators in L+ 2 have many of the prop-

erties of positive operators. Section 5 examines this resemblance with regards to

local spectral properties. This is applied in the final section to algebraic operators

and compact operators in L+ 2.

2. Preliminaries

Throughout, all spaces are complex and separable Hilbert spaces. The domain,

range, closure of the range, null space or kernel, spectrum and resolvent of any

given operator � are denoted by dom (�), ran �, ran �, ker �, f(�), and d(�),
respectively, and f(�) ⊆ [0,∞) is indicated as f(�) ≥ 0.

The space of everywhere defined bounded linear operators from H to K is

written as !(H ,K), or !(H) when H = K, while �'(H) denotes the subset in

!(H) of closed range operators. The identity operator on H is written as 1, or 1H
if it is necessary to disambiguate.

As usual, the direct sum of two subspaces M and N with M ∩ N = {0} is

indicated by M ∔ N , and the orthogonal direct sum by M ⊕ N . The orthogonal

complement of a space M is written M⊥. The symbol P denotes the class of all

Hilbert space orthogonal projections, while %M is the orthogonal projection with

range M.

Write�!(H) for the group of invertible operators in !(H), L+ = !(H)+, the

class of positive semidefinite operators,�!(H)+ := �!(H) ∩ L+ and �'(H)+ :=

�'(H) ∩ L+. The paper focuses on the operators in

L+ 2 := {) ∈ !(H) : ) = �� where �, � ∈ L+}.
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Occasionally, this will be written as L+ 2(H) if it is necessary to clarify on which

space the operators are acting.

Given two operators (,) ∈ !(H), the notation) ≤ ( signifies that (−) ∈ L+

(the Löwner order). Given any ) ∈ !(H), |) | := ()∗))1/2 is the modulus of ) and

) = * |) | is the polar decomposition of ) , with * the partial isometry such that

ker* = ker) and ran* = ran) .

For � ∈ L+, the Schur complement �/S of � to a closed subspace S ⊆ H
is the maximal element of {- ∈ !(H) : 0 ≤ - ≤ � and ran - ⊆ S⊥}. It always

exists. The S-compression of � is defined as �S := � − �/S .

Let � ∈ !(H) be selfadjoint, S ⊆ H a closed subspace, relative to S ⊕ S⊥,

� =

(

�11 �12

�∗
12

�22

)

.

Suppose that � ≥ 0. Write �1/2 =

(

'∗
1

'∗
2

)

, where '∗
1
, '∗

2
are the rows of �1/2.

Then for 9 = 1, 2, '∗
9' 9 = � 9 9 , and so by Douglas’ lemma, there are isometries

+ 9 : ran �
1/2
9 9

→ ran ' 9 such that ' 9 = + 9�
1/2
9 9

. Then �12 = '∗
1
'2 = �

1/2
11
��

1/2
22

,

where � = +∗
1
+2 : ran �

1/2
22

→ ran �
1/2
11

is a contraction.

On the other hand, if �11, �22 ≥ 0 and �12 has this form, then

� =

(

�
1/2
11

0

�
1/2
22
�∗ �

1/2
22
��

) (

�
1/2
11

��
1/2
22

0 ���
1/2
22

)

=

(

�
1/2
11

�
1/2
22
�∗

)

(

�
1/2
11

��
1/2
22

)

+
(

0 0

0 �
1/2
22

(1 − �∗�)�1/2
22

)

,

(2.1)

where�� = (1ran �22
−�∗�)1/2 on ran �22. Therefore, positivity of � is equivalent to

�11, �22 ≥ 0 and the existence of such a contraction�. The second term in the sum in

(2.1) is the Schur complement �/S, while the first term is theS-compression of �. In

general, it is not difficult to verify that whenever � = �∗�, where � : S ⊕ S⊥ → S,

then �/S = 0.

The next theorem is a slightly strengthened form of one due to Sebestyén ([18],

see also [2, Corollary 2.4]). It plays a central role in what follows.

Theorem 2.1 (Sebestyén). Let �,) ∈ !(H). The equation �- = ) has a positive

solution if and only if

))∗ ≤ _�)∗

for some _ ≥ 0, in which case - can be chosen so that ker - = ker) , -/ran) = 0.

Furthermore, if � ≥ 0 with ran � = ran) , then %ran () )- |ran () ) will be injective with

dense range.

Proof. If �- = ) has a positive solution, then _ = ‖- ‖ suffices. On the other hand, if

for some_ ≥ 0, 0 ≤ ))∗ ≤ _�)∗, then �)∗ ≥ 0 and by Douglas’ lemma, there exists

� with ‖�‖ ≤ _1/2 and ran� ⊆ ran ()�∗)1/2 satisfying ) = ()�∗)1/2�. Clearly

then, ker) = ker� and ran) ⊆ ran ()�∗)1/2. Also ran ()�∗)1/2 = ran ()�∗) ⊆
ran) , so equality holds. The equality )�∗ = ()�∗)1/2��∗ then implies ()�∗)1/2 =

��∗ = ��∗. Thus ) = ��∗�, and so - = �∗� ≥ 0 with ker - = ker)
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(equivalently, ran - = ran)∗). Also, ran� = ran ()�∗)1/2 = ran) . Decompos-

ing H = ran) ⊕ ker)∗, the operator � has the form � =

(

�1 �2

0 0

)

, and by (2.1),

-/ran) = 0.

Finally, if � ≥ 0 with ran � = ran) , then ()�)1/2 = �� = �1� = ��∗
1
.

Hence ker(�∗
1
�1) = {0}, and so %ran () )- |ran () ) is injective with dense range. �

3. Similarity and quasi-similarity to a positive operator

Recall that two operators (,) ∈ !(H) are similar if there exists � ∈ �!(H) such

that )� = �(.

Mimicking the spectral theory for normal operators, an operator ) is spectral

if for all l ⊆ C Borel, there are (not necessarily orthogonal), uniformly bounded,

countably additive projections � (l) commuting with) such thatf() |ran � (l) ) = l.

If in addition, ) =
∫

f () ) _3� (_), ) is termed a scalar operator, in which case it

is similar to a normal operator � and f()) = f(�). More generally, any spectral

operator ) has a unique decomposition ) = ( + # , where ( is scalar, # is quasi-

nilpotent, and (# = #(. See, for example, [7].

Various papers, including [17, Theorem 2], have considered operators similar

to selfadjoint operators. See also [20] for the connection with scalar operators. The

following collects conditions for an operator to be similar to a positive operator.

Theorem 3.1. Let ) ∈ !(H). The following statements are equivalent:

(i) )� = �( for some � ∈ �!(H) and ( ∈ L+;

(ii) )- = -)∗ with - ∈ �!(H)+ and f()) ≥ 0;

(iii) ) = ��, with �, � ∈ L+, where �, respectively �, is invertible;

(iv) There exist,, / ∈ �!(H)+ such that ), ∈ L+, respectively /) ∈ L+;

(v) ) is a scalar operator and f()) ≥ 0.

If any of these hold, then

ran) ∔ ker) = H .

Proof. (i) ⇒ (ii): If 0 ≤ ( = �−1)�, � ∈ �!(H), then f()) = f(() ≥ 0. Also,

since �−1)� = �∗)∗�∗ −1, it follows that (��∗)−1) (��∗) = )∗, or equivalently,

) (��∗) = (��∗))∗.
(ii) ⇒ (iii): Let ) = -)∗-−1, - ∈ �!(H)+, and assume that f()) ≥ 0.

Then

-1/2)∗-−1/2
= -−1/2)-1/2

= (-−1/2)-1/2)∗ ∈ L+,

and so � := -1/2(-−1/2)-1/2)-1/2 = )- ≥ 0. Consequently, ) = ��, where

� = -−1 > 0. Work instead with )∗ = -−1)- to obtain )∗ = ��, � ≥ 0 and � > 0.

(iii) ⇒ (iv): Suppose that ) = ��, with �, � ∈ L+ and � invertible. Let

, := �−1 ∈ �!(H)+. Then ), = � ∈ L+. If on the other hand � is invertible,

/ = �−1 yields /) ≥ 0.

(iv) ⇒ (i): Suppose, ∈ �!(H)+ and ), ∈ L+. Then

,−1/2(),),−1/2
= ,−1/2),1/2 ≥ 0.

Similarly if /) ∈ L+.
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(v) ⇔ (i): If � ∈ �!(H) is such that ( = �−1)� ∈ L+, then f()) ≥ 0.

Let �( be the spectral measure of (, so that ( =
∫

f (() _ 3�
( (_). Then �) (·) :=

�−1�( (·)� is a resolution of the identity for ) and ) =
∫

f (() _ 3�
) (_). Thus ) is

scalar.

Conversely, if ) is scalar and f()) ≥ 0, then ) is similar to ( normal with

f(() = f()) ≥ 0, and thus ( ∈ L+.

To prove the last statement, assume (i). Since ( ≥ 0, ran ( ⊕ ker ( = H . Also,

ran) = �ran ( and ker) = � ker (. Since � is injective, ran) ∩ ker) = {0}, and

since � is surjective ran) + ker) = H . Hence ran) ∔ ker) = H . �

If) ∈ L+ 2 is similar to ( ≥ 0, with)� = �( (where without loss of generality

in (i) in the last theorem, � can be taken to be positive), then as previously noted,

Ω = f()) = f(() ⊂ R+. Moreover, since it is possible to define a Borel functional

calculus for ( on Ω, the same then holds for ) (see Theorem 3.1, where this is

essentially what is implied by ) being a scalar operator). In particular, if 5 is a Borel

function, then 5 ()) = � 5 (()�−1 is well-defined.

If 5 (Ω) ⊂ R+, then 5 (() ≥ 0 and

5 ()) = (� 5 (()�) (�−2) ∈ L+ 2.

A case of particular interest is 5 (G) = G1/2. Since ) = ��, � = (�(�), � = (�−2),
it follows that )1/2 = �′� when

�′��′
= �, �′ ≥ 0.

This is an example of a Ricatti equation, and more generally, an operator ) ∈ L+ 2

will have a square root if for some factorization ) = ��, �, � ≥ 0, there exists

�′ ≥ 0 satisfying this equality. This is examined more closely later in the section.

There is also a close connection with the geometric mean, defined for two

positive operators � and � with � invertible as

� # � = �1/2 (�−1/2��−1/2)1/2�1/2,

and so satisfies (� # �)�−1(� # �) = �.

Lemma 3.2. If ) is similar to a positive operator and ) = �� with � ∈ �!(H)+,

respectively, � ∈ �!(H)+, then

)1/2
= (�−1 # �)�,

respectively, )1/2 = �(�−1 # �).

Proof. By Theorem 3.1, � can be chosen invertible in ) = ��, and then with

� = �−1/2 and ( = �1/2��1/2, )� = �(. Setting � = �−1 = �2 and � =

� = �(�, it follows that � # � = �(1/2�, and hence )1/2 = (�−1 # �)� since

(�−1 # �)�(�−1 # �) = �. If instead � is chosen to be invertible, then working with

�−1) = (�−1, one obtains )1/2 = �(�−1 # �). �

An operator which is injective with dense range is termed a quasi-affinity. An

operator ) is quasi-affine to � if there is a quasi-affinity - such that

)- = -�.
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The operators ) and � are said to be quasi-similar if there exist quasi-affinities

-,. ∈ !(H) such that

)- = -� and .) = �..

