Libros de Cátedra

Manual de levantamiento geológico Una introducción a la geología de campo

Horacio Echeveste (coordinador)

FACULTAD DE CIENCIAS NATURALES Y MUSEO

MANUAL DE LEVANTAMIENTO GEOLÓGICO

Una introducción a la geología de campo

Horacio Echeveste (coordinador)

Facultad de Ciencias Naturales y Museo

Presentación

El mapa geológico constituye la información básica de cualquier informe geológico. Esto es así debido a que en él se sintetiza toda la información necesaria para comprender la evolución geológica de una región o área. Se trata de la conclusión del trabajo geológico, y por ello es una herramienta universal que todos los lectores pueden comprender. A su vez, el mapa geológico es el punto de partida para cualquier discusión e interpretación, y por ello ninguna publicación debería carecer del mismo. Por ser el lenguaje básico de los geólogos, los trabajos geológicos sin los mapas correspondientes serían incompletos en mi opinión.

Cuando se confecciona un mapa geológico se requiere identificar a cada una de las unidades mapeables y definir sus edades relativas, tarea que conlleva el detallado conocimiento de los contactos entre las unidades. Los objetivos de un mapa geológico son variados y dependen de la finalidad de la investigación. Los mapas más básicos son los que sintetizan la geología de una región sin discriminar una especialidad. Son las cartas geológicas que cubren el territorio de cada país. Otros mapas tienden a enfatizar la evolución de un proceso específico, como la evolución de un volcán, de un complejo metamórfico, de una cuenca sedimentaria, de un distrito minero, etc. Los mapas aplicados a obras de ingeniería, a la exploración de yacimientos o al desarrollo hidráulico son esenciales para determinar la factibilidad de la obra. No obstante, y a pesar de sus objetivos diferentes, todos tienen en común la definición de las unidades mapeables a la escala de trabajo, sus edades relativas y sus relaciones estructurales.

Las unidades en los mapas de riesgos y peligrosidad respecto a la actividad humana se definen como áreas de grado de peligrosidad. Sus objetivos apuntan a la diagramación de la urbanización de ciudades y al trazado de caminos, diques, puentes, etc.

Debido a que un mapa geológico se representa en un plano, es conveniente acompañarlo con perfiles o secciones geológicas representativas para ilustrar la tercera dimensión. De esta manera, se puede estimar el volumen de sus unidades, su posible distribución en el subsuelo, y visualizar mejor las relaciones estratigráficas y tectónicas.

El libro "Manual de levantamiento geológico, una introducción a la geología de campo" consta de 14 capítulos y 5 anexos escritos por diversos autores. Los primeros nueve capítulos están dedicados a explicar y describir las herramientas necesarias para la confección del mapa geológico. Incluyen los sistemas de referencias geográficas, la carta topográfica y su confección como mapa base, técnicas planimétricas y altimétricas, fotografía aérea e imágenes satelitales como auxiliares del levantamiento geológico y los métodos para construir el mapa geológico. Los cuatro capítulos siguientes están dedicados a mapeos geológicos espe-

cíficos como el mapeo de estructuras, de unidades sedimentarias, de rocas ígneas, rocas metamórficas. El último capítulo está destinado a la confección de secciones geológicas y a la redacción del informe. Los cinco anexos que contiene el libro proporcionan información y metodologías de trabajo adicionales, así como la solución de problemas frecuentes. En el último anexo se introduce al lector en los sistemas de información geográfica, indispensable en la actualidad para la confección del mapa geológico y que permite volcar los datos automáticamente en mapas georeferenciados.

La comunidad geológica apreciará, sin duda, la publicación de este libro sobre mapeo geológico. Para los estudiantes de geología significa una materia inestimable en su formación. También será de gran utilidad a toda la comunidad geológica, para mejorar la calidad de los mapas, y adicionalmente incentivar la inclusión en informes y publicaciones de mapas geológicos que sinteticen las novedades estratigráficas que se proponen a raíz de nuevos datos. Es de desear que nuevas propuestas estratigráficas basadas en datos nuevos se reflejen en nuevos mapas.

Eduardo Llambias La Plata, abril de 2017

Índice

ntroducción		
Capítulo 1		
Sistemas de referencia geográficos	15	
Introducción	15	
Forma de la tierra y coordenadas geográficas	15	
Latitud – Longitud	16	
El elipsoide	19	
Datum Horizontal	19	
Altura	20	
Proyecciones cartográficas	21	
Proyecciones acimutales		
Proyecciones cónicas		
Proyecciones cilíndricas		
Proyección de Mercator	25	
Proyección Transversa de Mercator o Gauss-Krüger	25	
Proyección Universal Transversa de Mercator (UTM)	27	
Sistemas de coordenadas planas	29	
Sistema de coordenadas planas de la proyección Gauss-Krüger	30	
Sistema se coordenadas planas de la proyección UTM	30	
Cuadrantes en topografía	31	
Sistema de coordenadas polares		
Escala	33	
Referencias	34	
Capítulo 2		
La carta topográfica como mapa base	35	
Introducción	35	
Cartas topográficas de la república argentina	37	
Los tres nortes de las cartas topográficas		
Declinación e inclinación magnética	40	

