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Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults
under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative
stress (OS) are triggered, contributing to the development of many TBI-induced
neurological deficits, and reducing the probability of critical trauma patients´ survival.
Regardless the research investment on the development of anti-inflammatory and
neuroprotective treatments, most pre-clinical studies have failed to report significant
effects, probably because of the limited blood brain barrier permeability of no-steroidal
or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like
growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse
neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-
inflammatory effects. Considering this background, the aim of the present investigation is
to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI.
Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors
containing the IGF-1 gene cDNA 15min post-TBI. Animals were sacrificed after 60 min,
24 h or 7 days to study the advanced oxidation protein products (AOPP) and
malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid
peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were
assessed by evaluating working memory 7 days after TBI. The results reported
significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in
the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also
reduced workingmemory performance. Interestingly, AOPP, andMDA levels in the studied
brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented
cognitive deficits, restoring TBI-animals working memory performance to similar values
regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel
therapeutic approach to targeting neuroinflammation as well as to preventing some
behavioral deficits related to TBI.
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INTRODUCTION

Traumatic brain injury (TBI) is the consequence of an external
mechanical force applied to the cranium and its content. This
event may cause temporary or permanent disabilities on TBI
survivors because of its consequences at physical, cognitive or
psychological levels (Niedzwecki et al., 2008; Steyerberg et al.,
2008; Stocchetti and Zanier, 2016; Wolfe et al., 2018). The TBI’s
severity can be classified as mild (mTBI), moderate or severe
taking into account the clinical presentation of a patient’s
neurologic signs and symptoms (Kay et al., 1993; Katz and
Alexander, 1994; Ponsford et al., 2016). Furthermore, TBI is
considered a worldwide increasingly critical health problem,
according to recent studies in the United States, revealing that
the number of “TBI-related emergency department visits,
hospitalizations, and deaths increased by 53%” from 2006 to
2014 (Centers for Disease Contr, 2019).

Injuries related to TBI can be classified into primary and
secondary. The first ones, occur at the moment of trauma and
can be manifested as focal injuries (e.g. skull fractures, intracranial
hematomas, lacerations, concussions, penetrating wounds), or
diffuse injuries (as in diffuse axonal injury) (Alain and Wang,
2008; Katerji et al., 2019). The secondary injuries appear
immediately after trauma and may last for long periods (Nortje
and Menon, 2004; Pearn et al., 2017). They are frequently
associated with ischemia, brain edema, and neuroinflammation,
and may take place in a period from days to weeks, or even
months, triggering a complex cascade of intracellular signaling,
which include ATP depletion, mitochondrial dysfunction,
oxidative stress (OS), and cytoskeleton damage (Montivero
et al., 2021). In turn, those events induce the production of
toxic and pro-inflammatory mediators, such as prostaglandins,
oxidative metabolites, chemokines, and proinflammatory
cytokines, which can lead to lipid peroxidation, protein
oxidation, enhanced blood brain barrier (BBB) disruption and
brain edema to finally induce neuronal dysfunction or death
(Krishnamurthy et al., 2016; Pearn et al., 2017).

It has been described that secondary injury mechanisms, as
outlined above, may contribute to the cognitive deficits observed
even long-term after injury. Individuals suffering from TBI of any
severity could experience a cluster of symptoms for a prolonged
period of time (Kushner, 1998; Ryan and Warden, 2003;
McMahon et al., 2014; Stocchetti and Zanier, 2016),
commonly recognized as post-concussive syndrome (PCS)
(Alexander, 1995; Ryan and Warden, 2003; Stocchetti and
Zanier, 2016; Montivero et al., 2021). The PCS includes a
variety of symptoms ranging from cognitive symptoms (speech
changes, attention loss, dysfunction in executive function and
memory, or mental slowing, among others) Kaplan et al. (2018);
physical and somatic symptoms (hearing and visual disturbances,
sensitivity to light or sound, pain, headaches, dizziness, nausea,
fatigue, sleep disruption, and even seizures) (Lozano et al., 2015;
Webster et al., 2017; Kaplan et al., 2018; Wolfe et al., 2018) and
emotional/behavioral symptoms (executive dysfunction, anxiety,
irritability, depression, and attention deficit) (Arciniegas et al.,
2005; Bryan, 2013; Paterno et al., 2017). Regretfully, it is difficult
to identify those individuals at risk for PCS with the standard

clinical assessment used. Nevertheless, since the working memory
is one of the cognitive functions primarily affected by TBI, its
clinical evaluation, including functional magnetic resonance
imaging performed within the first week of injury, may
contribute to predicting the patients´ outcome (Christodoulou
et al., 2001; Ricker et al., 2001; Hillary et al., 2011; Wylie et al.,
2015; Montivero et al., 2021).