A finite or countable system {S=}1≤=<< of subspaces of H is called basic if

S=∔
∨

:≠=S: = H for every = (
∨

indicating the closed span), and
⋂

=≥1 (
∨

:≥=S: ) =
{0} if< = ∞. In [1], Apostol uses basic systems to characterize those operators which

are quasi-similar to normal operators. With only minor modification, his proof works

to characterize quasi-similarity to positive operators.

Theorem 3.3 (Apostol). The operator ) ∈ !(H) is quasi-similar to a positive

operator if and only if there exists a basic system {S=}=≥1 of invariant subspaces of

) such that ) |S=
is similar to a positive operator.

It is sometimes useful to relax the conditions in the definition of quasi-similarity

so that instead, )- = -� and .) = �. . The next lemma shows that if � and � are

positive, this is no more general.

Lemma 3.4. Let ) ∈ !(H) such that )- = -� and .) = �. , with -,. quasi-

affinities and �, � ∈ L+. Then

(i) � is quasi-similar to �, and

(ii) ) is quasi-similar to �.

Proof. (i): Since (.-)� = .)- = � (.-), � (.-)∗ = (.-)∗�, and the claim

follows since .- and (.-)∗ are quasi-affinities.

(ii): Set . ′ := (.-)∗. . Then . ′ is a quasi-affinity and

. ′) = (.-)∗.) = (.-)∗�. = -∗. ∗�.

=-∗)∗. ∗. = ()-)∗. ∗. = �-∗. ∗. = �. ′.

By assumption )- = -�, so it follows that ) is quasi-similar to �. �

Definition. A rigged Hilbert space is a triple (S,H ,S∗) with H a Hilbert space

and S ⊆ H a dense subspace such that the inclusion ] : S → H is continuous. The

space S∗ is the dual of S, and H ∗ = H is mapped into S∗ via the adjoint map ]∗.
The spaces S and S∗ are identified as Hilbert spaces, with ]∗](H) = H ∗.

Let - ∈ !(H). Define an inner product on ran - by

〈 G, H 〉- :=
〈

-−1G, -−1H
〉

, G, H ∈ ran -.

Then H- := (ran -, 〈 ·, · 〉- ) is a Hilbert space.

The primary case of interest is when - is a quasi-affinity, in which case H-

can be viewed as a rigged Hilbert space.

Proposition 3.5. Let ) ∈ !(H) such that )- = -� with - a quasi-affinity and

� ∈ L+. Then H- can be identified with a rigged Hilbert space and )̂ := ) |ran - ∈
!(H- )+. Furthermore, ran) ∩ ker) = {0} and

ran) ∔ ker) = H .
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Proof. Let H = --−1H ∈ ran - . Then ‖H‖ ≤ ‖- ‖‖-−1H‖ = ‖- ‖‖H‖- . Therefore

the inclusion map ] : H- ↩→ H is continuous. Thus H- (or more properly, the

triple (H- ,H ,H ∗
-
)) is a rigged Hilbert space. This space is simply denoted as H- .

Note that for any set S ⊆ ran - , SH- ⊆ S.

Since )- = -�, ) (ran -) ⊆ ran - and )̂ is well defined. Also, if H = -G,

E = -F for some G, F ∈ H ,
〈

)̂ H, E
〉

-
=

〈

-−1)H, -−1E
〉

=
〈

-−1)-G, F
〉

=
〈

-−1-�G, F
〉

= 〈�G, F 〉 .
Since ‖H‖- = ‖G‖ and ‖E‖- = ‖F‖, taking the supremum over H and E with norm

1 gives that ‖)̂ ‖- = ‖�‖ and so )̂ is bounded in H- . Taking E = H then yields

)̂ ∈ !(H- )+. By positivityH = ran�⊕ ker�, and ran) = - ran�, ker) = - ker�,

so ran H- ()̂) ⊕H-
ker )̂ = H- = ran - ⊆ ran) + ker) , and thus ran) + ker) = H .

Now suppose that 0 ≠ I = )G ∈ ker) . There is a sequence {ℎ=} in H such

that --∗ℎ= → G, and so )2--∗ℎ= = -�2-∗ℎ= → 0. Let 6= = -∗ℎ= for all =. Then

-6= → G and for all H ∈ H ,

〈�6=, �-∗H 〉 =
〈

-�2-∗ℎ=, H
〉

→ 0.

Since ran (�-) = ran�, it follows that �6= → 0. Hence )--∗ℎ= = -�-∗ℎ= =

-�6= → 0, which implies that )G = 0, a contradiction. �

Corollary 3.6. Let ) ∈ !(H) be quasi-similar to a positive operator. Then ran) ∩
ker) = {0} and ran) ∔ ker) is dense in H .

Proof. If ) ∈ !(H) is quasi-similar to a positive operator �, by Proposition 3.5,

ran) ∔ ker) = H and ran)∗ ∔ ker)∗ = H . Hence ran) ∩ ker) = {0}, and so

ran) ∔ ker) is dense in H . �

The following is a special case of more general results found in [8, Corol-

lary 2.12] and [19, Theorem 2].

Lemma 3.7. If ) ∈ !(H) is quasi-affine to � ∈ L+, then f()) ⊇ f(�).

If) ∈ L+ 2, then it will be shown that these spectra are equal (Proposition 7.2).

Proposition 3.8. Let ) ∈ !(H). The following statements are equivalent:

(i) ) is quasi-affine to a positive operator;

(ii) )∗ = ��, with � a closed surjective positive operator and � ∈ L+;

(iii) There exists a quasi-affinity - ∈ L+ such that )- ∈ L+.

Proof. (i) ⇒ (ii): Assume )� = �(, � a quasi-affinity, ( ≥ 0. Then ��∗)∗ =

�(�∗ and

)∗
= (��∗)−1(�(�∗).

The operator��∗ is a quasi-affinity, hence (��∗)−1 maps ran(��∗) onto H , and it

is thus surjective, closed, and so selfadjoint. Since for all G,
〈

(��∗)−1��∗G, ��∗G
〉

=

〈 G, ��∗G 〉 ≥ 0, (��∗)−1 is positive.

(ii) ⇒ (iii): Assume (ii). Since � is surjective, by the closed graph theorem,

�−1 : H → dom (�) is bounded, and since � is positive, �−1 is a quasi-affinity, and

is also positive. Then �−1)∗ = � ≥ 0, and the claim follows with X = �−1.
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(iii) ⇒ (i): Suppose there exists a quasi-affinity - ∈ L+ such that )- =

-)∗ ≥ 0. According to [10, Theorem 5.1], if �, �, and � are bounded operators

with � ≥ 0 and �� = �∗�, there exists a unique bounded ( with ker � ⊆ ker ( such

that �1/2� = (�1/2 and �∗�1/2 = �1/2(. Translating to the present context, take

� = - and � = � = )∗. Then there exists a bounded ( so that -1/2)∗ = (-1/2,
equivalently, )-1/2 = -1/2(∗. Thus (∗ = -−1/2)-1/2.

For all G ∈ H and H = -1/2G,

〈 (∗H, H 〉 =
〈

-−1/2)-G, -1/2G
〉

= 〈)-G, G 〉 ≥ 0.

It follows by polarization that ( is selfadjoint, and so ( ≥ 0. �

Corollary 3.9. Let ) ∈ !(H). The following statements are equivalent:

(i) ) is quasi-similar to a positive operator;

(ii) ) = ��, with � a closed surjective positive operator and � ∈ L+, and

)∗ = �′�′, with �′ a closed surjective positive operator and �′ ∈ L+;

(iii) There exist quasi-affinities,, / ∈ L+ such that ), and /) ∈ L+;

(iv) There exists a basic system {S=}=≥1 of invariant subspaces of ) such that for

all =, ) |S=
is scalar and f() |S=

) ≥ 0.

Proof. The equivalence of (i) – (iii) is a direct consequence of Proposition 3.8. The

last item is equivalent to (i) by Theorem 3.3. �

The last result resembles Theorem 3.1, though under the weaker condition of

quasi-similarity it appears not to be possible to say much about the spectrum of )

without some extra conditions. See Section 7.

Coming back to square roots, suppose that )� = �(, where � ≥ 0 is a quasi-

affinity and ( ≥ 0. Then there exists a densely defined linear operator ' mapping

ran - to itself such that '- = -�1/2. However it may not be the case that ' is

bounded. Circumstances when it is will be addressed further on.

4. The set L+ 2

The remainder of the paper is devoted to the study of the set of products of two

positive bounded operators,

L+ 2 := {) ∈ !(H) : ) = �� with �, � ∈ L+}.
The subclasses P·P and P·L+ were considered in [2] and [4].

If) ∈ L+ 2, it is straightforward to check that )∗ ∈ L+ 2 and�)�−1 ∈ L+ 2 for

all � ∈ �!(H). Then the similarity orbit of ) , O) := {�)�−1 : � ∈ �!(H)} ⊆
L+ 2. Also, it can easily be verified that {)= : = ∈ N} ⊆ L+ 2.

From the basic fact that for two operators� and �, f(��) ∪ {0} = f(��) ∪
{0}, the following is immediate.

Lemma 4.1. Let ) = �� ∈ L+ 2, �, � ∈ L+. Then f()) = f(�1/2��1/2) ≥ 0.

Proof. As already observed, f()) ∪ {0} = f(�1/2��1/2) ∪ {0} ≥ 0. If 0 ∉ f()),
then � and � are invertible, so 0 ∉ f(�1/2��1/2). Likewise, 0 ∉ f(�1/2��1/2)
implies 0 ∉ f()), and so the stated equality holds. �
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Example 1. Lemma, 4.1 implies that a normal operator in L+ 2 is positive. Suppose

now that ) ∈ L+ 2 is subnormal. Let # be the minimal normal extension of ) . Then

f(#) = f()) ≥ 0, and so # is positive. Since) is the restriction of # to an invariant

subspace, it too is then positive.

It will be proved in Proposition 6.3 that an operator in L+ 2 with closed range

is similar to a positive operator. This will imply then that any partial isometry +

in L+ 2 is similar to an orthogonal projection, and so is itself a projection. Since +

is a contraction, this means that ran+ is orthogonal to ker+ , and so + ≥ 0 is an

orthogonal projection.

Proposition 4.2. Let ) ∈ L+ 2. Then there exist �, � ∈ L+ such that ) = ��,

ran � = ran) and ker � = ker) . For this pair, ran � ∩ ker � = ran � ∩ ker � = {0},
and it follows then that

ran) ∩ ker) = {0}.

Proof. Let ) = �0�0 ∈ L+ 2. Then, by Theorem 2.1, there exists � ∈ L+ such

that ) = �0� and ker � = ker) . On the other hand, )∗ = ��0 ∈ L+ 2 and again

by Theorem 2.1, there exists � ∈ L+ such that )∗ = �� and ker � = ker)∗. If

G ∈ ran � ∩ ker � then G = �H for some H ∈ H and 0 = �G = ��H = )H. Hence

H ∈ ker) = ker �, and so G = 0. The other equality follows in a similar way. It is

then immediate from this that ran) ∩ ker) = {0}. �

Corollary 4.3. If ) ∈ L+ 2, then ran () |ran) ) = ran) .