Cálculo de la declinación magnética	43
Capítulo 3	
Introducción a la construcción del mapa base topográfico	45
Introducción	
Topografía	45
Planimetría y altimetría	46
Representación del relieve	
Curvas de nivel	
Modelos de elevación digital	
Fotogrametría digital	
Que se puede representar en función de la escala del mapa?	55
Medición de ángulos y distancias	56
Medición de ángulos horizontales y verticales	
Medición de distancias	
Mediciones directas de distancia	
Medición indirecta de distancia	
Referencias	67
Introducción	68
Técnicas Planimétrícas	
Redes de apoyo	
Poligonales	
Tipos de poligonales	
Medición de ángulos horizontales en poligonales	
En poligonales levantadas con brújula	71
En poligonales levantadas con teodolito	73
Triangulación	
Errores en las mediciones	76
Compensación de poligonales	77
Ejemplo	80
Compensación de triangulaciones	
Referencias	83
Capítulo 5	
Técnicas Altimétricas	84
Introducción	
Instrumental	
Horizontes aparente, óptico y verdadero	87

Tipos de nivelación	89
Nivelación Geométrica o Directa (por alturas)	89
Puesta en estación del nivel	89
Nivelación geométrica simple desde el medio	90
Nivelación geométrica compuesta desde el medio	90
Nivelación Geométrica Simple desde el extremo	93
Comprobación de la horizontalidad del eje de colimación	93
Nivelación trigonométrica o indirecta (por pendientes)	94
Nivelación taquimétrica	95
Nivelación abierta y nivelación cerrada o controlada	96
Errores y tolerancias	97
Compensación del error de cierre vertical en nivelaciones cerradas o controladas	97
Nivelación Barométrica	98
Referencias	98
Capítulo 6	
Levantamiento del mapa base topográfico	100
Levantamiento expeditivo con brújula y pasos	100
Brújula Brunton como instrumento topográfico	100
Corrección de acimuts por declinación magnética	103
Levantamiento con base de poligonal	103
Levantamiento con escuadra de prismas	104
Método de la cuadrícula	104
Levantamiento por coordenadas ortogonales	106
Levantamiento con plancheta y alidada	107
Plancheta	107
Alidada (o dioptra)	107
Orientación del tablero	
Levantamientos de puntos	109
Por estadimetría	109
Por intersección	109
Por resección	110
Punto de paso	110
Levantamiento de detalle con estación total o teodolito	112
Teodolito	112
Tipo de teodolitos	
Simples	115
Reiteradores	
Repetidores	115
Estación total_	

Condiciones de exactitud	116
Puesta en estación	
Nivelar con precisión el nivel tubular	118
Ajuste del ocular	118
Levantamiento de puntos	118
Orientación del teodolito/estación total	119
Elección de los puntos a levantar	119
Referencias	120
Capítulo 7	
El GPS en el levantamiento geológico	122
Introducción	122
Componentes del sistema	123
Satélites	123
Estaciones de tierra	123
Receptores	123
Fundamentos del sistema GPS	123
Precisión en la ubicación	125
Cálculo de posición diferencial	126
Alcances y aplicaciones básicas del receptor GPS	127
Datum	127
Sistema de Coordenadas	128
Instrucciones para configurar las coordenadas del GPS en Gauss-Krüger	128
Norte	129
Determinación de un punto (Waypoint, Location o Land Marks)	129
Ruta	130
Itinerarios (Tracks)	130
Ir a (GoTo)	130
Referencias	131
Caniforda O	
Capítulo 8	122
La fotografía aérea como mapa base y fotogrametría digital	
Introducción	
La fotografía aérea en el levantamiento geológico	
Escala de la fotografía	
Desplazamiento y deformación de la imagen	
Mosaicos	
Fotoíndice	
Visión estereoscópica	
Estereoscopios	138

Fotogeología, fotointerpretación	139
Método de trabajo	
Tono y Textura	
Fotogrametría digital	144
Structure from motion (SFM)	144
Flujo de trabajo	145
Algunas experiencias de trabajo	
Referencias	149
Capítulo 9	
La imagen satelital en el levantamiento geológico	150
Imágenes satelitales en la teledetección	150
El espectro electromagnético	150
Un poco de historia	155
Componentes del sistema de obtención de imágenes satelitales	155
Plataformas espaciales	155
Instrumentos de observación	156
Distorsión de la imagen	157
Resolución	157
Resolución espacial	157
Resolución espectral	158
Resolución radiométrica	159
Resolución temporal	
Estructura de la imagen	160
Visualización de la imagen	161
Procesamiento de imágenes digitales	161
Referencias	164
Capítulo 10	
Métodos de mapeo geológico	165
Introducción	165
Tipos de mapa geológico	166
Unidades de mapeo	167
Definición del nombre de la roca	168
Descripción de la roca	168
Métodos de mapeo	168
Mapeo de contactos	168
Mapeo por afloramientos o mapeo de todos los afloramientos	172
Mapeo por perfiles	172

Traza de contactos según la regla de las V geológicas	175
Problema de los tres puntos	180
Ejercicios	
Resultados	184
Referencias	185
Capítulo 11	
Mapeo de estructuras	186
Introducción	186
La brújula geológica para la medición de elementos estructurales	186
Definiciones	186
Tipos de notación	187
Medida de planos y líneas con la Brunton	190
Planos	190
Líneas	192
Pliegues	193
Que medir en un pliegue	195
Fallas	198
Que medir en una falla	200
Desplazamiento de la falla	201
Rocas de falla	206
Diaclasas	209
Referencias	209
Capítulo 12	
Mapeo de rocas sedimentarias	211
Introducción	211
Descripción de la roca sedimentaria	211
Textura	211
Tamaño de Grano	211
Selección	212
Morfología de los clastos	213
Fábrica	213
Color	214
Composición	214
Estructuras sedimentarias	215
Contenido fosilífero	216
Registro gráfico de la secuencia sedimentaria	216
Registro de espesores	218
Método del báculo de Jacob	218