Unfortunately, there are no available pharmacological therapies to
prevent or reverse early secondary events in order to reduce long-
term disabilities described in TBI patients (Paterno et al., 2017).
Several neurotrophins synthesis can be locally stimulated in the brain
after TBI, among them, insulin like growth factor-1 (IGF-1)
(Madathil et al., 2010; Schober et al., 2010). However, TBI-
induced increments in IGF-1 and IGF-1-related signaling
molecules seem to be transient and probably are not enough to
provide neuroprotection or stimulate sub-acute repair or regenerative
mechanisms. Early studies in TBI patients have shown a reduction in
serum IGF-1 levels (Agha et al., 2004; Popovic et al., 2004; Wagner
et al., 2010; Zgaljardic et al., 2011; Olivecrona et al., 2013), even after
mTBI Robles et al. (2009), Wagner et al. (2010), while other
investigations have reported that there were either no changes
Bondanelli et al. (2002) or a long-term increase in serum IGF-1
levels after injury (Wildburger et al., 2001). These differences can be
due to the diverse patient population included in those studies, as well
as different trauma types, gender, injury severity, patient age, and
brain regions affected (Madathil et al., 2015). Nonetheless, low IGF-1
serum levels have been implicated in the development of cognitive
dysfunction Trejo et al. (2004), Koopmans et al. (2006) and were
positively correlated with cognitive impairment in TBI survivors
tested up to a year post injury (Madathil et al., 2015). Thus, it is
plausible to consider that low plasma IGF-1 levels may contribute to
the primary causes of cognitive disorders after TBI (Madathil et al.,
2015). However, even though early IGF-1 administration promotes
regenerative events such as neurogenesis and angiogenesis in a TBI
animal model Whitaker-Lea and Valadka (2017), its therapeutic
potential after TBI has not yet been assessed. It should be
emphasized, that different clinical trials have shown acceptable
tolerability of systemic IGF-1 therapy in moderate to severe TBI
patients, as well as enhanced metabolic outcome in comparison to
placebo-treated patients (Hatton et al., 1997; Madathil et al., 2015).
Furthermore, systemic growth hormone administration produced
increments in IGF-1 levels, inducing a tendency to improve the
functional outcomes in treated patients (Dubiel et al., 2018).

Considering all the evidence aforementioned, and the fact that
IGF-1 gene therapy targets brain cells in vivoHereñú et al. (2009)
and can decrease behavioral functional impairments in aged rats
(Nishida et al., 2011; Pardo et al., 2017), the aim of the present
study is to evaluate the effectiveness of early IGF-1 gene therapy
in the treatment of TBI for preventing OS as well as improving
cognitive deficits.

MATERIAL AND METHODS

Ethics
All procedures were carried out in accordance with the Guide for
the Care and Use of Laboratory Animals as adopted and
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promulgated by the National Institutes of Health and the EU
(Eighth Edition, 2011) and approved by the Animal Care and Use
Committee, Facultad de Ciencias Químicas (Res. Dec. 1194/2017
and 2336/2019), Universidad Nacional de Córdoba. In this study,
a total of 97 maleWistar rats (270–310 gr) were obtained from the
Department of Pharmacology-IFEC-CONICET vivarium
(Facultad de Ciencias Químicas, Universidad Nacional de
Córdoba, Argentina) and were housed in groups of 3, in
plastic boxes with metallic gridded tops, using sawdust as
bedding material, in a temperature and humidity controlled
conditions under a 12-h light/dark cycle (lights on at 7 am).
Food and water were freely available. Experiments were made
minimizing the number of animals used and their suffering.

