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2D Automaton Simulation of Bubble Growth by Solute Diffusion
in Correlated Porous Media
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Abstract. Simulations of bubble growth in porous media were carried out via a 2D numerical automaton built under
a set of hypotheses derived from experimental observations at pore scale. Various types of 2D numerical networks
(320 × 320 sites and corresponding bonds) were used as models of porous media to study the consequences of
the spatial correlation length, ξBB, existing among the porous network void entities with respect to the growth of
a gas cluster by solute diffusion occurring therein. The studied range was ξBB ∈ [0.86 ± 0.12, 10.63 ± 0.12], in
lattice units. The results obtained show that bubble development is truly affected by ξBB. The growth law exponent
β changes as: β = 4.95 − 0.53 ξBB + 0.04 ξ 2

BB, while the fractal dimension of the gas cluster body, D f , varies as:
D f = 1.31 + 0.04ξBB.
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Introduction

Bubble growth by pressure drop of a gas-saturated liq-
uid phase inside a porous medium plays a very im-
portant role in petroleum engineering for predicting
the mass production during primary recovery (see e.g.
Moulu, 1989). It has been established that the laws of
bubble growth inside porous media are very different
from those followed in bulk (see e.g. Li and Yortsos,
1995a); the differences arise from the fact that the evo-
lution of the gas-liquid interfacial area is strongly in-
fluenced by the porous medium microstructure. In this
scenario, the interaction between the different variables
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is complex (Domı́nguez et al., 2000), and the use of nu-
merical tools is useful to discern the effects of the dif-
ferent variables, since this helps in the interpretation
of experimental results and allows the virtual explo-
ration of the system evolution. 2D simulations have
been performed via a numerical automaton built un-
der a set of hypotheses derived from experimental ob-
servations at pore scale on 2D micromodels. This au-
tomaton has been tested through comparison between
experimental and numerical results; thereafter, the in-
fluence of liquid super-saturation, wettability and grav-
ity has been investigated (Domı́nguez et al., 2000;
Pérez-Aguilar et al., 2002). Now, the automaton is used
in order to carry out a study on how the characteristics
of the spatial void distribution existing within a porous
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network can influence the evolution of a gas cluster
growing by solute diffusion inside it. Various types of
2D numerical networks have been used as models of
porous media, these were built by using a variant of
the dual site-bond model simulation framework (at this
respect please c.f. Domı́nguez et al. (2001) and ref-
erences therein). For the same pore-size distribution,
this pore network simulation variant provides media
endowed with different bond-to-bond size correlation
lengths, ξBB. This manuscript reports the results of such
study.

Method

The research method followed throughout this work
can be divided in three parts: (i) construction of di-
verse types of numerical 2D square-lattice porous
networks endowed with diverse degrees of spatial
correlation among their void entities, (ii) characteri-
zation of their spatial size correlations through ξBB,
and (iii) simulations of bubble growth in porous
media by solute diffusion through a 2D numerical
automaton.

Numerical Networks Construction

The porous medium is represented by a 2D square
lattice of sites joined through bonds, as Fig. 1(a) il-
lustrates. The geometrical characteristics of sites and
bonds, in particular the sizes, Rb, and Rs of these
void entities are illustrated in Fig. 1(b). While sites are
conceived as cylindrical disks, bonds have rectangular
prism geometry, since this shape allows the inclusion
of solid wall roughness effects (liquid film) on bubble

Figure 1. Structure of the numerical porous network. (a) Representation of a 2D square lattice of sites and bonds; (b) geometrical characteristics
of constitutive elements: a site (left) and a bond (right).