Proof. If ) ∈ L+ 2, then ) = �� with ran) = ran � by Proposition 4.2. Therefore,

ran () |ran) ) = ran ()%ran) ) = (ker(%ran))
∗))⊥. But ker(%ran))

∗) = (ran)∗ ∩
ker)∗) + ker)∗ = ker)∗, again by Proposition 4.2. �

Definition. For �, � ∈ L+, the pair (�, �) is called optimal for ) = �� if ran) =

ran � and ker � = ker) .

According to Proposition 4.2, whenever) ∈ L+ 2, it can be written as a product

involving an optimal pair. Clearly, the pair (�, �) is optimal for ) if and only if the

pair (�, �) is optimal for )∗.

Example 2. Any oblique projection & is in L+ 2. For suppose that M = ran&.

Then &%M = %M = %M&
∗ and %M& = &. Therefore & = %M (&∗&). Obviously,

(%M , &
∗&) is an optimal pair for &.

If ) ∈ P2 then ran) ∩ker) = {0} (see [4, Theorem 3.2]). This no longer need

be the case if ) ∈ L+ 2, as the following example shows.

Example 3. [2, Lemma 3.1] Let � ∈ L+ with non-closed dense range and G ∈
ran � \ ran �. Define S = span{G}⊥ and ) = �%S ∈ L+ 2. Then ker) = span{G},
ran)∗ = S, ker)∗ = {H : �H ∈ ker %S} = {0}, and ran) = H . Hence ran)∩ker) =

span{G}, ran)∗ ∩ ker)∗ = {0}, and ran)∗ ∔ ker)∗ = S. By Proposition 3.4, )∗ is

not quasi-affine to any positive operator, though ) is.

If instead ) = (� ⊕ �) (� ⊕ �) on H ⊕ H , then for neither ) nor )∗ is the

closure of the range intersected with the kernel nontrivial, nor the sum of the range

with the kernel dense in H ⊕ H . As a consequence of Proposition 3.4, neither is
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quasi-affine to a positive operator. Clearly, in these examples ) is not quasi-similar

to a positive operator.

Operators) ∈ L+ 2 with a factorization) = ��where one of � or � has closed

range have special properties (see, for example, Theorem 5.4 and Corollary 7.4).

Proposition 4.4. Let ) ∈ L+ 2. If ) is similar to a positive operator, then there exists

an optimal pair with ran �, respectively ran �, closed.

Proof. Suppose that) ∈ L+ 2 is similar to a positive operator, so) = ���−1,� ≥ 0.

Let% be the projection onto the closure of the range of�. Then�%�∗ and�∗ −1%�−1

have closed range, and ) = (�%�∗) (�∗ −1��−1) = (���∗) (�∗ −1%�−1). It is

readily seen that (�%�∗, �∗ −1��−1) and (���∗, �∗ −1%�−1) are optimal pairs.

�

It is natural to wonder at this point if the class of operators in L+ 2 which are

quasi-similar to a positive operator is strictly larger than the class of those which are

similar to a positive operator.

Example 4. As noted, if ) ∈ P2 then ran) ∩ ker) = {0}. Furthermore, ran) ∔

ker) = H if and only if ran) is closed. An operator) ∈ P2 without closed range is

constructed as follows. Assuming dimH = ∞, there exist two closed subspaces M
and N such that M ∩N = {0} and M ∔ N is dense in, but not equal to H . Take

) = ��, � and � be orthogonal projections onto M and N⊥, respectively. Then

ran) = M and ker) = N , so ran) ∔ ker) is dense in, but not equal to H .

Let , = � + %N and / = � + %M⊥ . Clearly, both are positive. Also, ker, =

M⊥ ∩ N⊥ = {0}, and similarly, ker / = {0}, so both are quasi-affinities. Since

), = ��� and /) = ��� are both positive, it follows from Corollary 3.9 that

) is quasi-similar to a positive operator. By Theorem 3.1, ) cannot be similar to a

positive operator, since ran) ∔ ker) ≠ H .

The above example can also be used to construct) ∈ L+ 2 which again is quasi-

similar, but not similar to a positive operator, but now with ker) = ker)∗ = {0}.
Let H = K ⊕K, where dimK = ∞. Define M := K ⊕ {0}, and choose N as above.

Notice that dimN = dimM, so there is a unitary+ on H mappingN to M and N⊥

to M⊥.

Let �1 = %M , �1 = %N⊥ , �2 = %N , �2 = %M⊥ . So �2 = +∗�1+ and

�2 = +∗�1+ . Set � = 1√
2
(�1 + �2), � = 1√

2
(�1 + �2). These are both positive and

injective, but since neither M ∔N nor N⊥
∔M⊥ equals H , the ranges of � and �

are not closed.

Let, =
1√
2

(

1

+

)

, and set

) = �� = �1�1 + �2�2 = ,∗ (�1�1 ⊗ 12),,
where �1�1 ⊗ 12 is the 2 × 2 diagonal operator matrix with diagonal entries �1�1.

The operator, is an isometry, and ) is injective with dense range.

Suppose that ) is similar to a positive operator, ) = ���−1. The operators

, ′ :=
1
√

2

(

−+∗

1

)

, , ′′ :=
1
√

2

(

+∗

1

)
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are also isometric and* =
(

, , ′) is unitary. Furthermore,

, ′∗(�1�1 ⊗ 12), ′
= , ′′∗

(

−1 0

0 1

)

(�1�1 ⊗ 12)
(

−1 0

0 1

)

, ′′

=, ′′∗ (�1�1 ⊗ 12), ′′
= +,∗(�1�1 ⊗ 12),+∗

= (+�)� (+�)−1.

Hence

�1�1 ⊗ 12 = *

(

� 0

0 +�

)

(� ⊗ 12)
(

� 0

0 +�

)−1

*−1;

that is, �1�1⊗12 is similar to a positive operator. But by the same reasoning employed

in showing that �1�1 is quasi-similar, but not similar to a positive operator, the same

holds for �1�1 ⊗ 12, giving a contradiction. Hence, ) is also quasi-similar, but not

similar to a positive operator.

It is noteworthy that if the operator) just constructed were to have a factoriza-

tion ) = ��, where one of � or � has closed range, then by Theorem 3.1, ) would

be similar to a positive operator. Hence there can be no such factorization for this ) .

The following characterization of the elements of L+ 2 is immediate from

Theorem 2.1.

Theorem 4.5. Let) ∈ !(H). Then) ∈ L+ 2 if and only if the inequality))∗ ≤ -)∗

admits a positive solution.

Proof. If ) ∈ L+ 2 then there exist �, � ∈ L+ such that ) = ��. Since �2 ≤ ‖�‖�
then ))∗ = ��2� ≤ ‖�‖��� = ‖�‖�)∗ . Therefore, ‖�‖� is a positive solution

of ))∗ ≤ -)∗. Conversely, if � ∈ L+ satisfies ))∗ ≤ �)∗ then, by Theorem 2.1,

the equation ) = �- admits a positive solution. Therefore ) ∈ L+ 2. �

Corollary 4.6. Let ) ∈ L+ 2 and � ∈ L+. Then ) can be factored as ) = ��, with

� ∈ L+ if and only if _� is a solution of ))∗ ≤ -)∗, for some _ ≥ 0.

Corollary 4.7. The operator ) ∈ L+ ·P if and only if ))∗ = -)∗ admits a positive

solution. Moreover, ) ∈ P2 if and only if ))∗ = -)∗ admits a solution in P.

Proof. If ) = �%, � ≥ 0 and % an orthogonal projection, then ))∗ = �%2� =

�%� = �)∗. Conversely, if ))∗ = -)∗ admits a positive solution - = � ≥ 0,

then |)∗ |2 = �* |)∗ |, where * is a partial isometry from ran) onto ran)∗. Thus

|)∗ | = �* = *∗�, and so )∗ = **∗�, where**∗ is an orthogonal projection. �

The next result will be particularly useful for describing spectral properties

of elements of L+ 2 in Section 5. It was proved for invariant subspaces in the finite

dimensional case in [22]. Recall that a subspace M is invariant for an operator ) if

)M ⊆ M.

Proposition 4.8. Let) ∈ L+ 2 and supposeM is invariant for) . Then)%M ∈ L+ 2.

Proof. Write ) = ��, �, � ∈ L+. Then )∗) ≤ _�) for _ = ‖�‖. Assume that M
is invariant. Then

%M)
∗)%M ≤ _%M�)%M = _%M�%M)%M .

Since _%M�%M ≥ 0, by Theorem 4.5, )%M ∈ L+ 2. �
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From the proof of Theorem 4.5, )%M above has the form � (%M�%M) for

some � ∈ L+.

In fact, it is not difficult to see that since )∗ ∈ L+ 2, the above proposition

is true more generally for semi-invariant subspaces; that is, subspaces of the form

M = M1 ⊖ M2, where M1 and M2 are invariant for ) .

Definition. Given ) ∈ L+ 2 and � ≥ 0 with ran � = ran) , define

B�
) = {- ≥ 0 : ) = �-}.

Note that even if ran � = ran) and ran � ⊇ ran) , the set B�
)

may be empty.

As just seen in Corollary 4.6, � must also satisfy ))∗ ≤ _�)∗ for some _ > 0.

Theorem 4.9. Let ) ∈ L+ 2 and � ≥ 0 be such that B�
)

≠ ∅. Then B�
)

has a

minimum �0. The pair (�, �0) is optimal and the set B�
)

is the cone

B�
) = {�0 + / : / ∈ L+ and ran / ⊆ ker)∗}.

Moreover, for every � ∈ B�
)

, �ran) = �0, and the pair (�, �) is optimal if and only

if ran / ⊆ ran)∗ ∩ ker)∗.

Proof. Let � ∈ B�
)

and �0 = �∗� the solution of ) = �- constructed in the proof

of Theorem 2.1. With respect to the decomposition H = ran) ⊕ ker)∗, � has an

LU-decomposition,

� = �∗� =

(

�∗
1

0

�∗
2

�∗
3

) (

�1 �2

0 �3

)

.

Also by Theorem 2.1,

�0 =

(

�∗
1

0

�∗
2

0

) (

�1 �2

0 0

)

.

Since the theorem also gives in this circumstance that �∗
1
�1 is a quasi-affinity, there

is no loss in generality in taking �1 ≥ 0 with dense range.

Now

)� = ��� = ��∗
1�1� = ��0� = ��2

1�,

and since ran � = ran) , �∗
1
�1 = �2

1
. Without loss of generality, take �1 = �1

(adjusting �2 and �3 as necessary). So

) = ��∗� = �
(

�2
1

�1�2

)

= ��∗� = �
(

�2
1

�1�2

)

.

Therefore,

�∗
2�1� = �∗

2�1�.

Since both �1 and � are positive with dense ranges in ran) , ran (�1�) = ran) .

Hence by continuity, �2 = �2. Therefore � =

(

�1 �2

0 �3

)

and

/ := �/ran) =

(

0 0

0 �∗
3
�3

)

≥ 0,

giving � = �0 + / , / ≥ 0, ran / ⊆ ker)∗, and �ran) = �0.

