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Abstract: There is significant environmental concern about chlorinated organic compounds (COCs) in
wastewater, surface water, and groundwater due to their low biodegradability and high persistence.
In this work, 1,2,4-trichlorobenzene (124-TCB) was selected as a model compound to study its
abatement using wet peroxide oxidation at neutral pH with goethite as a heterogeneous catalyst,
which was enhanced with visible monochromatic light-emitting diode (LED) light (470 nm). A
systematic study of the main operating variables (oxidant and catalyst concentration and irradiance)
was accomplished to investigate their influence in the abatement of 124-TCB in water. The reaction
was carried out in a well-mixed reactor of glass irradiated by a visible LED light. The hydrogen
peroxide concentration was tested from 0 to 18 mM, the goethite concentration within the range
0.1–1.0 g·L−1 and the irradiance from 0.10 to 0.24 W·cm−2 at neutral pH. It was found that this
oxidation method is a very efficient technique to abate 124-TCB, reaching a pollutant conversion of
0.9 when using 0.1 g·L−1 of goethite, 18 mM of H2O2, and 0.24 of W·cm−2. Moreover, the system
performance was evaluated using the photonic efficiency (ratio of the moles of 124-TCB abated and
the moles of photons arriving at the reactor window). The maximum photonic efficiencies were
obtained using the lowest lamp powers and moderate to high catalyst loads.

Keywords: wet oxidation; goethite; LED light; 1,2,4-trichlorobencene; CWPO

1. Introduction

The presence of chlorinated organic compounds (COCs) in wastewater, surface water,
and groundwater is a significant environmental issue. In accordance to the EU Water
Framework Directive (Directive 2000/60/EC), several COCs have been added in the last
two decades to the list of substances to be monitored, encouraging limiting their production
and use. This list comprises pollutants as 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2-
dichlorobenzene, 1,2-dichloroethane, 1,4-dichlorobenzene, 2-chlorophenol, 3-chlorophenol,
4-chlorophenol, carbon tetrachloride, chlorine, chlorobenzene, pentachlorobenzene, chlo-
roform, dichloromethane, dioxins and furans, hexachlorobenzene, hexachlorobutadi-
ene, hexachlorocyclohexane, pentachlorophenol, tetrachloroethylene, trichlorobenzene,
trichloroethylene, and vinyl chloride [1]. However, due to their extensive use as wood
preservatives, pesticide precursors, solvents, hydraulic fluids, dielectric oil, dyes, and other
materials [2–7], these COCs still pose a risk for the water quality.

Given the low biodegradability and high persistence of these compounds, several
chemical technologies have been proposed for their abatement, including advanced oxida-
tion processes (AOPs) [8]. Among the oxidants, the use of hydrogen peroxide is noteworthy.
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To increase the oxidising potential of H2O2, this oxidant must be activated to produce
radical species able to degrade recalcitrant compounds such as chlorobenzenes. Hydrogen
peroxide activation by UV [9,10], UV and ozone [11], soluble iron (Fenton reaction) [12–14],
iron nanoparticles (Fenton-like reaction) [15], and power (electro Fenton) [16] has been
reported in the literature for the abatement of chlorobenzenes. Despite their effectiveness,
several drawbacks remain, such as the high cost associated, the need to operate at acidic
pH, and the generation of iron in solution, which must be removed in additional treatments
(for example, the neutralisation, separation, and management of the iron hydroxide sludge
generated) [17–20]. All of this has encouraged the research for new processes, such as the
heterogeneous Fenton process, which is also known as catalytic wet peroxide oxidation
(CWPO), in which a solid catalyst is used. CWPO looks for solid catalyst features with
negligible leaching of the active phase (iron), environment-friendly materials, and easily
separable from the solution [20]. Several attempts have been made to develop solid sup-
ports for the active iron species. Unfortunately, this sort of catalyst usually undergoes iron
leaching, and the Fenton reaction takes place with homogeneous catalyst instead of solid
catalyst. Recently, naturally occurring iron minerals, abundant and cheap materials [21],
have been proposed as alternative iron sources in CWPO in the abatement of phenol [17,22]
and in the treatment of wastewater [23,24]. In the oxidation of chlorobenzenes, hematite
has been successfully applied with hydrogen peroxide [25]. Iron materials are stable and
resistant to iron leaching [20,26,27], which is a significant advantage over other synthe-
sised catalysts. The main drawback of these heterogeneous catalysts is the lower rate
of H2O2 decomposition and, therefore, hydroxyl radical (•OH) generation vs. the classi-
cal Fenton process. This fact leads to longer reaction times and restricts their full-scale
applications [18,28].