growth (see e.g. Perez-Aguilar et al., 2002). Also note
that all network elements are assumed to possess the
same channel depth h. A similar network construction
procedure has been previously described in a detailed
manner (Domı́nguez et al., 2001). This procedure is
based on a Construction Principle (CP) that establishes
that the size of any site should be larger or at least equal
to the size of any of its connecting bonds, as well as on
a parameter λ, which restricts the size differences exist-
ing among a pore and its neighbors. The building proce-
dure allows the construction of assorted autoconsistent
networks, i.e. both CP and λ restrictions are fulfilled.
The simulated networks have void elements belonging
to the same pore-size distribution but which are spa-
tially distributed in different ways. A characteristic fea-
ture caused by the restrictions imposed on this model is
the formation of “patches” of sites and bonds having the
same sizes. The extent of these patches grows as corre-
lations increase. The network is a 320×320 numerical
matrix whose entries represent the sizes of the pore net-
work constitutive elements (site, bond, and solid, where
solid size = 0). The sizes of bonds and sites are cho-
sen from prearranged log-normal population samples.
The statistical parameters of the bond-size distribution
include a mean size R̄B = 10−4 m and a standard de-
viation α = 1.5 × 10−5 m; these values were chosen
from the experimental work of Wardlaw and Cassan,
1979, made on sandstone rock reservoirs. In turn, for
sites the mean size R̄S is chosen as 1.1 × 10−4 m and
α is assumed to be the same as that of the bond pop-
ulation. The lattice spacing distance is imposed to be
equal to 18.9 × 10−4 m with the purpose of simulat-
ing an experimental porosity value of 0.18 (Wardlaw
and Cassan, 1979). Therefore, the average length of the
bond population is l̄B = 16.7 × 10−4 m.
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Network Spatial Size Correlation

To investigate the way by which void elements are in-
terconnected inside a simulated porous network, a cor-
relation length is calculated (see e.g. Cordero et al.,
2001). This quantity represents the mean extent (in lat-
tice units) of patches where elements of similar sizes
coexist. First, it is assumed that the size correlation co-
efficient, Cxy(u), for two void elements x and y sepa-
rated by a distance u (in lattice units) is defined through
the following expression:

Cxy(u) = 〈(Rx − R̄x )(Ry − R̄y)〉
[〈(Rx − R̄x )2〉〈(Ry − R̄y)2〉] 1/2

(1)

Where R represents the element size, and x , y being
either S (a site) or B (a bond). This correlation function
can be measured through Monte Carlo simulation by
using a network of a finite size L . In this work, it is
assumed that bonds control the capillary characteristics
of the medium, that is why the spatial correlation of
the void network is characterized via the bond-bond
correlation length, ξBB, which is calculated by means
of the expression proposed by Riccardo et al. (1993):

CBB(u) = exp

(
− u

ξBB

)
(2)

Where CBB(u) is the size correlation coefficient be-
tween two bonds separated by a distance u.

Gas Cluster Growth Simulation

The automaton employed in this work is based on a pore
modeling technique and a set of hypotheses derived
from experimental observations made on 2D transpar-
ent micromodels (Dominguez et al., 2000). A full de-
scription can be found in Pérez-Aguilar et al. (2002).
The simulation assumes a porous network saturated
with a liquid phase, under a uniformly distributed initial
pressure P0. Henry’s law provides the initial uniform
concentration of dissolved gas in the liquid phase as
KP0; K being Henry’s constant. Next, an abrupt pres-
sure drop �P is applied to the system and the generated
gas super-saturation is enough to produce the nucle-
ation of one bubble in a site which is then quickly and
fully occupied by gas; this stage is considered instanta-
neous. Next, the gas phase grows under the combined
effects of solute diffusion and porous medium capil-
larity, while the liquid phase pressure, P = P0 − �P ,
is kept constant. Gas cluster growth is idealized as a

succession of slow pressurization steps at constant gas
cluster volume, and instantaneous stages of gas vol-
ume expansion at constant gas mass. Thus, gas cluster
growth rate can be conveniently computed through the
duration of the pressurization periods, i.e., by knowing
the time necessary for producing enough mass trans-
fer into the bubble in order to create a critical pressure
and to induce the movement of one or more menisci
through neighouring bond-site pairs. The thermody-
namic conditions used for the simulation purposes of
this work are T = 293 K, P = 1 bar, �P = 1.5 bar,
contact angle θ = 0◦, in turn the thermodynamic val-
ues of the system CO2-n-decane are surface tension
σ = 23.43 × 10−3 N/m, K = 4 × 10−4 mole/Nm, and
molecular diffusivity D = 3.9 × 10−9 m2/s. The out-
put results of the program are the gas cluster pattern,
the time vector, the gas saturation vector, and the num-
ber of bonds vector of the gas cluster interface. In the
next section, these results are presented showing the
influence of porous network’s topology on the phase
distribution pattern and on the gas saturation temporal
evolution, Sg .