Método con la altura del operador	219		
Distintos casos en la medición y cálculo de espesores	220		
Caso I: Capas horizontales	220		
Caso II: Capas verticales			
Caso III: Capas inclinadas con pendiente cero	221		
Caso IV: Capas inclinadas (α + β < 90°)	221		
Caso V: Capas inclinadas (α + β > 90°)	222		
Caso VI: Capas inclinadas, la capa y la pendiente inclinan			
de en la misma dirección	222		
Caso VII: La pendiente es mayor que la inclinación de	223		
Mediciones de espesor a partir del mapa Geológico	223		
Inclinación en contra de la pendiente	223		
Inclinación a favor de la pendiente con un ángulo mayor	224		
Inclinación a favor de la pendiente con un ángulo menor	225		
Referencias	225		
Capítulo 13			
Mapeo de rocas ígneas	226		
Introducción	226		
La descripción de campo de las rocas ígneas	227		
Texturas de las Rocas Ígneas	228		
Parámetros texturales	228		
Texturas generales de las rocas ígneas	230		
Texturas de las Rocas Plutónicas	230		
Texturas de las Rocas Volcánicas Lávicas	232		
Texturas de las Rocas Volcánicas Piroclásticas	233		
Clasificación de las rocas ígneas	234		
El diagrama QAPF	235		
Índice de Color	237		
Clasificación de las Rocas Ígneas Clásticas	237		
Resumiendo	238		
Referencias	240		
Capítulo 14			
Mapeo de rocas metamórficas			
Introducción	241		
Estratigrafía de las rocas metamórficas	241		
Las rocas metamórficas en el Código Argentino de Estratigrafía	242		
Problemas estratigráficos en la aplicación directa del Código Argentino			
de Estratigrafía	243		

Términos recomendados en el mapeo de rocas metamórficas	244
Descripción de campo de las rocas metamórficas	247
Rocas de metamorfismo regional dinamotérmico	248
Rocas de metamorfismo local de contacto	261
Rocas de metamorfismo local dinámico, de cizalla o cataclástico	264
Referencias	265
Capítulo 15	
Mapas, secciones geológicas e informe	267
El mapa de campo (mapa borrador)	267
Volcando datos sobre el mapa base	
Anotaciones en la libreta	
El mapa final	276
	278
Información adicional del mapa	279
Referencias	279
Sistema de coordenadas y nortes	279
Escala numérica, gráfica y equidistancia	280
Mapa de ubicación (mapa de posición relativa a otros mapas limítrofes)	281
Etiqueta o carátula	281
Secciones Geológicas	282
	283
Inclinación verdadera y aparente	285
Secciones sobrealzadas	287
Informe geológico	288
Título	289
Introducción	289
Antecedentes (o marco geológico regional)	289
Metodología	289
Resultados	289
Discusión	290
Conclusiones	290
Lista de trabajos citados en el texto	290
Trabajos citados en el texto	290
Referencias	291
Anexo I	
Medida de ángulos en algunos modelos de teodolitos de limbos metálicos y de cristal	292
Lectura de los limbos metálicos con nonios	292
Lectura de limbos de cristal	 293

Anexo II

Intersección inversa o problema de los tres puntos	297
Solución Geométrica	
Solución analítica	299
Deducción de los ángulos A y C por el método de Pothenot	300
Ejemplo	301
Resolución	301
Anexo III	
Lectura de distancia reducida y desnivel en alidadas con Arco Beaman y autoreductoras	303
Arco Beaman	303
Cálculo del desnivel	304
Calculo de la distancia reducida	304
Alidadas autorreductoras	305
Anexo IV	
Principales símbolos geológicos	307
Código RGB de colores para eones, eras, períodos y épocas	310
Principales símbolos cartográficos	311
Escala gráfica	312
Anexo V	
Sistemas de Información geográfica (GIS - SIG)	313
Introducción	313
Tipos de GIS	314
Tipos de datos manejados por arcgis: vectores, rasters y tablas	314
Trabajo En Capas	317
Capas en Geología	317
Estructura del gis	318
Sistemas de coordenadas	319
Los autores	320

Introducción

Este manual está dirigido a estudiantes avanzados de la carrera de geología, con el fin de presentar una introducción a las técnicas y métodos de trabajo que permitan interpretar y realizar mapas geológicos.

Sobre la base de la importancia de contar con un mapa topográfico como mapa base donde volcar la geología, inicialmente se abordan las características y propiedades de los mapas topográficos levantados por el Instituto Geográfico Nacional, que tradicionalmente han sido usados como mapas base para realizar las hojas geológicas de la República Argentina. Se hace una introducción a los distintos tipos de proyecciones cartográficas, profundizando en los sistemas de coordenadas. También se introduce al lector en el concepto de Datum, horizontal y vertical.

Posteriormente se describen diferentes técnicas de planimetría y altimetría y los distintos instrumentos que permiten relevar la posición espacial de puntos desde los que se realiza un mapa topográfico. Se abordan las técnicas con brújula tipo Brunton, nivel óptico, teodolito y la estación total. Asimismo se introducen los fundamentos y utilidades del sistema de posicionamiento global: GPS y GPS diferencial.

En los Capítulos 8 y 9 se presenta la utilidad de las imágenes de sensores remotos para ser usadas como mapa base. Se hace un desarrollo del uso de fotografías aéreas verticales e imágenes satelitales donde se analizan sus alcances y limitaciones y se abordan distintos métodos para su georreferenciación. Sobre la base de la importancia de contar con modelos digitales del terreno, se presentan las técnicas modernas de reconstrucción topográfica y donde obtener modelos de elevación del terreno producto de percepción remota.