Reducing agents in the reaction medium accelerate the catalytic cycle of iron and thus
improve the hydroxyl radicals generation rate. In this way, it was found that hydroxylamine
(HA) enhanced the redox cycle of the iron contained in goethite when this mineral was used
to abate organic pollutants by CWPO [18]. The addition of HA has also been successfully
tested in chlorobenzenes abatement by hydrogen peroxide and goethite [29]. This material
was stable, and no iron leaching was found despite the acid pH used (acid pH was required
for oxidising the chlorobenzenes) [29]. However, although this reducing agent greatly
increases the efficiency of the process, the addition of HA to the reaction system introduces
an additional cost and risk to the environment, so other options should be explored.

Alternatively, light as a non-expensive energy source has also been used to enhance
the redox cycle of iron in Fenton reaction and the CWPO process. UV light has been wildly
applied, but this kind of radiation only represents 4–5% of the solar light, whereas the
visible light is about 45% of the solar energy. In this way, many photo-Fenton process
applications have been designed with artificial visible light sources such as Hg or Xe lamps.
However, these lamps need a complicated cooling system. In addition, they are toxic,
energy consuming, and expensive when using in real applications [30]. Commercial visible
light-emitting diode lamps (VIS LED) have been utilised as an innovative and efficient
light source [30].

Although the homogenous photo-Fenton process has been investigated in the abate-
ment of different contaminants [31], such as pesticides [30,32,33], insecticides [34], and
chlorophenols [35], this process presents the same drawbacks as the conventional Fen-
ton [17–20,31]. For these reasons, the use of naturally occurring iron materials (as catalysts)
activated by VIS LED to accelerate the iron redox cycle is especially interesting. Goethite is
a cheap material, one of the most chemically stable iron oxides, showing excellent results
in the process, acting as a visible-light photocatalyst with a bandgap of 2.502 eV [36,37].

Ortiz de la Plata et al. [38,39] have successfully applied the photo-Fenton process for
the abatement of 2-chlorophenol using goethite activated by UV-light (350–400 nm) as
a catalyst at neutral pH, and they proposed a kinetic model [38]. Mameri et al. studied
the heterogeneous photo-degradation of paracetamol (PC) [40] and amoxicillin [41] using
goethite as a catalyst. Goethite (1 g·L−1) was studied in aqueous suspension without pH
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adjustment and irradiated at 365 nm and solar light, with a hydrogen peroxide concentra-
tion of 5 mM. These authors reported a higher removal of contaminant using solar radiation
due to the higher generation of hydroxyl radicals under this radiation [40,41].

In the current work, goethite activated by light (monochromatic LED light at
470 ± 10 nm) has been used in the CWPO of 1,2,4-trichlorobenzene (124-TCB), which
was selected as a model pollutant. This COC is a semi-volatile compound with relatively
high water solubility and therefore, it is easily transported in the environment. Due to its
toxicity and persistence, this pollutant represents a risk for human health and environ-
mental safety [2,4,6,42]. Thus, it is a pollutant that is highly used as a model compound
in other works in literature [43]. To our knowledge, there is a lack of information in
the literature concerning the application of LED VIS-light to activate goethite for COCs
removal. In this work, LED VIS-light coupled with a naturally occurring iron material
was effectively used to abate 124-TCB under neutral pH conditions, solving the main
drawbacks of classical Fenton and CWPO.