Animal Model of TBI
In order to mimic human diffuse TBI caused by falls or motor
vehicle accidents, we used the Marmarou’s impact acceleration
model (Marmarou´s IAM) that recreates global impact on the
brain (Foda and Marmarou, 1994; Marmarou et al., 1994; Silva
et al., 2011; Xiong et al., 2013). For this purpose, animals were
anesthetized (Ketamine 55 mg/kg/xylazine 11 mg/kg) and
subjected to a controlled TBI, described elsewhere
(Marmarou et al., 1994; Silva et al., 2011). Briefly, the
“trauma device” consists of 1 m removable aluminum tube,
attached to a wooden platform, which allows a controlled
impact when dropping a 45 gr brass sphere onto a stainless
steel disc located above the animal head, causing a 0.45J impact
when it is dropped from the mentioned height. Under
anesthesia, animals were placed on the platform covered with
a foam bed, with their heads located under an extreme of the
tube, approximately midline between Lambda and Bregma. The
stainless steel disc was located between the animal’s head and
the tube, in order to prevent skull fractures. Then, they were
subjected to the impact by dropping the sphere from the
aluminum tube top. In the control group (Sham) the animals
were anesthetized and placed on the trauma device platform, but
they did not received impact.

Once animals received the impact (TBI group) or its mimic
(Sham group) they were divided into groups to perform the
experiments as it was shown in Figure 1: Temporal course of OS
and behavior after TBI and the effects of early IGF-1 gene therapy
in OS and behavior.

Temporal Course of Advanced Oxidation
Protein Products and Malondialdehyde
Quantification after TBI
Sixteen animals were subjected to the protocol described in 2.2
(TBI or Sham) and divided into four groups (Sham; TBI 60 min;
TBI 24 h, and TBI 7 days) in order to evaluate AOPP and MDA
concentrations at different time points after TBI (60 min, 24 h,
and 7 days). After the times indicated, animals were sacrificed by
guillotine, their brains were removed and Prefrontal Cortex
(PFC), Motor Cortex (MC) and Hippocampus (HIP) were
dissected.

Tissue samples were then homogenized with phosphate buffer
saline (PBS) 0.1 M and centrifugated for 10 min at 4°C and
12,000g. The supernatant was diluted 1/30 for HIP and 1/20
for PFC and MC in PBS 0.1 M. AOPP and MDA determinations
were made as it was previously described with modifications
(Occhieppo et al., 2020). Briefly, AOPP determinations were
performed accordingly to Katerji et al. (2019) and 200 µL of
the diluted sample, chloramine T (0–100 μmol/L) for calibration
or PBS 0.1 M pH 7 as blank, were applied in different microtiter
plate wells. Then, 10 µL of 1.16 M potassium iodide and 20 µL of
acetic acid (glacial) were added to each well and absorbance was
immediately read at 340 nm. The AOPP concentration was
expressed in chloramine units (µmol/L) per milligram of proteins.

For MDA determinations, 250 µL of trichloroacetic acid and
250 µL of thiobarbituric acid were added to 500 µL of diluted
sample. Immediately after, samples were kept in boiling water for
10 min. Then, they were centrifugated at 1,000 rpm for 10 min,
and after cooling to clear the supernatant from denaturalized
proteins, absorbance was measured at 532 nm. Thiobarbituric

FIGURE 1 | Experimental design. Chart illustrating our experimental design including Marmarou’s impact acceleration model (Marmarou´s IAM), viral vectors
administration, temporal course of protein (AOPP) and lipids (MDA) peroxidation, and neurobehavioral assesements (Y-Maze test).
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acid-reactive substances were quantified using an extinction
coefficient of 1.56 × 105 M−1cm−1 and expressed as nanomole
of malondialdehyde (MDA) per milligram of proteins. In both
AOPP and MDA determinations, tissue proteins were
determined by using the Bradford reagent (Occhieppo et al.,
2020).