En los Capítulos 10 a 14 se abordan distintos métodos del mapeo geológico, sujetos al tipo de trabajo a desarrollar, al objetivo, a la escala, al tipo de afloramientos, los tipos de rocas, la deformación que se registra en las rocas y a la interpretación de los procesos que la ocasionaron. Incluye también los métodos de medición de perfiles geológicos, espesores estratigráficos en el campo, trazas de afloramientos, realización de perfiles topográfico-geológicos y columnas estratigráficas.

En el Capítulo 14 se desarrollan las metodologías de campo y gabinete para realizar el mapa "borrador" primero y luego al mapa final con las secciones geológicas e informe escrito que lo acompañan.

Finalmente el manual presenta una serie de anexos que complementan y amplían algunos de los temas tratados, principalmente referidos al levantamiento con teodolito y plancheta. También se hace una síntesis sobre los sistemas de información geográfica y su importancia en el manejo de datos georeferenciados.

CAPÍTULO 7 El GPS en el levantamiento geológico

Horacio Echeveste y Luciano López

Introducción

El Sistema de Posicionamiento Global (GPS, *Global Positioning System*) es un sistema de navegación mundial desarrollado por los EEUU a partir del año 1973. Inicialmente pensado con fines militares, la disminución de los costos de los equipos receptores y el acceso libre a la señal de los satélites lo ha transformado en una herramienta de uso cada día más generalizado, tanto con fines profesionales, científicos y técnicos como recreativos.

El GPS se ha convertido en la herramienta más potente para el posicionamiento geográfico, proporcionando la posibilidad de adquirir la ubicación espacial para puntos fijos o en movimiento, con una precisión que varía desde algunas decenas de metros a unos pocos milímetros.

La introducción del GPS en el mapeo geológico marcó un cambio profundo y conceptual para la determinación de las coordenadas de un punto en el espacio, respecto a los levantamientos topográficos con métodos ópticos (como el nivel, teodolito o estación total). Si bien el sistema GPS presenta limitaciones cuando la señal es deficiente o nula, como ocurre en ciertos ambientes (urbanos, interior mina, zona densamente vegetadas), el GPS ofrece diversas ventajas sobre las técnicas topográficas convencionales:

- No se requiere que las estaciones o puntos de observación sean intervisibles.
- La precisión del GPS sufre poca degradación por causa de los agentes atmosféricos como lluvia, nieve, temperaturas altas o bajas o humedad.
 - Es más rápido que los métodos convencionales y requiere de un solo operador.
 - El GPS proporciona resultados en diversos sistemas de coordenadas.
- Los resultados del GPS son digitales y se transfieren fácilmente a los sistemas de cartografía asistidos por computadora o GIS.

El sistema GPS está integrado por tres componentes principales, los satélites, las estaciones de tierra y los receptores (a los que llamamos corrientemente GPS).

Componentes del sistema

Satélites

Debido a la relevancia estratégica que supone para un país contar un sistema propio de satélites, son varios los países que han desarrollado (o están en desarrollando), una red de satélites para el posicionamiento global. Sin embargo, los costos para establecer una red operativa son muy elevados ya que es necesaria una red de, al menos, 24 satélites operando simultáneamente para establecer una cobertura global. Las dos redes operativas hasta el momento son la NAVSTAR-GPS (o simplemente GPS) (EEUU), y GLONASS (Rusia), mientras que hay dos redes en preparación, GALILEO (UE) y COMPASS (ex BeiDou) (China), que se espera que estén operativos en los próximos años. Asimismo en la actualidad hay receptores que pueden procesar simultáneamente las redes GPS y GLONASS, aumentando la velocidad en la recepción de la señal, las zonas de cobertura y la precisión de las mediciones.

El sistema de satélites más extendido es la red NAVSTAR-GPS (Navigational Satellite Timing And Ranging). Los satélites giran alrededor de la Tierra a unos 20.000 km de altura en seis órbitas con 4 satélites cada una (Fig. 7-1), distribuidos de tal manera que en todo momento al menos 6 de ellos puedan ser detectados desde cualquier punto de la tierra en condiciones de visión plena y sin obstrucciones del horizonte a su alrededor.

Cada satélite es un emisor de señales de radio que transmiten información sobre su posición en función del Tiempo Universal Coordinado (UTC). Transmiten dos tipos de frecuencias, cuyas señales pueden procesarse según dos códigos, uno para uso militar y para los receptores de uso civil.

Estaciones de tierra

Constituyen una red que está ligada con los satélites permitiendo que estos corrijan permanentemente su posición y sincronicen sus relojes atómicos con ellas y con los otros satélites (cada satélite cuenta con cuatro relojes atómicos).

Receptores

Están programados para recibir la señal de radio de los satélites y procesarla. La señal enviada por el satélite al receptor, es la hora UTC y la información acerca de la posición o efemérides de ese satélite en particular en cada momento. El receptor trabaja midiendo la distancia entre él y los satélites según el desfasaje producido entre la señal proveniente del satélite y una señal propia.