2. Results

The effect of the main operating variables (oxidant and catalyst concentration and irra-
diance) in the conversion of 124-TCB, as expressed in Equation (1), has been investigated.

Xj = 1 − Cj/Cj,0 (1)

being Cj and Cj,0 the concentration of j compound (124-TCB or H2O2) at different reaction
times and the initial concentration of these compounds, respectively, in mg·L−1.

The experimental conditions of runs carried out to study the influence of variables
in the 124-TCB abatement are summarised in Table S1 of the Supplementary Material. In
these runs, pH was neutral, and the temperature of the reaction mixture was kept at 25 ◦C.
Experiments B1–B5 refer to blank experiments in which the value of a variable was set
to zero.

As can be seen in Table S1, run B1 was carried out in the absence of catalyst and
oxidant to study the effect of light on 124-TCB concentration. At the conditions tested,
a negligible change in pollutant concentration was noticed with time. Therefore, neither
pollutant conversion nor evaporation took place in this run in the time period studied (6 h).

2.1. Effect of Peroxide Hydrogen Concentration

In experiment B2, the consumption of hydrogen peroxide in the presence of goethite
(0.5 g·L−1) activated by LED light was studied. The reaction was carried out without
124-TCB, and the hydrogen peroxide concentration was monitored over time. It was found
that the conversion of hydrogen peroxide was negligible after 6 h of reaction. Thus, in the
absence of 124-TCB, the consumption of oxidant is insignificant.

The effect of hydrogen peroxide concentration in the degradation of 124-TCB in water
was studied in runs R1–R3 and B3 (Table S1, experiment carried out in the absence of
the oxidant). The oxidant dose used varied from 0 to 10 times the stoichiometric amount,
which was calculated assuming the complete mineralisation of the initial concentration of
124-TCB. The total mineralisation reaction is summarised in Equation (2).

C6H3Cl3 (124-TCB) + 12 H2O2→6 CO2 + 3 HCl + 12 H2O (2)

Figure 1 shows the conversion of 124-TCB achieved at different reaction times, using
the same concentration of goethite and irradiance while using different initial hydro-
gen peroxide concentrations. As is shown, at 360 min, the highest pollutant conversion
value (X124,TCB = 0.89) was achieved using ten times the stoichiometric amount of oxidant
(CH2O2 = 18.1 mM). Small differences were found utilising a half dosage (CH2O2 = 9.1 mM)
but X124,TCB dropped to 0.75 when the stoichiometric amount of oxidant was used. This be-
haviour can be explained attending to the lower production of hydroxyl radicals generated
when lower doses of hydrogen peroxide are used. As shown in Figure 1, when hydrogen
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peroxide was not added to the reaction mixture (experiment B3), the conversion of 124-TCB
is minimal. The latter proved that at the operating conditions tested, the pollutant was
removed neither by evaporation nor by adsorption, as noticed in B1, and in agreement
with reported elsewhere [29] using goethite as a catalyst but in the absence of light.
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Under the conditions studied in Figure 1, the consumption of hydrogen peroxide was
monitored. Figure 2 shows that the highest oxidant conversion (XH2O2 = 0.15) was found
when the lowest stoichiometric ratio was used (run R3). After 360 min of reaction, hydrogen
peroxide conversion was lower than 0.10 in runs R2 and R3. The high stoichiometric excess
of the oxidant in these runs can explain this low consumption. The pH of the solution was
measured at 360 min, finding a value close to 6.5 in all the runs.

2.2. Effect of Goethite Concentration

The goethite concentration effect on 124-TCB removal was investigated in runs R1,
R4, R5, R6, and B4 in Table S1. The concentration of goethite was varied within the range
0–1 g·L−1, keeping constant the initial concentration of 124-TCB, amount of oxidant, and
irradiate power of the source light.