IGF-1 Gene Therapy after TBI
Viral Vectors
For animal treatment we employed recombinant adenoviral
vectors (RAd) previously constructed as carriers to deliver
either the therapeutic cDNA of IGF-1 gene (RadIGF1) or the
red fluorescent protein from Discosoma sp DsRed (RadDsRed),
as control virus (Hereñú et al., 2007). The viral dose [1010 plaque
forming units (pfu) of the appropriate vector] was suspended in
30 µL artificial cerebrospinal fluid (aCSF- in mM: NaCl 124, KCl
2.5, NaHCO3 26, MgCl2 2, CaCl2 2, and glucose 10; pH 7.4; 310
mosM/Kg) and administered directly into the subarachnoid space
via Cisterna Magna. Once administered, adenoviral vectors were
distributed by the cerebrospinal fluid and the ependymal cells
were infected. The expression of DsRed was verified in transversal
brain slices from animals subjected to TBI that received
RadDsRed (see protocol below). DsRed fluorescence was more
abundant in posterior brain slices near the injection site
(Figure 4A) rather than anterior brain slices (Figures 4B,C).

Experimental Protocol
Effect of IGF-1 Gene Therapy in AOPP and MDA after TBI
In order to test effectiveness of CNS IGF-1 over-expression on OS
markers reversion, 32 animals were randomly assigned to either
Sham or TBI, which received a single administration (30 µL) of
aCSF or viral suspension respectively. The procedure was carried
out as previously described (Nishida et al., 2020). Briefly, 15 min
after the TBI protocol, and still under anesthesia, animals’ heads
were shaved and cleaned with 70% ethanol in order to expose the
area of injection (Cisterna Magna). They were then placed on a
stereotactic apparatus in hyperflexion prone position, in order to
expand the Cisterna Magna. A 29G needle fitted to a 1 ml syringe
was used to deliver viral administration. Entry into the Cisterna
Magna was verified by drawing out 30 µL clear cerebrospinal
fluid, which was replaced by 30 µL of viral suspension or aCSF.
For the 24 h time point, TBI animals received either RadIGF1
suspension (TBI RadIGF1 group) or aCSF (TBI group); while for
the 7 days time point TBI animals received RadIGF1 suspension
(TBI RadIGF1 group), RadDsRed suspension (TBI RadDsRed
group) or aCSF (TBI group). Sham groups were simultaneously
tested at both time points, but they received 30 µL of aCSF
without receiving TBI. After treatment, animals were kept
undisturbed in their homeboxes until their sacrifice.

Effect of IGF-1 Gene Therapy in Working Memory after TBI
In order to test the efficacy of IGF-1 gene therapy in reversing
cognitive deficits induced by TBI, forty-nine animals were
randomly assigned to Sham or TBI. Treatment was performed
as indicated in the previous paragraph, for the 7 days time point.
Then, animals were placed back in their homeboxes and after
7 days they were tested in the Y-Maze task as it is described below.

We obtained four groups depending on treatment: Sham, TBI;
TBI RadDsRed, and TBI RadIGF1.

Y-Maze Test
The Y-maze task allows the assessment of working memory by
measuring the number of spontaneous alternations. This can be
assessed by allowing mice to freely explore all the three arms of
the maze. This behavior is driven by the innate curiosity of
rodents to explore previously unvisited areas. The apparatus is
made of three arms (50 cm long, 10 cm wide, and 20 cm high) of
water-proof wood, elevated to a height of 50 cm above the floor.
The test was conducted as it was described elsewhere with
modifications (Xiong et al., 2013). Briefly, rats were placed at
the end of arm #1 facing the center and they could choose
between arm #2 and arm #3. Entry into an arm was defined
as placement of the four paws into the arm and an alternation was
defined as triplet of consecutive entries to different arms. The test
lasted 8 min. Animals that did not reach the inclusion criteria (at
least five entries and/or 2 min without a new movement or entry)
were excluded. The number of total entries was also quantified as
an indicator of locomotor activity.

Statistical Analyses
Results of positive control (TBI) and experimental animals (TBI +
treatment) were normalized to negative controls (Sham). The
delta method was used for dispersion graphic display Polli et al.
(1997), since it allows weighing how much the dispersion of each
set of variables affects their means ratio dispersion. If normal data
distribution was confirmed by Shapiro-Wilk test, the Student’s
t-test was used when two independent groups were compared.
For more than two group comparisons, data were analyzed by
one-way ANOVA, followed by Tukey’s Honest Significant
Difference test. On the other hand, data with non-normal
distribution were analyzed by using Mann-Whitney test, or
Kruskal-Wallis followed by Nemenyi test. A 95% confidence
level was considered for all analyses.