Results and Discussion

Typical examples of results regarding the influence of
ξBB on the pattern of a gas cluster are presented in Fig. 2,
which shows the phase distribution of gas clusters oc-
cupying ∼700 sites in three networks characterized
by different ξBB values. According to Li and Yortsos
(1995b) and Dominguez et al. (2000), such visualiza-
tions show the classic characteristics of clusters gener-
ated by an invasion percolation algorithm, i.e. irregular
shapes together with some trapping of liquid phase.
Note that the gas cluster shape goes from an irregu-
lar branched object to a dense disc, as ξBB increases.
This is due to the gradual porous network structural-
ization as ξBB increases, i.e., a size-segregation effect
progressively arises, this segregation effect means that
regions of big entities linked together begin to appear
and, in between them, there arise regions of smaller
reunited pores (see e.g. Cordero et al., 2001). Thus, the
characteristic extension of zones typified by a low cap-
illary energy increases throughout the porous network
as ξBB gets larger. This fact modifies the phase dis-
tribution because the gas phase grows seeking for the
regions of the lowest capillary energy. The statistical
ξBB error was estimated as 0.12. The gas cluster shape
can be quantified via its fractal dimension, D f (see e.g.
Harrison, 1995). Its statistical variability was estimated
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Figure 2. Phase distribution of a gas cluster (white) occupying ∼700 sites inside correlated porous networks. (a) ξBB = 0.86 ± 0.12 and
D f = 1.33 ± 0.02, (b) ξBB = 4.53 ± 0.12 and D f = 1.55 ± 0.02 (c) ξBB = 10.63 ± 0.12 and D f = 1.75 ± 0.02. These phase distributions
correspond to the data presented in Fig. 3.

as 0.02. D f goes from 1.33±0.02 to 1.75±0.02, while
ξBB changes from 0.86 ± 0.12 to 10.63 ± 0.12, i.e. the
gas phase fills the porous space more completely as ξBB

gets bigger. This behavior is also observed in Fig. 3,
where the dependence of β and D f on ξBB is shown.
Note the linear relationship arising between them. The
best data fit is represented by: D f = 1.31 + 0.04 ξBB.
β behavior will be explained below.

Concerning the Sg temporal evolution, it is pertinent
to point out that the establishment of bubble growth
laws in porous media is usually presupposed in the lit-
erature (see e.g. Moulu, 1989). For this reason, we ana-
lyze our results by means of the relationship Sg ∝ τβ ,
where τ = Dt/l̄2

B , t being the time of growth. This kind
of analysis clearly shows the effects of different vari-

Figure 3. Pore network simulation on correlated networks: (a) The
influence of ξBB on β, best fit (continuous line) β = 4.95−0.53 ξBB+
0.04 ξ2

BB, and (b) the influence of ξBB on D f , best fit (dash dot line)
D f = 1.31 + 0.04ξBB.