Finally, suppose that the pair (�, �) is optimal. So ran � = ran)∗, where

� = �0 + / , and since ran �0 = ran)∗, it must be that ran / ⊆ ran)∗. Hence,

ran / ⊆ ran)∗ ∩ ker)∗. On the other hand, if � = �0 + / , / ≥ 0, and ran / ⊆
ran)∗ ∩ ker)∗, then ran � = ran)∗, and so (�, �) is optimal. �
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Theorem 4.9 states that if ) ∈ L+ 2 admits an optimal pair (�, �), then there

is an optimal pair (�, �0) where �0 has minimal norm among the operators in the

set B�
)

. Furthermore, �0 is the minimal positive completion of the operator matrix
(

�11 �12

�∗
12

∗

)

. However, (�, �0) need not be the unique optimal pair for ) with � as

the first factor.

Example 5. Consider ) = %S�, where � ≥ 0 and S are defined as in Example 3.

Then by Theorem 4.9, for any _ > 0, (%S , � + _(1 − %S)) is an optimal pair for ) .

The next result gives a condition for the optimal pair (�, �) to be unique when

one of the terms is fixed.

Corollary 4.10. Let ) ∈ L+ 2 and � such that B�
)

≠ ∅ with minimal element �0.

Then (�, �0) is the unique optimal pair for ) with � as the first factor if and only if

ran) ∔ ker) = H . Additionally, for fixed �, (�, �0) and (�0, �) are unique optimal

pairs for ) and )∗, respectively, if and only if ran) ∔ ker) = H .

Proof. This follows directly from Theorem 4.9, since there can be more than one

optimal pair (�, �) for fixed � if and only if ran)∗ ∩ ker)∗ ≠ {0}. The condition

ran) ∔ ker) = H implies that ran)∗ ∩ ker)∗ = {0}, and by a similar argument as

at the end of the proof of Theorem 4.9, this condition is necessary and sufficient for

there to be a unique optimal pair (�, �) for )∗ with � fixed. �

There is a dilation theory for elements ofL+ 2 which mimics that of contractions

on Hilbert spaces.

Proposition 4.11. Let ) ∈ L+ 2. Then there is a Hilbert space H ′ ⊇ H , and

an operator ) ′ ∈ L+ · P on H ′ such that ) is the restriction of ) ′ to an invariant

subspace, ran) ′ = ran) , and ker) ′ ⊇ ker) . There is also a Hilbert spaceH ′′ ⊇ H ′

and ) ′′ ∈ P2 on H ′′, such that H ′ is invariant for ) ′′∗, H is semi-invariant for ) ′′,
and ) is the compression of 2) ′′ for some 2 > 0.

Proof. Suppose that ) = ��, where (�, �) is optimal and by scaling if necessary,

that ‖�‖ ≤ 1. On H ′ = H ⊕ H , the operator

�̃ :=

(

� �1/2 (1 − �)1/2

(1 − �)1/2�1/2 1 − �

)

=

(

�1/2

(1 − �)1/2

)

(

�1/2 (1 − �)1/2)

is seen to be a projection since the column operator is an isometry. Extend � to �̃

by padding with 0s. Then ) ′ := �̃�̃ ∈ L+ · P and

) ′
=

(

�� ��1/2 (1 − �)1/2

0 0

)

.

Clearly,H is invariant for) ′ and) = %H)
′ |H . Also, ran) ⊆ ran) ′ ⊆ ran � = ran) ,

so equality holds throughout. It is obvious that if 5 ∈ H is in ker) , it is in ker) ′.
The operator ) ′′ is constructed by applying the same method to 2) ′∗, where 2

is chosen so that ‖2) ′∗‖ ≤ 1. �
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Let ) ∈ L+ 2. Using the Löwner order, define a partial order on the set of

optimal pairs for ) by

(�U, �U) ≺ (�V , �V)
if �U ≤ �V and �U ≤ �V .

Definition. Let ) ∈ L+ 2. An optimal pair for ) , (�<8= , �<8=), is said to be min-

imal if for an optimal pair (�, �), (�, �) ≺ (�<8= , �<8=) implies that (�, �) =

(�<8= , �<8=).

Proposition 4.12. Let ) ∈ L+ 2. For every optimal pair (�, �) for ) , there exists a

minimal optimal pair (�<8= , �<8=) ≺ (�, �).

Proof. Suppose that with respect to the partial order ≺, (�_, �_)_∈Λ is a chain in

the collection of optimal pairs for ) . Then the decreasing nets of positive operators

(�_)_, (�_)_ converge strongly to some �, � ∈ L+, respectively, and ) = ��.

Since ker �_ = ker) , ker) ⊆ ker �, and since ) = ��, equality holds. Likewise,

ker)∗ = ker �. Hence (�, �) is optimal. Thus every chain has a lower bound, and

so minimal optimal pairs exist by Zorn’s lemma. �

Remark. For any minimal optimal pair (�, �), � = �ran) ∗ and � = �ran) . So

� = �∗�, � = �∗�, where

� =

(

�1 �2

0 0

)

and � =

(

�1 �2

0 0

)

on ran)∗ ⊕ ker) and ran) ⊕ ker)∗, respectively.

Minimal optimal pairs need not be unique. As a simple example, let ' > 1 on

H , and ) = ' ⊕ '−1 on H ⊕H . Then for � = ' ⊕ 1, � = 1 ⊕ '−1, both (�, �) and

(�, �) are minimal optimal pairs for ) .

Lemma 4.1 already hints that operators in L+ 2 share certain properties with

positive operators, many more of which will be explored in the next section. It is

reasonable to wonder if an operator in L+ 2 has a square root in L+ 2. Partial results

in this direction are given next. First, recall the following result of Pedersen and

Takesaki [15] (slightly rephrased).

Proposition 4.13 (Pedersen-Takesaki). Let �,  ∈ L+, and write K for ran�. A

necessary and sufficient condition for the existence of - ∈ L+ such that %K %K =

-�- is that (�1/2 �1/2)1/2 ≤ 0� for some 0 ≥ 0.

Though they do not show it, under the conditions of the proposition, with

respect to the decomposition H = S1 ⊕ S2, S1 = S2 = K, - can be chosen as the

(2, 2) entry of the S1-compression of
(

0� (�1/2 �1/2)1/4

(�1/2 �1/2)1/4 1

)

≥ 0.

Proposition 4.14. Let ) ∈ L+ 2 and suppose that ) is quasi-affine to a positive

operator, )- = -�. If �1/2 ≤ 0-∗- for some 0 ≥ 0, then ) has a square root in

L+ 2. Otherwise, if ran) = ran)∗ and ) has a factorization satisfying the conditions

of Proposition 4.13, then ) admits a square root in L+ 2.
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Proof. If �1/2 ≤ 0-∗- , by Douglas’ lemma, �1/4 = -∗�. Hence �1/2 = -∗�- ,

where � ≥ 0, and so )- = (--∗)� (--∗)�- . Since ran - is dense, ) =

((--∗)�)2.

Now suppose instead that ran) = ran)∗ and ) has a factorization satisfying

the conditions of Proposition 4.13. Choose � = � and  = � in Proposition 4.13.

Then � = -�- for some - ∈ L+, and so ) = (-�)2. �

It was already noted in Theorem 3.1 that if ) is similar to a positive operator,

it has a square root in L+ 2. The next example shows that this fails more generally.

The explanation requires a lemma showing that an injective positive operator has a

unique square root in L+ 2 – namely the positive square root.

Lemma 4.15. If � ∈ L+ is injective, '2 = �2, and '- = -� for some quasi-affinity

- , then ' = �. Consequently, if ' ∈ L+ 2 satisfies '2 = �2, then ' = �.

Proof. Suppose that � ∈ L+ is injective, '2 = �2, and '- = -�, where - is

a quasi-affinity. Then �2- = '2- = -�2, and so �- = -� since � is in the

commutative �∗-algebra generated by �2. Thus '- = �- , and therefore ' = �.

Write ' = -. , -,. ∈ L+ and injective. Then (-. )2 = '2 = �2 = '∗ 2 =

(.-)2. Hence �2-1/2 = -1/2(-1/2.-1/2)2, and by [6, Lemma 4.1], there is a

unitary* such that �2 = * (-1/2.-1/2)2*∗, and so � = * (-1/2.-1/2)*∗. Thus

'(-1/2*∗) = (-. ) (-1/2*∗) = (-1/2*∗)�.
Since -1/2*∗ is a quasi-affinity, ' = �. �

Example 6. Following ideas from [4], let ) ∈ P2 be the product of � and �,

non-trivial projections, given as follows. With respect to the decomposition H =

ran � ⊕ (ran �)⊥,

) = �� =

(

( (1/2(1 − ()1/2

(1 − ()1/2(1/2 1 − (

) (

1 0

0 0

)

=

(

( 0

(1 − ()1/2(1/2 0

)

,

where ( ≥ 0 is injective but not invertible on ran � with ‖(‖ < 1, so that (1 − ()1/2

is invertible. Then ker) = ker �, and ran) = ran�, � =

(

(1/2 0

(1 − ()1/2 0

)

, and so

equals ran � since � = ��∗. This has zero intersection with ker) and ran)∔ker) =

ran ( ⊕ ker �, which is dense in H . As an aside, in Corollary 7.3 it will be shown

that this condition implies that ) is quasi-similar to a positive operator.

Suppose that) = (-. )2 for some -,. ∈ L+; that is,) has a square root inL+ 2.

Without loss of generality, (-,. ) can be chosen to be an optimal pair for ' := -. .

Clearly, ker ' ⊆ ker) , and since ran ' ∩ ker ' = {0}, the reverse containment also

holds. Hence ran. = ran �. A similar calculation gives ran) = ran �.

Now

'2
=

((

-11 -12

-∗
12

-22

) (

.11 0

0 0

))2

=

(

(-11.11)2 0

(-∗
12
.11) (-11.11) 0

)

.

Thus (-11.11)2 = (, and so by Lemma 4.15, -11.11 = (1/2. Since (1 − ()1/2 =

-∗
12
.11 = .11-12 is invertible and .11 is injective, .11 is invertible by the open

mapping theorem, and hence the same is true for -12. The operator ( is not invertible,
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so -11 is not invertible. However, since - ≥ 0, -12 = -
1/2
11
�, and so ran -

1/2
11

is

closed. This implies that -
1/2
11

is invertible, giving a contradiction.

5. Spectral properties of L+ 2

Recall by Theorem 3.1, any operator which is similar to a positive operator (and so

in L+ 2) is necessarily scalar (that is, it is spectral and has no quasi-nilpotent part). It

will be shown further that finite rank operators in L+ 2 are completely characterized

by the property that the spectrum is positive and the operator is diagonalizable

(Corollary 6.6). It has already been noted that operators in L+ 2 need not be quasi-

affine to a positive operator, much less similar to one, and as a result they are in

general not spectral. Despite this, the spectral properties of operators in L+ 2 are

found to reflect what is observed in these special cases.

The spectrum f()) of an operator ) can be divided into two, potentially

overlapping parts; the compression spectrum f2 ()), points _ of which have the

property that ) −_1 is not surjective, and the approximate point spectrum f0 ()), in

which) −_1 is not bounded below. The subset of f0 ()) of points _ for which) −_1

is not injective constitute the point spectrum f? ()). Standard results in operator

theory are that _ ∈ f? ()) is equivalent to _ ∈ f2 ()∗), and that the topological

boundary of the spectrum is contained in f0 ()). In the case of ) ∈ L+ 2, where the

spectrum lacks interior, this means that f()) = f0 ()).
The parts of the spectrum already mentioned are for the most part enough

when studying normal operators on Hilbert spaces. Outside of this class, it helps

to refine these by looking at local spectral properties. This is ordinarily developed

for (potentially unbounded) Banach space operators, though here bounded Hilbert

space operators are solely considered.