For OS markers determinations and behavior performed
7 days after TBI, experiments were designed as independent
groups and analyzed by using one-way ANOVA in order to
reduce the number of animals used. It can be noted that the group
administered with the control virus (RadDsRed) was only
included in this time point or the same reasons.

RESULTS

TBI-Induced Increments in Oxidative Stress
Markers Last up to 7days Post Trauma
It has been recently shown that controlled cortical impact
(another animal model of TBI) induced early and significant
increases in lipid ROS and MDA levels, which returned to
baseline seven days after TBI (Xie et al., 2019). In our model
we observed a similar pattern of AOPP and MDA increments;
nevertheless, even though we observed a decrease in OS levels
after 7 days of TBI, they did not return to baseline. Figures 2A–C
shows that the AOPP concentration in trauma adjacent regions
or immediately below was significantly elevated at 60 min,
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FIGURE 2 | TBI induces a persistent increment in OS biomarkers. The graphs show the AOPP and MDA quantification as measurements of lipid and protein
peroxidation, respectively, in brain areas neighboring the trauma area, such as (A) and (D) Prefrontal cortex; (B) and (E) Motor cortex; and (C) and (F) Hippocampus.
Bars represent the mean ± SEM; n � 4. *Indicates significant difference (p < 0.05).
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reaching a maximum 24 h after TBI, when compared to Sham
condition. Main effects were observed in PFC [F (3, 10) � 168.6;
p < 0.0001] (Figure 2A), MC (Figure 2B) [F (3, 10) � 176.9; p <
0.0001], and HIP (Figure 2C) [F (3, 10) � 492.9; p < 0.0001]. The
post-hoc test indicated that all groups of animals submitted to
TBI were significantly different from Sham group (p < 0,05).
Furthermore, the 7 days group was also significantly different
from 60 min to 24 h groups (p < 0.05), indicating that there is a
trend to reduce AOPP levels on day 7 after TBI, even though they
are still increased when compared to Sham group in all the brain
structures studied.

In the case of MDA levels, the same AOPP pattern of
increment/reduction was observed. Figures 2D–F shows the
inverted U-shaped pattern in MDA concentrations with main
effect in PFC (Figure 2D) [F (3, 10) � 132.6; p < 0.0001], MC
(Figure 2E) [F (3, 10) � 148.9; p < 0.0001] and HIP
(Figure 2F) [F (3, 10) � 23,278; p < 0.0001]. Tukey’s post-
hoc test indicated that groups from all time points were
significantly higher than the Sham group (p < 0,05), and
the 7 days group was significantly lower than 60 min and
24 h groups in all brain structures investigated (p < 0.05).

Early IGF-1 Gene Therapy Prevented
Increments in Oxidative Stress Markers at
24 h and 7days Induced by TBI
24 h after TBI, AOPP concentrations in different brain structures
were determined in animals that received gene therapy 15 min
after the head trauma (Figure 3A). This treatment significantly
reduced the AOPP mean ratios of treated condition (TBI
RadIGF1/Sham) when compared with the “untreated
condition” (TBI/Sham) in MC (t � 69.92; p < 0.000000001),
HIP (t � 36.29; p < 0.0001) and PFC (U � 0; p < 0.05). Over
expression of IGF-1, also impacted onMDA levels measured 24 h
after TBI (Figure 3B). The mean ratios of the “treated condition”

(TBI RadIGF1/Sham) were significantly reduced when compared
to no treatment condition (TBI/Sham) in MC (t � 57.2; p <
0.00001), PFC (t � 85.35; p < 0.000000001), and HIP (t � 58.54;
p < 0.000000001). These results indicate that early gene therapy
prevented the peak in the AOPP and MDA levels observed 24 h
after TBI.