Fundamentos del sistema GPS

Como se mencionó anteriormente, el receptor del GPS obtiene la posición del satélite y el momento de la emisión de la señal. Si la velocidad es la relación entre distancia sobre tiempo,

la distancia que separa al satélite del receptor será igual a la velocidad de la señal emitida por el satélite multiplicado por el tiempo en llegar hasta el receptor. Al ser una señal electromagnética se desplaza a la velocidad de la luz que en el vacío es de aproximadamente 300.000 Km/s. Sin embargo las ondas de radio emitidas por los satélites viajarán a una velocidad menor que la velocidad de la luz en el vacío, ya que debe atravesar la atmósfera, además es relevante mencionar que la atmosfera no tiene una densidad constante en el tiempo. Esta discrepancia entre la velocidad teórica de la señal y la velocidad real de las ondas de radio son la mayor fuente de error en la precisión de la posición en los GPS.

Si se asume la velocidad de la señal como la velocidad de la luz y se conoce el tiempo transcurrido hasta su recepción, el receptor determina la distancia (r1) que lo separa del satélite. Es decir que al captar la señal de un satélite (satélite 1) el receptor solo puede determinar que se encuentra en algún punto de una superficie esférica cuyo radio es r1 (Fig. 7-2a). Al recibir la señal de un segundo satélite, el receptor puede determinar, que se encuentra en un punto del perímetro del círculo que se forma en la intersección de dos esferas, la de radio r1 y la nueva esfera de radio r2 que lo separa del satélite 2 (Fig. 7-2b). Cuando toma un nuevo satélite, la posición del receptor queda restringida a las dos posiciones generadas por la intersección de la nueva esfera de radio r3 con el círculo anterior (Fig. 7-2c).

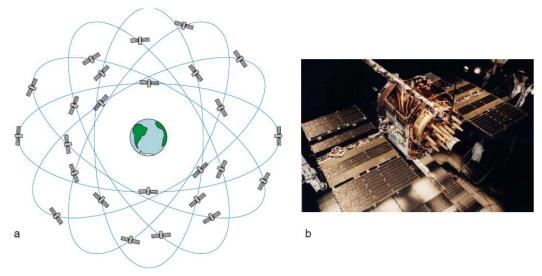


Figura 7-1. a) Reproducción a escala aproximada de las órbitas de los satélites del Sistema de Posicionamiento Global. b) Satélite NAVSTAR con sus pantallas solares.

El receptor usa la señal de tres satélites para calcular su posición mediante la trilateración que es un tipo de triangulación que en lugar de utilizar ángulos para ubicar un punto utiliza distancias. (Fig. 7-2d). De las dos posibles posiciones que se consiguen con este proceso utilizando tres satélites, solo una se ubica en la superficie de la Tierra, por lo que con tres satélites podría determinarse la posición del receptor. Un impedimento a esto es que el navegador cuenta con un reloj de cuarzo, con una precisión para medir el tiempo muy inferior a los relojes atómicos de los satélites que es de un nanosegundo. Es por ello que se utiliza la señal de un cuarto satélite para lograr ajustar el tiempo del receptor y de esta forma determinar la posición del navegador.

La mayoría de los receptores modernos son capaces de procesar hasta 12 satélites en forma simultánea (12 canales) y a partir de la calidad de la señal recibida de cada uno, determina con cuales cuatro efectuar éstos cálculos, valiéndose de ser necesario de los restantes para mejorar el cálculo de su posición.

Precisión en la ubicación

La precisión de ubicación obtenida con GPS puede variar de varios metros a milímetros dependiendo de varios factores:

- Tipo de receptor
- Tiempo de la medición
- Número de satélites visibles
- Geometría de los satélites visibles
- Procedimiento en la recolección de datos
- Interferencia producida por el rebote de la señal en edificios y montañas cercanos
- La mayoría de los receptores entregan, junto con el dato de ubicación, una estimación del error absoluto de posición. En el caso de los navegadores Garmin etrex el error está expresado directamente en metros.

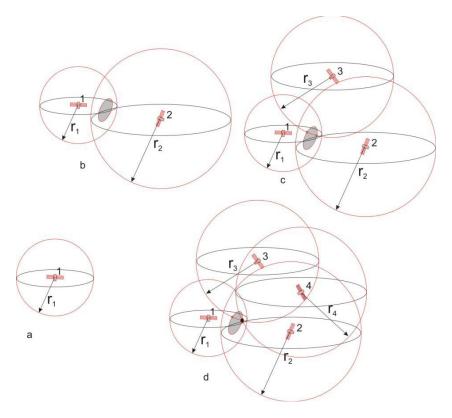


Figura 7-2. Recepción de las señales provenientes de 1, 2, 3 y 4 satélites, explicación en el texto.

De manera general se puede decir que la precisión en la determinación de las coordenadas horizontales es de dos a cinco veces superior a la determinación de la cota. Hasta mayo de 2000, debido al carácter militar del sistema GPS, el Departamento de Defensa de los Estados Unidos incluía un cierto grado de error aleatorio llamado disponibilidad selectiva (S/A) que variaba entre 15 y 100 metros. Restringiendo la mayor precisión para fines militares.

Cálculo de posición diferencial

El DGPS o GPS diferencial es un sistema de cálculo de posición que permite obtener una gran precisión por medio de correcciones a partir de una estación base, fija. La premisa subyacente es que dos receptores que están relativamente cerca, experimentarán errores atmosféricos similares. Para emplear esta metodología se requiere entonces el uso de al menos dos receptores, calculándose la posición de uno de ellos, unidad itinerante de posición desconocida, en relación a la de otro usado como referencia, base o estación base (Fig. 7-3). La precisión absoluta alcanzada en las coordenadas de mediciones GPS diferenciales dependerá de la precisión de las coordenadas de la estación de referencia en que se fundan los cálculos.

Figura 7-3. GPS diferencial. Estación base (sobre la estaca) y equipo móvil en proceso de coordinación previo al trabajo.