Let ) ∈ !(H). If a point ` is in d()), the resolvent of ) , ) − `1 is invertible.

Equivalently, for all G ∈ H and _ ∈ *, an open neighborhood of `, 5 (_) =

() − _1)−1G is an analytic function from * into H and satisfies () − _1) 5 (_) = G.
Even if ` ∉ d()), it may happen that for some G ∈ H and neighborhood * of `,

there is an analytic 5 : * → H such that () −_1) 5 (_) = G. In this case, ` ∈ d) (G),
the local resolvent of ) at G. For fixed G, the complement in C of d) (G) is called the

local spectrum of ) at G, and is denoted by f) (G).
An operator) is said to have the single valued extension property (abbreviated

SVEP) if whenever* ⊆ C is open and 5 : * → H is an analytic function satisfying

() − _1) 5 (_) = 0 for all _ ∈ *, then 5 = 0. The point of SVEP is that if ) has

this property, any solution 5 to () − _1) 5 (_) = G in a neighborhood of a point ` is

unique. Operators like those in L+ 2 with thin spectrum have SVEP.

For � ⊆ C closed, an (analytic) local spectral subspace for ) ∈ !(H) is

defined as

H) (�) := {G ∈ H : f) (G) ⊆ �}.
This is a (not necessarily closed) linear manifold. Properties include that H) (�) =
H) (f()) ∩ �), and if ) has SVEP, H) (∅) = {0}. Hence for operators in L+ 2,

it will suffice to consider H) (�) for closed subsets of f()). It is also the case

that for _ ∉ �, () − _1)H) (�) = H) (�), H) (�) is invariant for all operators
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commuting with ) (in other words, it is hyperinvariant). Also, for all = ∈ N and

_ ∈ C, ker() − _1)= ⊆ H) ({_}), and more generally, if for G ∈ H and _ ∈ �,

() − _1)G ∈ H) (�), then G ∈ H) (�). See [12, Proposition 1.2.16]. By [14,

Proposition 1.3], when ) has SVEP, H) ({_}) = {G : lim= ‖() − _1)=G‖1/= = 0}.
The following is a special case of a result due to Putnam, and Pták and Vrbová

(see [12, Theorem 1.5.7]). The proof in this case is elementary and is included for

completeness. The more general result is discussed below.

Lemma 5.1. Let ) ∈ !(H) be normal and _ ∈ C. Then H) ({_}) = ker() − _1).

Proof. Recall that for a normal operator ) , the norm equals the spectral radius:

‖) ‖ = lim
=→∞

‖)=‖1/= .

Also,) is spectral so has SVEP. LetH) ({_}) = {G : lim=→∞ ‖()−_1)=G‖1/= → 0},
and E = H) ({_}) . Then () −_1)E ⊆ E, so )E ⊆ E. Since for all H, ‖() −_1)H)‖ =
‖()∗ − _1)H)‖, )∗E ⊆ E. Thus E reduces ) , and )0 := %E) |E is normal.

Let G ∈ H) ({_}), ‖G‖ = 1. Then for all n > 0, for sufficiently large =,

‖()0 − _1E )=G‖ < n= . So if H ∈ E with ‖H‖ = 1,

n= > 〈 ()0 − _1E)=G, H 〉 = 〈 G, ()0 − _1E)∗ =H 〉 .
Since H) ({_}) is dense in E and n is arbitrary, ‖()0 − _1E )∗ =H‖1/= → 0 for all

H ∈ E. Thusf()0−_1E) = f(()0−_1E )∗) = {0}. Hence by normality,)0−_1E = 0,

and so H) ({_}) = ker() − _1). �

Proposition 5.2. For ) ∈ L+ 2 and _ ∈ C, H) ({_}) = ker() − _1).

Proof. By definition, H) ({_}) = {G : f) (G) = {_}} = {G : f)−_1(G) = {0}} ⊇
ker()−_1). If _ ∈ d()), then)−_1 is invertible, and so for all G ≠ 0, d) (G) ⊇ d()),
or equivalently, f) (G) ⊆ f()). In particular then, if _ ∈ d()), H) ({_}) = {0} =

ker() − _1).
So suppose that _ ≥ 0 is in f()). Write ) = �� for some optimal pair (�, �),

and set � = �1/2��1/2. Then �1/2 () − _1) = (� − _1)�1/2, and by induction,

�1/2 () − _1)= = (� − _1)=�1/2 for = ∈ N. Let G ∈ H) ({_}) = {H : lim= ‖() −
_1)=H‖1/= = 0}. Then

‖�1/2 () − _1)=G‖1/= ≤ ‖�1/2‖1/=‖() − _1)=G‖1/= → 1 · 0 = 0,

and so

‖(� − _1)=�1/2G‖1/= → 0.

Thus �1/2G ∈ H� ({_}). By the previous lemma H� ({_}) = ker(� − _1), hence

�1/2 () − _1)G = (� − _1)�1/2G = 0.

If _ = 0, then either G ∈ ker) or )G ∈ ker � = ker) . But by Proposition 4.2,

ran) ∩ ker) = {0}, and so this also implies that G ∈ ker) . If _ > 0, then similar

reasoning gives either () − _1)G = 0 or () − _1)G ∈ ker � = ker) . Suppose the

latter. Since () −_1))G = ) () −_1)G = 0, it follows that () −_1)2G = −_() −_1)G,
and in general, by induction for all =,

() − _1)=G = (−1)=−1_=−1 () − _1)G.
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Hence

_(=−1)/= ‖() − _1)G‖1/=
= ‖_=−1 () − _1)G‖1/=

= ‖() − _1)=G‖1/= .

Since as = → ∞, the right hand term goes to 0, _(=−1)/= → _ > 0, and ‖() −
_1)G‖1/= → 1 if ‖() − _1)G‖ > 0, the conclusion is that G ∈ ker() − _1). �

A simplified version of the above argument can be used to show the following.

Proposition 5.3. If ) ∈ !(H) is quasi-affine to a normal operator, then

H) ({_}) = ker() − _1).

There are further ways in which operators in L+ 2 resemble positive operators.

To explain this requires the introduction of some additional ideas from local spectral

theory, details for which can be found in [12] and [3].

Recall that a scalar operator is one which is similar to a normal operator, and

so has a Borel functional calculus. By Theorem 3.1, if ) ∈ L+ 2 and is similar to a

positive operator, then it is scalar, and so also has a Borel functional calculus. An

operator) is termed a generalized scalar operator if it has a�∞ functional calculus;

that is, there is a continuous homomorphism Φ : �∞ (C) → !(H) with Φ(1) = 1

and Φ(I) = ) . An operator which is the restriction of a generalized scalar operator

to an invariant subspace is said to be subscalar. Obviously, the classes of generalized

scalar and subscalar operators include that of scalar operators.

Theorem 5.4. Let ) ∈ L+ 2. Then ) is a generalized scalar operator and ) has a

�2( [0, ‖) ‖]) functional calculus.

Proof. To begin with, claim that if either � or � has closed range, then ) is gen-

eralized scalar. So suppose ) = ��, �, � ∈ L+, where ran � is closed (the case

where ran � is closed can be handled identically by working with )∗). Decompose

H = ran � ⊕ (ran �)⊥, and write

) =

(

)1 )2

0 0

)

with respect to this decomposition. By the assumption that ran � is closed, )1 is

similar to a positive operator, and so is scalar by Theorem 3.1. Hence there is a

constant ^ ≥ 1 such that for _ ∈ C\R,

‖()1 − _1)−1‖ ≤ ^(1 + |Im _|−1).
Since

() − _1)−1
= −_

(

()1 − _1)−1 1
_
()1 − _1)−1

0 − 1
_

)

,

it follows that for sufficiently large ^′,

‖() − _1)−1‖ ≤ ^(1 + |Im_|−1)
(

1 + |Im_|−1









(

0 )2

0 0

)







)

≤ ^′ |1 + |Im_|−2 |.
From [12, Theorem 1.5.19], ) is a generalized scalar operator.
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For the general case, let ) ∈ L+ 2 and let ) ′ ∈ L+ · P on H ′ be the dilation of

) from Proposition 4.11. So H is an invariant subspace for) ′ and) is the restriction

of ) ′ to H . Hence ) is subscalar.

Subscalar operators need not be generalized scalar. However, in this case any

_ ∈ C\R is in the resolvents of both ) and ) ′. So writing ) ′ =

(

) )2

0 0

)

with respect

to the decomposition H ′ = H ⊕ H⊥, for _ ∈ C\R,

() ′ − _1H′)−1
=

(

() − _1H)−1 1
_
() − _1H)−1)2

0 − 1
_

)

.

Consequently, for all _ ∈ C\R, there is a ^′ > 0 such that

‖() − _1H)−1‖ ≤ ‖() ′ − _1H′)−1‖ ≤ ^′(1 + |Im _|−2)
by the first part of the proof. Thus [12, Theorem 1.5.19] gives that ) is a generalized

scalar operator. The fact that ) has a �2 ( [0, ‖) ‖]) functional calculus follows from

the proof of that theorem. �

Let � ⊂ C. For an operator ) , the algebraic spectral subspace E) (�) is the

largest linear manifold such that () − _1)E) (�) = E) (�) for all _ ∉ �. Moreover,

for every positive integer ?,

H) (�) ⊆ E) (�) ⊆
⋂

_∉�

ran() − _1)? .

When ) is normal and �) (�) is the spectral projection for the set �, it turns out that

H) (�) = E) (�) =
⋂

_∉� ran() − _1) = ran�) (�) [12, Theorem 1.5.7]. The next

result states that the operators in L+ 2 behave in this respect like normal operators.

Proposition 5.5. Let ) ∈ L+ 2. Then for closed � ⊂ C,

H) (�) = E) (�) =
⋂

_∉�

ran() − _1).

Proof. By Theorem 5.4, ) ∈ L+ 2 is a generalized operator, so by [12, Theo-

rem 1.5.4], there exists an integer ? such that for any closed set �, H) (�) =

E) (�) =
⋂

_∉� ran() − _1)?. Fix _ ∉ �. Since )∗ ∈ L+ 2, by Proposition 5.2,

ker()∗ −_1)? = ker() −_1)∗ ? = ker()∗ −_1) for all ? ∈ N, and so ran() −_1)? =

ran() − _1) for all ?. �

6. L+ 2 and similarity; the set L+ 2
2A

In Proposition 4.2, it was proved that if ) ∈ L+ 2 then ran) ∩ ker) = {0}. It is

always the case then that

H = ran) ∔ ker) ⊕ (ker)∗ ∩ ran)∗).
This section considers the case where ran) ∔ ker) is dense in H . In Section 8, the

general case will be taken up.

Recall from Proposition 3.1, ) ∈ L+ 2 and ) admits a factorization ) = ��

where �, � ∈ L+ and either � or � is invertible is equivalent to ) being similar to a

positive operator.
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Proposition 6.1. Let ) ∈ L+ 2 and � ∈ L+ such that ran � = ran) . Then the

following are equivalent:

(i) There exists � ∈ �!(H)+ such that ) = ��;

(ii) There exists � ∈ L+ such that (�, �) is optimal for ) and ran � ∔ ker � = H ;

(iii) B�
)
≠ ∅ and ran) = ran �.