In other groups of animals, the effect of early gene therapy
7 days after TBI over AOPP and MDA concentrations was
studied (Figure 4). The following treatments were applied to
animals submitted to TBI: i) control group: viral vectors
containing cDNA of red fluorescent protein from Discosoma
sp DsRed (RadDsRed); and ii) experimental group: viral vectors
containing the therapeutic cDNA of IGF-1 gene (RadIGF1) as
treatment. A main effect was observed in AOPP mean ratios of
different conditions in MC [F (2, 11) � 54.98; p < 0.00001], PFC
[F (2, 11) � 179.6; p < 0.0000001] and HIP [F (2, 11) � 44.26; p <
0.0001] (Figure 4D). In all brain structures, TBI/Sham group and
control group (TBI RadDsRed/Sham group) means ratio were
elevated 50% or more in comparison to the experimental group’s
means ratio (TBI RadIGF1/Sham group), the post-hoc test
indicated that AOPP mean ratios of experimental group were
significantly different from AOPP mean ratios of untreated
conditions (TBI/Sham) and from AOPP mean ratios of
control treatment conditions (p < 0.05). Furthermore, no
differences were found between AOPP mean rations of TBI/
Sham and TBI RadDsRed/Sham groups. These results indicate
that early gene therapy was able to prevent the sustained
increment in AOPP concentrations observed up to 7 days after
TBI, and this effect was due to IGF-1 over-expression and not
because of viral vectors administration.

Figure 4B shows significant main effects in MDA mean ratios
7 days after TBI and treatments in MC [F (2, 11) � 133.34; p <
0.000001], PFC [F (2, 11) � 1468.37; p < 0.000000001] and HIP [F
(2, 11) � 607.17; p < 0.00000001]. The post-hoc test in all brain
structures indicated that MDA means ratio of TBI RadIGF1/

FIGURE 3 | Early IGF-1 treatment reduced TBI- induced OS biomarkers 24 h after injury. The graph shows the AOPP (A) and MDA (B) quantification as
measurements of protein and lipid peroxidation, respectively, in brain areas neighboring the trauma area, such as Motor cortex (MC), Prefrontal cortex (PFC), and
hippocampus (HIP). Results of positive control (TBI) and treated animals (TBI RadIGF1), referred as “condition” in the Y axes, were normalized to negative controls
(Sham). Bars represent the mean ± SEM; n � 4–6. *Different from TBI/Sham in each brain structure (p < 0.05).
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Sham were significantly different regarding TBI/Sham group and
TBIRadDsRed/Sham groups. Furthermore, no differences were
found between MDA mean rations of both TBI/Sham and TBI
RadDsRed/Sham groups. As it was described before, these results
indicated that early IGF-1 over-expression after TBI was able to
prevent the sustained increase observed in lipids peroxidation as a
consequence of trauma.

Early IGF-1 Gene Therapy Prevented
Cognitive Deficits Observed 7days after TBI
As it was described before, workingmemory is one of the cognitive
domains primarily affected by TBI that could predict patient’s
outcome (Ricker et al., 2001; Wylie et al., 2015; Montivero et al.,
2021). In preclinical studies, an individual with normal working
memory will remember the arms of the Y-maze that it has already
visited and will show a tendency to enter the less recently visited
arm. The correct performance requires interaction across several
different regions of the brain, such as the HP and PFC (Kraeuter
et al., 2019). In the present work we observed, under our
experimental conditions, a deficit in this domain in the TBI
group (Figure 5A) since a significant reduction was observed
in spontaneous alterations in the TBI group compared to Sham (t
� 2,825; p � 0,0083). No significant differences were detected in
the number of arm entries (t � 1,623; p � 0,1147) (Figure 5B),
indicating that the reduction in spontaneous alterations was not
consequence of a reduced locomotor activity.

In this experiment, the following treatments were applied
to animals submitted to TBI: i) control group: viral vectors
containing cDNA of red fluorescent protein from
Discosoma sp DsRed (RadDsRed); and ii) experimental
group: viral vectors containing the therapeutic cDNA of
IGF-1 gene (RadIGF1) as treatment. The percentage of
alternances and number of entries were expressed as ratios
between treatments and Sham (Figures 5C,D respectively). A
significant main effect in the mean ratio of the percentage of
spontaneous alterations was observed between TBI/Sham, TBI
RadDsRed/Sham and TBI RadIGF1/Sham groups [F (2, 31) �
5,051; p � 0,0131] (Figure 5C). The post-hoc test indicated that
mean ratio of TBI RadIGF1/Sham group was significantly
higher compared to the TBI/Sham group mean ratio. If we
look at the TBI RadIGF-1/Sham group mean in Figure 5C, we
can observe that it is close to 1, because spontaneous
alterations of experimental group were similar to Sham,
indicating a prevention of the deficits observed in the TBI
in the animals that received the early IGF-1 gene therapy
(Figure 5C). Furthermore, Tukey’s test showed no
significant differences between TBI/Sham and TBI
RadDsRed/Sham groups, showing that the control treatment
did not have impact on spontaneous alternations in the
Y-maze test (Figure 5C). Once again, locomotor activity
was not affected by treatments, since no main effect in the
number of arm entries mean ratio was found between groups
[F (3, 46) � 1.649; p � 0,1911] (Figure 5D).