It was noticed that the addition of the heterogeneous catalyst produced an orange
suspension (the higher the concentration of goethite, the higher the color intensity). The
conversion of 124-TCB profiles with reaction time for different concentrations of goethite
is plotted in Figure 3. It can be seen that when goethite was not added to the reaction
media, the conversion of 124-TCB was negligible. This result also proves the negligible
evaporation of the pollutant under the operational conditions used, as previously stated.
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As shown in Figure 4, a drop in the pollutant conversion is noticed when the catalyst
concentration increases from 0.10 g·L−1. Smaller differences in the conversion of 124-TCB
were found in the goethite concentration range from 0.10 to 0.25 g·L−1. At the final reaction
time, 360 min, the conversion of 124-TCB vs. goethite concentration is plotted at the same
irradiance and initial oxidant concentration (Figure 4). The higher the concentration of
goethite, the lower the obtained conversion of the pollutant.
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The effect observed in Figure 4 can be explained assuming that the reaction takes
place on the solid’s surface. The active catalyst surface can be affected by two different phe-
nomena: (i) in a well-mixed reactor, the solid can form agglomerates of the catalyst, which
produce a defective liquid–solid contact, meaning a lower conversion of the pollutant than
expected [29]; (ii) the oxidation of the pollutant is caused by the hydroxyl radicals produced
at the solid surface [44–47]. However, working at a very low catalyst concentration presents
operative problems, and therefore, a catalyst concentration of 0.1 g·L−1 has been chosen as
the optimal value for this study.

Under these conditions, the conversion of 124-TCB was 90% after 6 h of reaction;
this value is higher than that obtained in previous work [29] using hydroxylamine and
pH = 3 for 124-TCB. In that work, the conversion of 0.7 was obtained at 6 h of reaction but
using hydroxylamine (2.5 mmol L−1) and pH = 3 and goethite and a ratio of stoichiometric
hydrogen peroxide about 10 (hydroxylamine was not effective at pH = 7). Barbash et al.
studied the abatement of 124-TCB using persulfate and thiosulfate in river sediments;
they found a conversion of 75% after 5 h of reaction [48]. Similarly, Liu et al. reported a
conversion close to 100% after 1 h of reaction using cabbage-like Co3O4 but using very
severe temperature conditions (300 ◦C) and catalyst concentration [49].

The iron leaching from the solid catalyst to the aqueous phase was studied, measuring
the total iron in solution at 360 min of reaction time by atomic emission spectroscopy. The
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iron concentration found in all cases was lower than 0.3 mg·L−1. The low content of Fe in
the aqueous phase proves that the Fenton-like reaction takes place on the surface of the
solid catalyst.

2.3. Effect of Irradiance Used

The effect of absolute irradiance in the abatement of 124-TCB was investigated, varying
the nominal power of the LED light source (Figure 5). As can be seen, the conversion of
124-TCB was negligible when the lamp was turned off (run B5). The higher the absolute
irradiance applied, the higher the pollutant conversion that was found. As the power
increases, the differences decrease. Thus, the difference of 124-TCB conversion achieved
between 0.18 and 0.24 W·cm−2 was lower than the difference found between 0.10 and
0.18 W·cm−2.
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pH,

CH2O2,0

CH2O2,stq
= 10, and Cgoe = 0.10 g·L−1, at 25 ◦C.

The interaction of LED light and the catalyst surface was studied in runs R4 to R6 and
runs R7 to R9. The conversion of 124-TCB was measured at 2 h of reaction time, using the
same initial concentration of hydrogen peroxide but varying the goethite concentration
and irradiance (Figure 6). As can be seen, at the lowest goethite concentration tested
(0.1 g·L−1) and the higher irradiance, the maximum conversion of 124-TCB was obtained.
Here, the goethite surface showed more activity in producing hydroxyl radicals because
of the increasing number of photons used, which can trigger more electron–holes on
its surface [30]. However, using higher concentrations of catalyst, the conversion of the
pollutant was not improved. At 0.25 g·L−1, the higher conversion was found between 0.10
and 0.17 W·cm−2, but it was not increased using 0.24 W·cm−2. The agglomeration of the
catalyst and the light scattering produced at high catalyst concentration yield a negligible
effect of the irradiance in the conversion using 0.5 and 1 g·L−1.
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To quantify and compare the photo-degradation of 124-TCB under different operating
conditions, the photonic efficiency (ηp) was computed (see Equation (3)) [50,51].