As a result, for this choice of �, there is a unique optimal pair (�, �0) and �0 has

closed range.

Proof. (i) ⇒ (ii): Suppose that ) = �� with � ∈ �!(H)+ then ran) = ran � =

ran(��′) for any optimal pair (�, �′). Then H = �−1 ran(��′) = ran �′
∔ ker �,

where the sum is direct by Proposition 4.2.

(ii) ⇒ (iii): Suppose that there exists � ∈ L+ such that (�, �) is optimal for

) and H = ran � ∔ ker �. Applying � to both sides gives ran � = ran(��) = ran) .

(iii) ⇒ (i): Let (�, �′) be an optimal pair for) . Such a pair exists by Proposi-

tion 4.2. Since ran) = ran �, by the same calculation as above, H = ran �′
∔ ker �.

Then by [9, Theorem 2.3], which states that if an operator range is complemented,

then it is closed, ran �′ is closed.

Now define the positive operator � = �′ + %ker �. By [9, Theorem 2.2],

ran �1/2 = ran �′ + ran %ker � = H , and so � is invertible.

The last statement follows from Corollary 4.10. �

Theorem 3.1 indicates a number of ways of finding operators which are similar

to positive operators. In addition, it combines with the last result to give yet another.

Corollary 6.2. Let ) ∈ !(H). Then ) is similar to a positive operator if and only

if ) ∈ L+ 2, ran) ∔ ker) = H and there exists and optimal pair (�, �) such that

either � or � has closed range.

It is not true in general that if ) is similar to a positive operator, then every

optimal pair for ) is such that one of its factors has closed range.

Example 7. Let � ∈ L+ be such that ran � is not closed. Then clearly � is similar

to a positive operator and (�1/2, �1/2) is an optimal pair for �. But, since ran � (

ran �1/2, then none of the factors of this optimal pair has closed range. However,

since � = �%ran �, the optimal pair (�, %ran �) is as in Corollary 6.2.

The situation when the range of ) ∈ L+ 2 is closed happens to be special as

well. Write

L+ 2
2A := {) ∈ L+ 2 : ) has closed range}.

Proposition 6.3. Let ) ∈ L+ 2. Then the following are equivalent:

(i) ) ∈ �'(H);
(ii) ran) ∔ ker) = H ;

(iii) For any optimal pair (�, �), �, � ∈ �'(H) and ran � ∔ ker � is closed.

In this case, ) is similar to a positive operator.

Proof. Let ) ∈ L+ 2 and suppose that ) ∈ �'(H). Then )∗ ∈ �'(H). Let (�, �)
be an optimal pair. Then ran � ⊇ ran) = ran) = ran �, and similarly, ran � =
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ran �. Thus �, � ∈ �'(H) and H = �−1 ran)∗ = ran � ∔ ker � = ran) ∔ ker) .

Conversely, if ran) ∔ ker) = H , by [9, Theorem 2.3], ran) is closed.

Finally, suppose that for an optimal pair (�, �), �, � ∈ �'(H) and ran � ∔

ker � is closed. By [11, Corollary 2.5], ran) = ran(��) is closed. On the other

hand, if ran) ∔ ker) = H , then arguing as above, ran � ∔ ker � = H , and so is

closed. Hence all of the items are equivalent.

The statement that) is similar to a positive operator follows from Corollary 6.2.

�

Proposition 6.3 and Theorem 3.1 together imply the following.

Corollary 6.4. Let ) ∈ !(H). The following are equivalent:

(i) ) ∈ L+ 2
2A ;

(ii) ) = ()∗(−1 with ( ∈ �!(H)+ and f()) ⊆ {0} ∪ [2,∞) for 2 > 0;

(iii) There exists � ∈ �!(H) such that �)�−1 ∈ �'(H)+;

(iv) ) is a scalar operator and f()) ⊆ {0} ∪ [2,∞) for 2 > 0.

If ) ∈ L+ 2
2A , then by Proposition 6.3, ) is similar to a positive operator �.

From this it is not difficult to check that f()) = f(�), � also has closed range, and

consequently the spectrum of both operators have the form indicated in the corollary.

Corollary 6.5.

L+ 2
2A =

⋃

, ∈�' (H)+
O, .

Corollary 6.6. Suppose that ) ∈ !(H) is finite rank. Then ) ∈ L+ 2 if and only if

) is diagonalizable and f()) ≥ 0.

Remark. If ) on H with 38<(H) < ∞ is diagonalizable with positive spectrum, it

is in principle straightforward to write ) as a product of two positive operators. Let

� be the diagonal matrix of eigenvalues of ) , + the matrix with columns consisting

of the eigenvectors of ) , arranged in the same order as the diagonal entries of�. The

matrix + is invertible, and )+ = +�. Therefore, ) = (++∗) (+∗ −1�+−1).
Example 8. The situation for the product of three or more positive operators is more

complicated. In particular, such products need not be diagonalizable. As a simple

example,
(

1 0

0 0

) (

1 1

1 1

) (

0 0

0 1

)

=

(

0 1

0 0

)

.

Hence the class L+3 of products of three positive operators strictly contains L+ 2.

Maganja showed in [13] that every bounded operator on a Hilbert space is the

sum of at most three operators which are similar to positive operators (and so by

Theorem 3.1, three operators in L+ 2). On finite dimensional spaces, Wu proved that

if det) ≥ 0 (which includes those ) with non-negative spectrum), ) is the product

of at most 5 positive matrices [22], and in [5], an algorithm is given for determining

the number of matrices between 1 and 5 needed. In the setting of separable Hilbert

spaces, Wu also showed that any operator which is the norm limit of a sequence of

invertible operators is the product of at most 18 positive operators [21]. For invertible

operators, this was improved by Phillips to at most 7 [16].
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It is also possible to give an explicit formula for the Moore-Penrose inverse )†

of an operator ) ∈ L+ 2
2A . In this case, if & := %ran) ∗//ker) ∗ is the oblique projection

onto ran)∗ along ker)∗, & is bounded. Recall that an operator ) ′ is called a (1, 2)-
inverse of ) if )) ′) = ) and ) ′)) ′ = ) ′. Generally, there will be infinitely many

(1, 2)-inverses for an operator ) . The Moore-Penrose inverse is the (1, 2)-inverse

for which ))† is the orthogonal projection onto ran) and )†) is the orthogonal

projection onto ran)∗.

Proposition 6.7. Let ) ∈ L+ 2
2A with optimal pair (�, �). Then

)†
= �†&�†.

Furthermore, ) ′ := &∗)†&∗ is a (1, 2)-inverse of ) in L+ 2
2A .

Proof. Let ) ∈ L+ 2
2A . The fact that � and � have closed range follows from Propo-

sition 6.3. Hence �† and �† are bounded positive operators. Also, ran)∗ is closed.

For & = %ran) ∗//ker) ∗ , %ran) ∗&%ran) = &%ran) = &. For, = �†&�†,

),) = ��(�†&�†)�� = �%ran) ∗&%ran) � = �&� = ).

Therefore ), is a projection. Furthermore,

), = ���†&�†
= �%ran) ∗&�†

= �&�†.

Also, ran(),) = ran) and ker(),) = ker)∗ since

ran) = ran(),)) ⊆ ran(),) ⊆ ran), and

ker, ⊆ ker(),) ⊆ ker(,),) = ker, = ker)∗.

The last equality holds since if G ∈ ker, , &�†G ∈ ker) ∩ ran& = ker) ∩ ran)∗ =
{0}, so �†G ∈ ker& ∩ ran �† = ker)∗ ∩ ran) = {0}. Thus G ∈ ker �† = ker)∗.
Hence ran(),) and ker(),) are orthogonal, and so ), ∈ P.

Similar calculations show that ,), = , , hence ,) is a projection, and by

identical reasoning, it is an orthogonal projection. Thus, )† = �†&�†, as claimed.

Since &∗) = )&∗ = ) , it is easy to see that for ) ′ = &∗)†&∗, )) ′) = ) and

) ′)) ′ = ) ′. Also,

ran) ′
= &∗)† ran) = &∗)†H = &∗ ran)∗

= &∗H = ran).

Finally,

) ′
= (&∗�†&) (&�†&∗) ∈ L+ 2

2A . �

Remark. If ) ∈ P2 with closed range, the formula )† = %ran) ∗//ker) ∗ from [4] is

recovered.

7. L+ 2, quasi-affinity and quasi-similarity

In Proposition 3.8 it was seen that the statement that) being quasi-affine to a positive

operator is equivalent to, among other things, being able to write )∗ = �� where �

and � are positive, but where �may be unbounded.The situation for quasi-similarity

is no better (Corollary 3.9). Conditions equivalent to ) = �� where � and � are

bounded and positive require something extra, and this will then imply f()) ≥ 0 by

Lemma 4.1.
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Theorem 7.1. For ) ∈ !(H), the following are equivalent:

(i) ) ∈ L+ 2 and is quasi-affine to a positive operator;

(ii) ) ∈ L+ 2 and ran) ∔ ker) = H ;

(iii) There exists a quasi-affinity - ∈ L+ such that ran) ⊆ ran - and )- ≥ 0;

(iv) ) = ��, �, � ∈ L+ and � injective;

(v) f()) ∩ (−∞, 0) = ∅, and there exists a quasi-affinity - ∈ L+ such that

)- = -)∗ and ran) ⊆ ran -;

(vi) There exists � ∈ L+ and a quasi-affinity � ∈ !(H) such that )� = �� and

ran) ⊆ ran(��∗).

Proof. (i) ⇒ (ii): This follows from Proposition 3.5.

(ii) ⇒ (iii): Let) = ��, where (�, �) is optimal. Define - := �+%ker � ∈ L+.

Then ker - = ker)∗ ∩ ran)∗ = (ran) ∔ ker))⊥ = {0}, and so - is a quasi-affinity.

Consequently,)- = ��� ≥ 0 and -� = �� = ) . Hence ran) = ran(-�) ⊆ ran - .

(iii) ⇒ (iv): Since )- ≥ 0, - is a quasi-affinity, and ran) ⊆ ran - , it follows

from Douglas’ lemma that ) = -% and )- = -)∗ = -%- ≥ 0, where % ≥ 0. So

) = -% ∈ L+ 2, and by Lemma 4.1, f()) ≥ 0.

(iv) ⇒ (v): If ) = ��, �, � ∈ L+ and � injective, then - = � is a quasi-

affinity and )- ≥ 0. By Lemma 4.1, f()) ≥ 0.

(v) ⇒ (vi): By Douglas’ lemma, ) = -%, and since )- = -%- is selfadjoint

and - is a quasi-affinity, % is selfadjoint. By the assumption f()) ∩ (−∞, 0) = ∅, it

follows from [10, Corollary 4.2] that )- ≥ 0, and hence that % ≥ 0. Thus ) ∈ L+ 2.

Set � = -1/2, which is also a quasi-affinity, and define � = �%� ≥ 0. Then

)� = ��. The last condition in (vi) then follows since ) = -%.