FIGURE 4 | Early IGF-1 treatment prevented TBI- induced OS biomarkers 7 days after injury. Microscopic photographs of brain areas showing expression of
fluorescent DsRed Protein. DsRed fluorescence is more abundant in posterior brain slices, near the injection site (A) rather than anterior brain slices (B–C). The graph
shows the AOPP (D) and MDA (E) quantification as measurements of protein and lipid peroxidation, respectively, in brain areas neighboring the trauma area, such as
Motor cortex (MC), Prefrontal cortex (PFC), and hippocampus (HIP). Results of positive control (TBI) and treated animals (TBI + treatment), referred as “condition” in
the Y axes, were normalized to negative controls (Sham). Bars represent the mean ± SEM; n � 4–6. *Different from TBI/Sham and TBI RadDsRed/Sham in each brain
structure (p < 0.05).
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DISCUSSION

In this work, we showed that mTBI increases some OSmarkers as
a result of secondary injury. These markers were observed early
after TBI (60 min), reaching their highest levels at 24 h in all brain
structures analyzed. In addition, even though AOPP and MDA
products were significantly reduced on day 7 after TBI, they did
not return to basal levels. These results are in line with studies that
point out neuroinflammation as a key player in brain damage
severity and patients’ outcome after any kind of TBI. For instance,
recognized neuroinflammation serum protein markers, such as
Glial Fibrillary Acidic Protein (GFAP) and S100B, have
demonstrated to have a correlation to both severity and
outcome in TBI (Pelinka et al., 2004; Luoto et al., 2017).
Furthermore, the more severe the TBI is, the less successful
outcome is observed in patients and animal models. Many

severe TBI models have shown important brain damage and
correlate neuroinflammation with memory disorders (Farbood
et al., 2015; Zhang et al., 2017). Thus, with our model, we have
shown that even mTBI can lead to memory impairment as a sign
of PCS. The observed deficits in working memory 7 days after
TBI, related to impaired cognitive function, were probably the
result of the early neuroinflammatory cascade triggered by
secondary injury mechanisms. Working memory performance
depends on the PFC integrity (Riggall and Postle, 2012;
Lara and Wallis, 2015). Interestingly, we have observed an
increase of OS markers in this brain structure that remains
elevated over a 7-days period after TBI, compared to Sham
animals. This could be explained as the result of microglia
hyperactivation, as it occurs in the pathogenesis of many CNS
diseases Pekny and Pekna (2016), and/or changes in cerebral
blood perfusion (Babior, 2000; Block et al., 2006; Block and Hong,
2007), which in turn may affect neuronal excitability that finally
shape the disrupted working memory performance observed.

Although increasing knowledge about injury mechanisms of
TBI has led to a better understanding of its complex pathogenesis,
pharmacological strategies focused on ameliorating them are yet
missing. To date in clinical practice, medical management of TBI
is tailored according to the severity of each case considering the
Glasgow scale. In moderate to severe cases the treatment aim is to
keep a normal intracranial pressure (ICP) in order to maintain an
adequate cerebral blood pressure (CCP), which is an indicator of
brain perfusion. The pharmacological armamentarium consists
in sedation, neuromuscular blocking, and hyperosmolar agents
that contribute to decreasing ICP (Carney et al., 2017). On the
other hand, mTBI has a different approach because most of the
time the ICP remains within normal ranges, thus the treatment is
mainly focused on headaches management and the control of
PCS- related symptoms. In these cases, painkillers are the most
used medication with only evidence of improving pain, but not
decreasing the symptoms duration nor improving cognitive
deficits. TBI-related mood disorders can be improved by using
antidepressants and psychostimulants, and yet not dealing
adequately with memory deficits. Unfortunately, none of them
can interfere with the neuroinflammatory cascade that could be
the main cause of the sequelae after severe or mTBI (Whyte et al.,
2002; Comper et al., 2005; Wheaton et al., 2011; Huang et al.,
2016). In the present study we propose an early IGF-1 gene
therapy, considering previous reports regarding its
neuroprotective and anti-inflammatory effects (Zheng et al.,
2000; Carlson and Saatman, 2018; Serhan et al., 2019). In fact,
a small clinical trial showed improvement in neurological
outcome in severe TBI patients, when intravenous IGF-1 was
administered for several days, without effect in those with mTBI
(Hatton et al., 1997). Our results indicate that locally
administered IGF-1 gene therapy a few minutes after TBI,
significantly reduces recognized OS markers, such as the
protein and lipid (AOPP and MDA concentrations
respectively) peroxidation increments observed at 24 h and
impairs its long-term maintenance, also by reducing their
levels 7 days after TBI. It is worth noting that this effect is
specifically due to IGF-1 over-expression and not only by
viruses’ administration since control viruses (RadDsRed) did