Con este sistema DGPS se pueden corregir en parte los errores debidos a:

- Propagación por la ionosfera troposfera.
- Errores en la posición del satélite (efemérides).
- Errores producidos por errores en el reloj del satélite.

El sistema de correcciones funciona de la siguiente manera:

- 1) Se instala un receptor base en un punto con coordenadas conocidas.
- 2) Este calcula su posición a partir de los datos recibidos de los satélites.
- 3) Dado que su posición está bien definida, calcula el error entre su posición verdadera y la calculada, estimando el error en cada satélite.
 - 4) Se envía estas correcciones al receptor itinerante a través de algún medio.

Alcances y aplicaciones básicas del receptor GPS

El primer y fundamental propósito al encender un GPS es determinar la posición espacial, planimétrica y altimétrica, que ocupa el receptor sobre la superficie terrestre en ese momento. Si la posición que entrega el GPS es cotejada por el usuario en una carta topográfica o mapa georreferenciado, resulta imprescindible considerar dos aspectos importantes para poder volcar esa información correctamente en el mapa:

- a) Que el GPS esté programado con el mismo datum con que la carta fue levantada.
- b) Que el GPS entregue las coordenadas del punto en el mismo sistema de coordenadas de la carta.
- c) Que el datum vertical del navegador es elipsoidal, mientras que una carta topográfica está realizada con un datum vertical optométrico

Figura 7-4. GPS Garmin eTrex.

Datum

En la primera parte de este apunte se informó acerca de la importancia de conocer en que datum el GPS está entregando los datos de posición, los GPS utilizan por defecto el datum WGS84, por lo tanto si definimos para nuestro trabajo otro datum (ej. Campo Inchauspe) es necesario configurarlo. Existe una variedad de *software* que permiten gestionar los datos grabados en el GPS por ejemplo MapSource, Compe GPS. Otra opción es descargarlo directamente a un sistema de información geográfica (GIS).

Sistema de Coordenadas

La mayoría de los GPS tienen distintas opciones en la elección del sistema de coordenadas:

• Geográficas en grados, minutos, segundos y décimas de segundo

• Geográficas en grados, minutos y milésimas de minuto

• Geográficas en grados, y fracciones de grados

• Coordenadas planas UTM en metros o kilómetros

• Sistemas locales de distintos países

En el caso del Garmin eTrex, además de las indicadas previamente, permite programar un sistema de coordenadas planas definidas por el usuario, de gran utilidad cuando se requiere volcar puntos sobre cartas topográficas o geológicas de la República Argentina en coordenadas Gauss-Krüger.

Instrucciones para configurar las coordenadas del GPS en Gauss-Krüger

Con el botón Page se posiciona en el Menú y se selecciona Ajuste y luego Unidades. La primera opción de cambios de unidades es el formato de posición, seleccionar Parrilla Usuario, donde se podrá elegir el Origen de Longitud (expresada en grados), la Escala, el E Falso en metros y el N Falso en metros.

Ejemplo: sistema de coordenadas Gauss-Krüger Faja 2 (meridiano central en 69°) y datum Campo Inchauspe.

Origen de Longitud = 69°00'00" Escala = 1 E Falso = 2.500.000,0 N Falso = 10.002.283,3

Es importante destacar que el falso N será distinto para los diferentes datum utilizados. En la Tabla 7-1 se muestran los valores que hay que utilizar para programar el GPS en coordenadas Gauss-Krüger en las distintas fajas con datum Campo Inchauspe y con datum WGS 84.

128

Faja	Origen de Longitud	Escala	Falso E	Campo Inchauspe	WGS84
i aja	Origina Longitud	(factor)	I diso L	Falso N	
1	W 72°00'00.0"	1	1.500.000	10.002.283,30	10.001.967,70
2	W 69°00'00.0"	1	2.500.000	10.002.283,30	10.001.967,70
3	W 66°00'00.0"	1	3.500.000	10.002.283,30	10.001.967,70
4	W 63°00'00.0"	1	4.500.000	10.002.283,30	10.001.967,70
5	W 60°00'00.0"	1	5.500.000	10.002.283,30	10.001.967,70
6	W 57°00'00.0"	1	6.500.000	10.002.283,30	10.001.967,70
7	W 54°00'00.0"	1	7.500.000	10.002.283,30	10.001.967,70

Tabla 7-1: parámetros para configurar el sistema de coordenadas Gauss Krüger en un GPS.

Norte

Los GPS de gama media a alta poseen una brújula magnética, mientras que los de gama baja determinan la orientación en base al cambio de posición (el dispositivo debe estar en movimiento). Debe configurarse qué Norte se utilizará para las determinaciones de orientación, de esta forma podemos optar por el Norte Geográfico o Verdadero, al Norte de Cuadrícula (parrilla) o al Norte Magnético. En el caso que esté programado para entregar acimuts respecto al Norte Magnético, muestra también el valor en grados y el signo (oeste o este) de la declinación magnética y si está programado con el Norte de Cuadrícula da el valor de la desviación o variación magnética.

Determinación de un punto (Waypoint, Location o Land Marks)

Un nuevo punto o Waypoint (Garmin) puede ser guardado en la memoria del receptor de dos maneras diferentes:

- 1) Grabando la posición actual.
- 2) Cargando las coordenadas de altitud longitud y altura de forma manual o cargando un archivo de datos de posición a través de la PC.

En el primer caso solo basta con apretar una tecla enter, aunque es conveniente constatar primero el margen de error con que el receptor está entregando esa posición. Algunos receptores permiten calcular una posición promedio luego de una serie de mediciones repetidas.