(vi) ⇒ (i): Since )��∗ = ���∗ ≥ 0, and since ran) ⊆ ran(��∗), by

Douglas’ lemma ) = ��∗%. Moreover, )� = � (�∗%�), and since � is a quasi-

affinity, �∗%� = �. Hence % ≥ 0 and so ) ∈ L+ 2. �

Remark. A simple example shows that even if ) ∈ L+ 2 and there is a quasi-affinity

- ∈ L+ such that )- = -)∗ ≥ 0, it need not be true that ran) ⊆ ran - . For

example, take ) = 1 on an infinite dimensional Hilbert space, and - ∈ L+, but

without closed range. Also,) = � = 1 and� any quasi-affinity without closed range

together satisfy )� = ��, but obviously, ran) is not contained in ran(��∗).

In [19, Corollary 3], Stampfli showed that quasi-similar operators with Dun-

ford’s property � have equal spectra. Since by Theorem 5.4, any ) ∈ L+ 2 has

property �, and positive operators, being scalar, also have this property, it follows

that if ) ∈ L+ 2 is quasi-similar to a positive operator �, then f()) = f(�). As

the next result shows, this continues to be true with the weaker assumption of quasi-

affinity, and as a bonus, the proof does not use any of the material from Section 5.

Proposition 7.2. If ) ∈ L+ 2 is quasi-affine to � ∈ L+, then f()) = f(�).

Proof. Suppose to begin with that) is quasi-similar to�. Write, using Theorem 7.1,

) = ��, �, � ∈ L+ and � injective. Then ) is quasi-affine to �� := �1/2��1/2

(with quasi-affinity �1/2). Applying Lemma 3.7, � is quasi-affine to ��. From [6,

Lemma 4.1], � and �� are unitarily equivalent, and so have equal spectra. As noted

in Lemma 4.1, ) and �� also have equal spectra, so the result follows in this case.
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Now suppose that ) is just quasi-affine to �. If N = ran)∗, N is invariant for

)∗, and )∗%N ∈ L+ 2 by Proposition 4.8. As observed in Lemma 4.1, f()) ⊆ R+,

so f()∗) = f()), and consequently

f()) = f()∗) = f()∗%N) = f(%N)).
The middle equality follows by the same argument as in the proof of Lemma 4.1.

Define )̃ : N → N as the compression of ) to N . If 0 ∉ f()̃ ), so that )̃ is

invertible, then ran)∗ = N . By Proposition 6.3, ) is similar to a positive operator,

and by Lemma 3.4, ) is quasi-similar to �, and this has already been dealt with.

If 0 ∈ f()̃ ), then f(%N)) = f()̃ ). Suppose that )- = -�, - a quasi-

affinity. Then R := -∗N = ran�. Since -∗%N = %R-∗%N, for �̃ = %R� |R and

-̃ = %N- |R , -̃ is a quasi-affinity and )̃ -̃ = -̃�̃. Note thatf(�̃)∪{0} = f(�)∪{0},
and if 0 ∈ f(�), then 0 ∈ f(�̃). By Theorem 7.1, ran )̃ ∔ ker )̃ = N . By definition,

ran )̃∗ ∔ ker )̃∗ = ran )̃∗ ∔ {0} = N . Applying Theorem 7.1 to )̃ and )̃∗, )̃ is quasi-

similar to some positive operator, � ′. It then follows from Lemma 3.4 that )̃ is

quasi-similar to �̃. Hence f()̃ ) = f(�̃). Finally,

f()̃ ) = f()) ⊇ f(�) = f(�̃),
where the containment is by Lemma 3.7, and the second equality follows since

0 ∈ f(�̃). Consequently, equality holds throughout. �

The next is a corollary of Theorem 7.1.

Corollary 7.3. For ) ∈ !(H), the following are equivalent:

(i) ) ∈ L+ 2 and ) is quasi-similar to a positive operator;

(ii) ) ∈ L+ 2 and ran) ∔ ker) = H ;

(iii) There exist quasi-affinities -,. ∈ L+ such that ran) ⊆ ran - , ran)∗ ⊆ ran. ,

)- ≥ 0, and ). ≥ 0;

(iv) f()) ∩ (−∞, 0) = ∅, and there exists quasi-affinities -,. ∈ L+ such that

)- = -)∗, .) = )∗. , and either ran) ⊆ ran - or ran)∗ ⊆ ran. ;

(v) There exists � ∈ L+ and quasi-affinities �, � ∈ !(H) such that )� = ��,

�) = ��, and either ran) ⊆ ran(��∗) or ran)∗ ⊆ ran(�∗�).

Proof. The equivalence of (i) and (ii) in Theorem 7.1 gives the equivalence of the

first two items here. Assuming ) ∈ L+ 2 and ) quasi-similar to a positive operator,

one has )∗ quasi-affine to a positive operator, and from this ran)∗ ∔ ker)∗ = H .

Taking orthogonal complements gives ran)∩ker) = {0} and so ran) ∔ ker) = H .

On the other hand, if ran) ∔ ker) = H , then ran) ∩ ker) = {0}, and so taking

orthogonal complements, ran)∗ ∔ ker)∗ = H .

Consequently, Theorem 7.1 applies to both ) and )∗. Since f()∗) = {_ :

_ ∈ f())}, f()∗) ∩ (−∞, 0) = ∅ as well. The rest of the equivalences then easily

follow. �

Corollary 7.4. If ) ∈ L+ 2 and ) = �� where (�, �) is an optimal pair and

either ran �, respectively ran �, is closed, then ) , respectively )∗ is quasi-affine to a

positive operator. If there is such a pair with both ran � and ran � closed, then ) is

quasi-similar to a positive operator.
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Proof. Suppose ) ∈ L+ 2 and ) = �� where (�, �) is an optimal pair and ran �

is closed. From Proposition 4.2, ran � ∩ ker � = {0}, and taking orthogonal com-

plements gives that ker) ∔ ran) is dense in H . Therefore, by Theorem 7.1, ) is

quasi-affine to a positive operator. The other case is handled identically. If both �

and � have closed range, ) and )∗ are both quasi-affine to positive operators. By

Lemma 3.4, ) is quasi-similar to a positive operator. �

Remark. As was noted in Example 3 in Section 4, there exists an operator) ∈ L+ 2

for which neither ran) ∔ ker) nor ran)∗
∔ ker)∗ are dense. Hence by the results of

this section, in this particular example neither ) nor )∗ is quasi-affine to a positive

operator, and in particular, ) will not be quasi-similar to a positive operator.

On the other hand, Example 4 gives an operator) ∈ L+ 2 which is quasi-similar

to a positive where there is no optimal pair (�, �) with ran � or ran � closed, so

there is no converse to Corollary 7.4.

While the operators which are similar to a positive operator are in L+ 2, this is

no longer necessarily true for those which are quasi-similar to a positive operator.

Proposition 7.5. For ) ∈ L+ 2, ) is quasi-affine, respectively quasi-similar, to a

positive operator if and only if) has a square root which is quasi-affine, respectively,

quasi-similar to a positive operator. Consequently, there exists an operator which is

quasi-similar to a positive operator which is not in L+ 2.

Proof. Suppose that) is quasi-affine to a positive operator. By Theorem 7.1,) = ��

with �, � ∈ L+ and � injective. Set � = �1/2��1/2 and - = �1/2. Then )- = -�.

By Douglas’ lemma, �1/2 = �1/2�1/2�, so in particular, ran�1/2-∗ ⊆ ran -∗, and

so another application of Douglas’ lemma gives ' ∈ !(H) such that '- = -�1/2.

Thus ' is quasi-affine to �1/2. Since '2- = -� = )- and ran - is dense, '2 = ) .

Conversely, if '2 = ) and '- = -�,� ≥ 0 and - a quasi-affinity, then '2- = -�2.

If in addition, ) is quasi-similar to �, .'2 = �. . Hence � (.-) = .'2- =

(.-)�, and by Lemma 4.15, �1/2 (.-) = (.-)�1/2. Therefore,

.'(-�1/2) = .'2- = � (.-) = �1/2. (-�1/2).

It is straightforward to see that ran (-�1/2) = ran) , ran ('∗. ∗) = ran)∗, and

ran (. ∗�1/2) = ran)∗. Also, ker('∗. ∗) = ker(. ∗�1/2) = ker) . By Corollary 7.3,

ran) ∔ ker) = H , and so.' = �1/2. on a dense subset. By continuity,.' = �1/2.
on all of H , and thus ' is quasi-similar to�1/2. The converse is as in the quasi-affine

case.

By Example 6, there is a ) ∈ L+ 2 which is quasi-similar to a positive operator,

yet does not have a square root in L+ 2. Hence for this operator, the square root

constructed above is quasi-similar to a positive operator but is not in L+ 2. �

Remark. In the last proposition, the operator ' constructed there has f(') ⊆
f(�1/2) ∪ f(−�1/2), which is a slight strengthening of Lemma 3.7 in this setting.

There is no obvious way to rule out negative values in f(') if ' is not in L+ 2.

Nevertheless, for the operator in Example 6, the square root is ' =

(

(1/2 0

(1 − ()1/2 0

)

,
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which happens to be a partial isometry with f(') = f((1/2) ∪ {0} = f((1/2). For

� =

(

( 0

0 0

)

, - =

(

(1/2 0

(1 − ()1/2 1

)

, . =

(

1 0

−(1 − ()1/2 (1/2

)

,

� ≥ 0, - and . are quasi-affinities, '- = -�1/2 and .' = �1/2. . So even though

' ∉ L+ 2, f(') = f(�1/2).

8. L+ 2 – the general case

The sole remaining case to consider are those operators ) ∈ L+ 2 for which neither

M := ran) ∔ ker) nor N := ran)∗ ∔ ker)∗ equals H . Decompose

H = M ⊕ (ran)∗ ∩ ker)∗) = N ⊕ (ran) ∩ ker)).
The spaces M and N⊥ are invariant for ) , while N and M⊥ are invariant for )∗. In

what follows, statements involving only the spaces M and M⊥ are given, since it is

obvious what the equivalent statements for N and N⊥ should be.

Lemma 8.1. Let ) ∈ L+ 2. Then )M := )%M ∈ L+ 2, ran)M = ran) , ker)M =

ker)⊕M⊥, and)M is quasi-affine to a positive operator. Also, if (�, �) is an optimal

pair for ) , then ran) ⊆ ran(�(%M�%M)1/2) and (�, %M�%M ) is an optimal pair

for )M .

Proof. Applying Proposition 4.8 and Corollary 4.3, )M ∈ L+ 2 and ran)M = ran) .

Write ) = ��, where (�, �) is optimal. Since ker � = ker) ⊆ M and

%M� = � = �%M ,

)M = (� + %ker) + %M⊥) (%M�%M ),
where � + %ker) +%M⊥ is positive and injective since by now standard calculations,

� + %ker) has this property on M. It then follows from Theorem 7.1 that )M is

quasi-affine to a positive operator. Also ker)M = ker(%M�%M) = ker) ⊕ M⊥.

Finally, since � ≥ 0, ran(%M�%M⊥ ) ⊆ ran(%M�%M)1/2. Then from

) =
(

)M )%M⊥
)

= �
(

%M�%M %M�%M⊥
)

,

the last claim follows. �

It is also true that) is the restriction of an operator in L+ 2 which is quasi-affine

to a positive operator in the following sense.