ables on bubble growth (see e.g. Perez-Aguilar et al.,
2002). The volume (or Sg) of a single gas cluster tends
to grow faster in porous media than in the bulk, i.e. a gas
cluster grows via an exponent β greater than the val-
ues corresponding to the usual compact growth inside a
homogeneous medium, β = 1 in 2D. The β values are
obtained from simulated Sg versus time curves. In all
cases, it has been clearly observed the establishment of
a growth law after performing the gas invasion of the
first 120 sites, this being the reason why the exponent β
is calculated from a set of 150 to 1000 gas-invaded sites.
The β statistical error is 0.09. It is pertinent to point
out that the network size effect was not considered as a
variable due to the following reasons: (i) the gas cluster
size is always very small with respect to the network
which can hold as many as 25,600 sites, and (ii) we have
taken care that the gas phase is not interacting with the
network boundary, i.e. if the gas cluster touches the
network border then the corresponding virtual trial is
discarded. The Fig. 3 shows significant differences con-
cerning β values, when ξBB increases from 0.86 ± 0.12
to 10.63 ± 0.12. β values seem to be very sensitive to
the evolution of the microstructure since first go down,
from 4.63 ± 0.09 to 3.27 ± 0.09, as ξBB increases. But,
the behavior changes when ξBB = 7.98 ± 0.12, here
β raises up to β = 3.52 ± 0.09 as ξBB changes to
ξBB = 10.63 ± 0.12. To explain this behavior, it is nec-
essary to consider that the time required for menisci
progression is controlled by both gas mass transfer,
and capillary constraint of the medium. If mass trans-
fer is improved or capillary constraint is decreased, then
bubble growth is enhanced. Mass transfer depends on
the solute concentration field around the gas cluster.
Meniscus progression represents a partial renovation of
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the concentration gradient around gas cluster, if a bond
at the gas cluster boundary is drained of liquid then
three or two additional super-saturated bonds are incor-
porated to the cluster boundary. From this perspective,
ξBB hinders mass transfer since the area of influence
of the gas cluster is reduced as ξBB grows, i.e. in lowly
correlated networks the liquid-gas menisci progress to-
wards gas super-saturated areas, while in highly corre-
lated networks the liquid-gas interface evolves inside a
relatively small area then producing the local annihila-
tion of the gas super-saturation. On the other hand, with
respect to capillary restrictions, in lowly correlated net-
works gas cluster borders are characterized by a more
heterogeneous population of capillary thresholds due to
a random repartition of network entities; in contrast to
this behavior, pore-size structuralization in correlated
networks overcomes the above random size repartition
and the size-segregation effect allows a quicker cluster
growth (i.e. a larger β value), because the mean capil-
lary threshold in a higher correlated network is smaller
than in a non-correlated one, thus improving bubble
growth. As it can be seen in Fig. 3, the combination of
these two effects produces a non-linear variation of β

as function of ξBB. Data fit renders the following rela-
tionship: β = 4.95 − 0.53 ξBB + 0.04 ξ 2

BB.

Conclusion

2D numerical simulation was used in order to analyze
the effects of porous network spatial correlations on
bubble growth in porous media; this variable being
difficult to study experimentally. The numerical anal-
ysis developed here about the growing rate of an iso-
lated single gas cluster by solute diffusion in correlated
porous networks indicates that network topology ex-
erts a significant influence on both gas cluster growth,
β = 4.95 − 0.53 ξBB + 0.04 ξ 2

BB, and gas cluster mor-
phology, D f = 1.31 + 0.04ξBB.

Some refinement of the automaton should be made
in order to arrive to a model of practical use. Future
work includes:

1. The study of connectivity effects (not considered
here). It is known that a capillary process occur-
ring inside a porous medium is strongly affected
by the connectivity of the medium (Cordero et al.,
2001; Rojas et al., 2002). Connectivity promotes
spatial size-segregation of pore elements, the big-
ger the connectivity is the more compact the gas
cluster shape is. With respect to cluster growth ki-

netics, the balance of inhibitory (a limited zone of
influence) and promotive (low or medium capillary
constriction) should result in a non-linear relation-
ship between connectivity and β. Quantitative ver-
ification of these likely trends is the goal of future
work.

2. In general, the study of the dimensionality effects
(restricted here to 2D) is integrated in the study of
the connectivity effects when gravity is neglected.
Thus, it would be interesting to develop a 3D ver-
sion of the simulator, especially for situations where
gravity effects are important.

3. The implementation, in the simulator, of simul-
taneous nucleation and growing of various gas
clusters.

Finally, in spite of its limitations, the numerical tool
here developed has been very useful to study the influ-
ence of diverse parameters about gas cluster behavior.
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