FIGURE 5 | Early IGF-1 treatment prevented TBI-induced working
memory deficit observed 7 days after injury. The graphs show working
memory performance assessed by the Y-maze paradigm. Graphs (A) and (B)
show the percentage of spontaneous alternations and percentage of
spontaneous alternations in a Y-maze arena, respectively, in Sham and TBI
groups. Graphs (C) and (D) represent the percentage of spontaneous
alternations or number of entries ratio respectively, between TBI or TBI +
treatment groups and Sham group (TBI/Sham, TBI RadDsRed/Sham, and TBI
RadIGF1/Sham). Bars represent the mean ± SEM, n � 10–11. *Different from
TBI/Sham (p � 0,0095).
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not reduce AOPP nor MDA levels 7 days after TBI. With this
experimental approach, we were able to express the Red protein
in brain areas neighboring to the virus administration site (see
Figure 4A), and since the effects were observed in frontal brain
areas such as PFC and MC, the newly produced IGF-1 could be
actively transported through the choroid plexus and translocated
to the cerebrospinal fluid to finally reach different areas of the
nervous tissue, as it was recently reported (Nishida et al., 2020).
Nevertheless, further studies need to be performed to reveal
changes in other players involved in the OS balance:
antioxidants enzymes such as superoxide dismutase, catalase,
and glutathione peroxidase, as well as accumulation of
oxidation products of the proteins and lipids, like protein
carbonyl and 4-hydroxynonenal (Impellizzeri et al., 2019;
Siracusa et al., 2020).

The PFC plays an important role in execution of behavioral
tasks that require spatial working memory, and a direct PFC-
HIP pathway allows the encoding of salient spatial signals
during task execution (Deakin et al., 2012). In fact, lesion- or
drug-induced disturbances in HIP function certainly affect
spatial working memory performance (Dillon et al., 2008;
Tian et al., 2017; Ayabe et al., 2019). In the present study, we
found persistent increases in OS markers in these two relevant
brain structures that may affect the PFC-HIP bidirectional
control required to observe spontaneous alternations. Early
IGF-1 gene therapy was able to prevent the behavioral deficits
observed in TBI rats after 7 days of injury. Only the group
treated with vectors carrying the cDNA of IGF-1 gene showed
a percentage of spontaneous arm alternations similar to the
control group (Sham), while the TBI or TBI expressing Red
protein groups did not show differences from each other and
had lower performance rate than the controls in Y-maze
spontaneous alternations. All together, these results could
indicate that normal working memory can be preserved long-
term after injury if critical initial secondary injury
mechanisms were prevented in brain structures critical to
this cognitive function. This novel therapeutic approach
could be beneficial from IGF-1 peripheral administration
for many reasons: first, local over-expression can be
maintained even after a month from a single
administration (Falomir-Lockhart et al., 2019); second,
local over-expression may reduce systemic effects
compared to peripheral administrations which may need
massive doses in order to reach therapeutic CNS IGF-1
concentrations and lastly no doubts about treatment
patient’s adherence, since administration must be
performed during hospitalization, in a temporal window
that guarantees the pharmacological effect.

In conclusion, results presented in this work indicate that
brain focalized IGF-1 over-expression could be an effective
therapeutic approach targeting neuroinflammation and also
improving the cognitive deficits observed after TBI.
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