En el segundo caso recordar que las coordenadas del punto o puntos que se ingresen estén en el mismo datum en el que el GPS está programado o con el que estemos trabajando.

Ruta

Una ruta es una serie de puntos que se deberá recorren para llegar de un punto a otro. Normalmente la ruta puede programarse eligiendo puntos previamente guardados desde la memoria del GPS o ingresando puntos manualmente. Cuando se ha ingresado una ruta, el GPS informará, entre otras cosas, la distancia (en línea recta) y el acimut que lo separa de cualquiera de los puntos de esa ruta y si el usuario está en movimiento, su velocidad y el tiempo restante para llegar a un determinado punto.

Itinerarios (Tracks)

Un itinerario se obtiene como resultado de un recorrido. Cuando el usuario se mueve con el GPS encendido y la función tracking habilitada, el receptor graba una serie de puntos que los une mediante una línea recta. Este rastro es el Track Log que se irá guardando automáticamente junto con la hora en la memoria del GPS como una poligonal. Es una opción muy útil por ejemplo, para levantar el contacto entre dos unidades de roca o formaciones, solo se debe caminar sobre ese contacto con el GPS encendido con la función tracking programada.

La separación de los puntos puede estar dada por a) distancia, b) tiempo o c) resolución.

- a) En el caso de tracking por distancia se debe programar cada cuántos metros el GPS tomará un trackpoint, esta opción dependerá de la longitud del itinerario y de la resolución con que se lo quiera reproducir. En la figura 7-5 a y b se representan dos itinerarios programados con distintas distancias, uno cada 25 m y otro cada 10 m, este último con mayor detalle aunque con un mayor consumo de memoria.
- b) En el tracking por tiempo el punto se graba cada un determinado intervalo de tiempo (por ejemplo 30 segundos)
- c) En el tracking por resolución el GPS evalúa permanentemente la necesidad o no de generar un nuevo trackpoint en función de la resolución con que ha sido programado. En este caso, la resolución es la distancia que el GPS debe desviarse hacia la derecha o izquierda del rumbo que lleva para guardar un trackpoint. Si se hace un itinerario recto el GPS no guardará un nuevo trackpoint.

En la figura 7-5 c y d se compara un tracking programado por distancia (c) con un tracking programado por resolución (d), este último con menos puntos y mejor reproducción del itinerario.

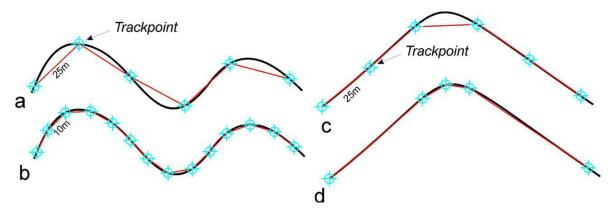


Figura 7-5. a) Tracking programado por distancia, 25 m. b) Tracking programado cada 10 m, mejor resolución alcanzada y mayor consumo de memoria. c) Tracking por distancia (25 m) y b) Tracking por resolución.

Ir a (GoTo)

Esta opción es de gran utilidad para la mayoría de los trabajos de campo, consiste simplemente en programar el GPS con un punto de destino al que se necesite llegar, el receptor indicará la distancia que lo separa de ese punto, el acimut que se deberá seguir para llegar a él, el acimut que se está siguiendo y el tiempo que se tardará en llegar en función de la velocidad con que se está desplazando.

Referencias

- Brasington, J., Rumsby, B.T., McVey, R.A., 2000. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surface Processes and Landforms v.25, 973–990.
- Daly, P. 1993. Navstar GPS and GLONASS: global satellite navigation systems. Electronics & Communication Engineering Journal v. 5 (6): 349 357.
- Galloway, D., Hoffmann, J., 2007. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal v. 15: 133–154.
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins. 1993. Global Positioning System. Theory and practice. J. Springer, Wien (Austria), 347 p
- Malet J.-P., O Maquaire, E Calais, 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France), Geomorphology, v. 43 (1–2): 33-54
- Müller M.D., A. Geiger, H.-G. Kahle, G. Veis, H. Billiris, D. Paradissis, S. Felekis, 2013. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009, Tectonophysics, v.597–598: 34-49.
- Torbjörn E. Törnqvist, Scott J. Bick, Klaas van der Borg, Arie F.M. de Jong. 2006. How stable is the Mississippi Delta? Geology, v. 34: 697-700

Los autores

Coordinador

Echeveste, Horacio

Doctor en Ciencias Naturales (orientación Geología), Licenciado en Geología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Especializado en Geología de Yacimientos. Profesor Titular de Levantamiento Geológico, Facultad de Ciencias naturales y Museo. Publicaciones: - Echeveste, H.J., López, L. M., Rodríguez, E. y Recio, C. Alteración hidrotermal en el yacimiento epitermal Manantial Espejo, Macizo del Deseado, Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina, 73 (3): 369-387. 2016. ISSN 0004-4822. - Fernández, R.R., Tessone. M.O.R., Echeveste, H.J., Moreira, P. y Carlini, M. Geología y mineralización del área "Estancia San Pedro", Macizo del Deseado, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina, 73 (3): 388-404. 2016. ISSN 0004-4822. - Echeveste, H.J., López, L. y Carlini, M. Geology of the Manantial Espejo Epithermal District, Deseado Massif, Patagonia Argentina. Journal of Maps, Vol. 12, (Sup.1): 172-177. 2016. Online ISSN: 1744-5647. Director de proyectos de investigación relacionados a geología de yacimientos de minerales metalíferos. Instituto de Recursos Minerales, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata.