Lemma 8.2. Let ) ∈ L+ 2. Then there is an operator)M ∈ L+ 2 with the properties

that )M is quasi-affine to a positive operator, ) = %M)
M , ran)M = ran) ⊕ M⊥

and ker)M = ker) .

Proof. Write ) = �� with (�, �) optimal. Set

)M
= ) + %M⊥� = (� + %M⊥ )� = (� + %ker) + %M⊥ )�.

Then )M ∈ L+ 2, � + %ker) + %M⊥ ≥ 0 is injective, and ker)M = ker �. By

Theorem 7.1, )M is quasi-affine to a positive operator.

Since )M∗ = �(� + %M⊥), ker)M∗ ⊇ ker(� + %M⊥ ) = ker � ∩ M, and if

)M∗G = 0, then (� + %M⊥ )G ∈ ker � ∩ ran(� + %M⊥ ) = {0}. The last equality
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follows since if G ∈ ker � ⊆ M and G = G1 + G2, G1 ∈ ran � ⊆ M and G2 ∈ M⊥,

then G2 = 0, and since ran � ∩ ker � = {0} by Proposition 4.2, G = 0. Hence

ker)M∗ = ker(� + %M⊥), and so ran)M = ran) ⊕ M⊥. �

Theorem 8.3. Let ) ∈ !(H) and M = ran) + ker) . The following are equivalent:

(i) ) ∈ L+ 2;

(ii) )M := )%M ∈ L+ 2 and there exists an optimal pair (�, �) for )M such that

ran) ⊆ ��1/2;

(iii) There exists )M ∈ L+ 2 satisfying ) = %M)
M and an optimal pair (�, �) for

)M such that �M⊥ = M⊥.

In this case, both )M and )M are quasi-affine to positive operators.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) follow from the last two lemmas.

Assume (ii) holds and that )M = �� for an optimal pair (�, �) such that

ran()%M⊥ ) ⊆ ran) ⊆ ran(��1/2). By Douglas’ lemma, there is an operator / ∈
!(H) with ker / = ker()%M⊥ ) = M and such that )%M⊥ = ��1/2/ . Hence,

) = )M + )%M⊥ = �(� + �1/2/) = ��1/2 (�1/2 + /) = �(�1/2 + /∗) (�1/2 + /)
is in L+ 2, the last equality following since ran /∗ ⊆ M⊥ ⊆ ker �. Thus (i) holds.

Now assume (iii) is true. Then for the optimal pair (�, �) there, %M� =

%M (�%M + �%M⊥ ) = %M�%M . Hence ) = %M�%M� ∈ L+ 2, which is (i). �

Remark. Since )M = )%M , f()M ) ∪ {0} = f(%M)) ∪ {0} = f()) ∪ {0}. If

0 ∉ f()), %M = 1, and likewise, if 0 ∉ f()M ), ran %M = H , so again %M = 1.

Thus, f()M ) = f()). Unfortunately, there does not seem to be any similar relation

between f()M) and f()).
There is also the dilation result for the class L+ 2 in Proposition 4.11, though

there does not appear to be such a close connection for the spectra of these with that

of ) . These dilations are in a sense extremal for the family L+ 2, in that any further

dilations are direct sums.

Theorem 5.4 indicates that all operators in L+ 2 are generalized scalar, so it is

natural to wonder if there is some characterization of the class L+ 2 in terms of this

property and the spectrum of the operator being in R+.

9. Examples

Recall that an operator ) is algebraic if there is a polynomial ? such that ?()) = 0.

By the spectral mapping theorem, f()) is then contained in the set of roots of the

polynomial.

Proposition 9.1. Suppose that ) ∈ L+ 2 is algebraic. Then ) has the form

) =

∑

9

_ 9& 9 ,

where each _ 9 ≥ 0 is an eigenvalue for ) and & 9 is an oblique projection. In this

case, ran) is closed and ) is similar to � =
∑

9 _ 9% 9 ≥ 0, where each % 9 is an

orthogonal projection and
⊕

9 % 9 = 1. Conversely, if ) has this form, then ) ∈ L+ 2

and is algebraic.
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Proof. As noted above, if ?()) = 0 for a polynomial ?, the spectrum of ) is a

finite set of points taken from the non-negative roots of ?. For each _ 9 ∈ f()),
let & 9 be the Riesz projection for _ 9 ∈ f()). Then H 9 = ran& 9 is invariant for

) and f() |H 9
) = _ 9 . Furthermore, &8& 9 = 0 for 8 ≠ 9 . By Proposition 4.8 and

Proposition 5.2, ) |H 9
= ���−1, with � ≥ 0, � invertible in H 9 , and f(�) = {_ 9 }.

Thus � = _ 91H 9
, and so ) |H 9

= _ 91H 9
. Therefore, )& 9 = _ 9& 9 for some oblique

projection & 9 and if _ 9 ≠ 0, ) |H 9
is invertible. Since &8& 9 = 0 when 8 ≠ 9 ,

∑

9 & 9

is a projection, and moreover
∑

9 & 9 = 1. So ) has the claimed form.

Since &8& 9 = 0 when 8 ≠ 9 , ran&8 ∔ ran& 9 is closed, and consequently,

ran) =
∨

9≠0 H 9 is closed. So by Corollary 6.6, ) is similar to a positive operator

�. In this case, � must be as in the statement of the proposition.

For the converse, the statement that ) is algebraic follows from the spectral

mapping theorem, using a polynomial with roots equal to the set of eigenvalues.

Furthermore,) is a scalar operator and its spectrum is in a set of the form {0}∪[2,∞),
2 > 0. Therefore by Corollary 6.4, ) is in L+ 2. �

Remark. Using Example 2, it is possible to write down an optimal pair for any ) in

L+ 2 which is algebraic. Let (� 9 , � 9 ) be the optimal pair for the oblique projection

& 9 , as constructed in that example. Claim that for � =
∑

9 � 9 , � =
∑

9 � 9 , (�, �)
is an optimal pair for ) . Since & 9&: = 0 if : ≠ 9 , � 9�: = 0, or equivalently,

�:� 9 = 0. Hence ) = ��. It is immediate that ran � = ran) and ran � = ran)∗, so

the pair is optimal.

Next consider the class of compact operators in L+ 2.

Corollary 9.2. Let ) be a compact operator in L+ 2 and let f()) = {_ 9 }. Then

restricted to the range H 9 of the Riesz projection corresponding to _ 9 ≠ 0, ) |H 9
=

_ 91H 9
. Furthermore, ) has no quasi-nilpotent part other than ker) .

Proof. The first part is obtained in the same way as in the proof of the last proposition,

The last part follows directly from Proposition 5.2. �

Remark. Despite the simple form of the eigenspaces for a compact operator in L+ 2,

a compact operator is generally not as nice as an algebraic operator. Indeed, it need

not be quasi-affine to a positive operator, even if it is in a Schatten class. It suffices

to verify this with the trace class operators.

For example, let (4=)∞==1
be an orthonormal basis on H , and {_ 9 } ⊂ R+ non-

zero and absolutely summable. Also let %= be the orthonormal projection onto the

span of 4=. Define � =
∑

= _=%=, a positive trace class operator. If G =
∑

= _=4=, then

G ∈ H , and there is obviously no vector H ∈ H such that �H = G. As in Example 3,

define � to be the orthogonal projection onto (∨ G)⊥. Then ) = �� is trace class,

and is not quasi-similar to a positive operator. With minor modifications, ) can be

chosen to be trace class and not even quasi-affine to a positive operator.

It follows from Apostol’s theorem (Theorem 3.3) that the eigenspaces of )

do not form a basic system of subspaces. Moreover, it is not clear that a compact

operator with eigenvalues and eigenspaces as in Corollary 9.2 will necessarily be in

L+ 2, even if the eigenspaces do form a basic system.
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Suppose that ) is compact and of the form given in Corollary 9.2. Suppose

furthermore that
∨

=H= = H . In this case the eigenspaces form a basic system. For

{U=} ⊂ R+\{0} with
∑

= U= < ∞, define - :
⊕

= H= → H by

- (⊕=G=) =
∑

=

U=G=, G= ∈ H= .

Notice that
⊕

= H= is a sort of “straightened” version of H and is isomorphic to

H . By the arguments in [1], - is bounded. Let &= :
⊕

= H= → H be the oblique

projection defined by

&=G =

{

G, G ∈ H=;

0, G ∈
⊕

:≠= H=.

Lemma 9.3. For - defined as above,

-∗H =
∑

=

U=&
∗
=H, H ∈ H .

Proof. As defined, &= has the properties that ran&∗
= = (ker&=)⊥ = H= and

ker&∗
= = (ran&=)⊥ = H⊥

= . Thus, for H ∈ H and G = ⊕=G= ∈
⊕

= H=,
〈

∑

=

U=&
∗
=H, G

〉

=

∑

=

U= 〈 H, &=G 〉 =
∑

=

U= 〈 H, G= 〉

=

〈

H,
∑

=

U=G=

〉

= 〈 H, -G 〉 . �

Proposition 9.4. Let ) be a compact operator in !(H) with f()) = {_ 9 } ≥
0, and suppose that when restricted to the the range H 9 of the Riesz projection

corresponding to _ 9 ≠ 0, ) |H 9
= _ 91H 9

, and that the quasi-nilpotent part of ) is the

kernel. If
∑

9 _
1/2
9
< ∞, then ) ∈ L+ 2.

Proof. Take - defined as above, but with U= = _
1/2
= if _= > 0 and 1 otherwise. Then

∑

= U= < ∞ and by Lemma 9.3, for G = ⊕=G= ∈
⊕

= H=,

‖-G‖2
=

〈

-∗(
∑

=

U=G=), ⊕=G=

〉

=

∑

=

U= 〈 -∗G=, ⊕=G= 〉

=

∑

=

U2
= 〈 ⊕=G=, ⊕=G= 〉 =

∑

=

U2
=‖G=‖2.

Define � ≥ 0 on
⊕

= H= by 〈�G, G 〉 = ∑

= _=‖G= ‖2. Then - is a quasi-affinity and

-∗- ≥ � (in fact, it will be equal if ker) = {0}). By Douglas’ lemma, �1/2 = -∗/
for bounded / . By Apostol’s theorem (or rather, the proof of it),

)- = -� = --∗//∗-,

and so since ran - is dense, ) ∈ L+ 2. �

Next consider Fredholm operators in L+ 2. Recall that ) is left-semi-Fredholm

if there exists a bounded operator ' and a compact operator  such that ') = 1+ .
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On the other hand, it is right semi-Fredholm if there exist such ' and  such that

)' = 1 +  . Finally, ) is Fredholm if it is both left and right semi-Fredholm.

Proposition 9.5. Let) ∈ L+ 2. Then) is left / right semi-Fredholm if and only if ) is

Fredholm and similar to a positive operator with closed range and finite dimensional

kernel. In this case,

ind) := dim ker) − dim ker)∗
= 0.

Proof. Suppose that ) ∈ L+ 2 and that it is left semi-Fredholm (the other case is

handled identically).Then by Atkinson’s theorem, ran) is closed and dim ker) < ∞.

Hence by Proposition 6.3, ) is similar to a positive operator. If ) = !�!−1 where

� ≥ 0 and ! is invertible, ran) closed implies that ran� is closed, and dimker) < ∞
gives dim ker� < ∞. Since )∗ = !∗ −1�!∗, dim ker)∗ = dim ker) . �
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