Autores

González, Pablo Diego

Doctor en Ciencias Naturales (orientación Geología), Licenciado en Geología, Facultad de Ciencias naturales y Museo, Universidad Nacional de La Plata. González, Pablo Diego Especializado en Petrología Ignea y Metamórfica. Profesor Titular de Petrología Igneo-Metamórfica y Práctica Profesional Supervisada (Grado), Universidad Nacional de Río Negro; y de Petrología (Post-grado), del Cuerpo Académico de la Carrera del Doctorado, Mención Ciencias de la Tierra, Universidad Nacional de Río Negro. Publicaciones: - González, P.D. Cábana, M. C., 2014. Geology of the Anecón Grande area, Patagonia (Río Negro), Argentina. Journal of Maps. 10 (3), 402-408, DOI: 10.1080/17445647.2013.877403. - Greco, G., González, Pablo D., González, S., Sato, A.M., Basei, M., Tassinari, C., Sato, K., Varela, R., Llambías, E., 2015. Geology, structure and age of the Nahuel

Niyeu Formation in the Aguada Cecilio area, North Patagonian Massif, Argentina. Journal of South American Earth Sciences 62, 12-32. - González, P. D. 2015. Textura de los cuerpos ígneos. En: Llambías, E. J.: "Geología de los cuerpos ígneos". Edición Especial 70° Aniversario de la Asociación Geológica Argentina, Serie B, Didáctica y Complementaria N° 31. 4ta. Edición. Capítulo 12, 167-195. Buenos Aires. Director de proyectos de investigación relacionados con mapeo y petrología de rocas de basamento metamórfico e ígneo. Instituto de Investigación en Paleobiología y Geología (Universidad Nacional de Río Negro-CONICET).

López, Luciano

Doctor en Ciencias Naturales (orientación Geología), Licenciado en Geología, Facultad de Ciencias naturales y Museo, Universidad Nacional de La Plata. Profesor Adjunto de Levantamiento Geológico, Facultad de Ciencias Naturales y Museo. Especializado en modelado tridimensional de depósitos minerales. Publicaciones: - López L., Echeveste H. 2012. Paragénesis mineral del depósito tipo Five Element Purísima-Rumicruz, Jujuy, Argentina. Revista de la Asociación Geológica Argentina. Vol 69 (4): 537-543. - López L., Jovic S., Guido D., Permuy Vidal C., Páez G., Ruiz R. 2015. Geochemical distribution and supergene behavior of Indium at the Pingüino epithermal polymetallic vein system, Patagonia, Argentina. Ore Geology Reviews. Vol (64) 747-755. - Echeveste H., López L, Carlini M. 2016. Geology of the Manantial Espejo epithermal district, Deseado Massif, Patagonia Argentina, Journal of Maps, DOI: 10.1080/17445647.2016.1187676.

Páez, Gerardo Nestor

Doctor en Ciencias Naturales (orientación Geología), Licenciado en Geología, Facultad de Ciencias naturales y Museo, Universidad Nacional de La Plata. Investigador Adjunto del CONI-CET especializado en vulcanismo y su vinculación con yacimientos hidrotermales de oro y plata, con lugar de trabajo en el Instituto de Recursos Minerales (INREMI) y la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Jefe de trabajos prácticos de Petrología 1 (rocas ígneas) en la Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Director de proyectos de investigación relacionados a vulcanismo y yacimientos de oro y plata. Publicaciones destacadas: - Páez, G.N., Ruiz, R., Guido, D.M., Ríos, F.J., Subias, I., Recio, C., Schalamuk, I.B., 2016. High-grade ore shoots at the Martha epithermal vein system, Deseado Massif, Argentina: The interplay of tectonic, hydrothermal and supergene processes in ore genesis. Ore Geol. Rev. 72, 546-561. - D'Elia, L., Páez, G., Hernando, I., Petrinovic, I., Villarosa, G., Bilmes, A., Bodaño, M., Guzmán, S., Borzi, G., Serra Varela, S., Manzoni, C., Outes, V., Delménico, A., Balbis, C., 2014. Erupciones históricas del Volcán Tromen: Análisis geomorfológico y geocronológico en su sector Noroeste. Rev. la Asoc. Geol. Argentina 71, 444–448. - Páez, G., Ruiz, R., Guido, D., Jovic, S., Schalamuk, I., 2010. The effects of Kmetasomatism in the Bahía Laura Volcanic Complex, Deseado Massif, Argentina: Petrologic and metallogenic consequences. Chem. Geol. 273, 300–313.

Manual de levantamiento geológico : una introducción a la geología de campo / Horacio Echeveste ... [et al.] ; coordinación general de Horacio Echeveste. - 1a ed . - La Plata : Universidad Nacional de La Plata ; La Plata : EDULP, 2018.

Libro digital, PDF - (Libros de cátedra)

Archivo Digital: descarga y online ISBN 978-950-34-1623-5

1. Mapa. 2. Geología. I. Echeveste, Horacio II. Echeveste, Horacio, coord. CDD 551

Diseño de tapa: Dirección de Comunicación Visual de la UNLP

Universidad Nacional de La Plata – Editorial de la Universidad de La Plata 47 N.º 380 / La Plata B1900AJP / Buenos Aires, Argentina +54 221 427 3992 / 427 4898 edulp.editorial@gmail.com www.editorial.unlp.edu.ar

Edulp integra la Red de Editoriales Universitarias Nacionales (REUN)

Primera edición, 2018 ISBN 978-950-34-1623-5 © 2018 - Edulp