ηp =
C124 − TCB,0·X124 − TCB·VR

FE·
(

t f − t0

) (3)

being C124 − TCB,0 and X124−TCB the initial concentration of 124-TCB, in mol·L−1, and 124-
TCB conversion, respectively, which was achieved at the time t f , in s. VR is the reactor
volume (0.1 L), and FE is the flow of photons, in Einstein s−1, which was irradiated over
the reactor window. This photonic efficiency relates the number of moles of pollutant
converted after 2 h of reaction with the number of photons arriving at the reactor window
over a defined range of wavelengths.

The photons flow in the reactor window (FE) was estimated using Equation (4). Here,
the absolute incident irradiance (Ia) was measured in three different positions over the
reactor window.

FE =
∫ A

0

∫ λ f

λ0

Ia

h· c
λ

·dλ·dA (4)

where Ia is the average of absolute irradiance measured with the spectrometer coupled
with an optical fiber and a cosine corrector in W·cm−2·nm−1; λ is the wavelength and,
h and c are the Plank constant at light speed, respectively. A is the total evaluated area
in cm2.

From the averages values of irradiance plotted in Section 3.2 and integrating in Equa-
tions (4) and (3) and using the experimental results of the 124-TCB conversion provided in
Figure 6, the photonic efficiency can be calculated for different goethite concentrations and
absolute irradiance (please see Table 1).
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Table 1. Photonic efficiencies at different catalyst concentration and irradiances, calculated from the
experimental values of 124-TCB conversion in Figure 6 and the photons flow irradiated over the
reactor window, using Equation (3). The values are summarised in Table S2.

I, W·cm−2

Cgoe, g·L−1 0.10 0.18 0.24

0.1 1.74 × 10−4 1.74 × 10−4 1.56 × 10−4

0.25 2.91 × 10−4 1.86 × 10−4 1.39 × 10−4

0.5 3.03 × 10−4 1.71 × 10−4 1.27 × 10−4

Firstly, the system performance should be noted according to the catalyst load used for
each radiation intensity evaluated (please see Table 1). For minimum radiation intensities
(I = 0.10 W·m−2), the system photonic yield increases at higher catalyst loads, generating
this maximum for 0.5 g·L−1 of goethite (ηp = 3.03 × 10−4). However, by reducing the
catalyst load by 50% (Cgoe = 0.25 g·L−1), this ηp is only reduced by 4% (2.91 × 10−4 vs.
3.03 × 10−4). On the other hand, for maximum radiation intensities (I = 0.24 W·m−2), the
maximum ηp values are reached for the lowest catalyst concentrations. Here, the scattering
out produced by the catalyst particles is a determining factor in the efficiency of the process.
Therefore, the knowledge of these photonic efficiencies indicates the energy performance
attained with the process and the cost associated with the catalyst load used.

2.4. Oxidation Byproducts and Dechlorination

The concentration of chlorine atoms released by dechlorination of 124-TCB was mea-
sured at the final reaction time (360 min) in runs R1 to R12 (experimental conditions
summarised in Table S1). The stoichiometric concentration of chloride was calculated using
the experimental conversion of the pollutant and Equation (5).

Cstc
Cl− = C124−TCB,0·X124 − TCB·n·PMCl (5)

where Cstc
Cl− is the stoichiometric amount of chloride released to the aqueous phase assuming

the complete dechlorination of 124-TCB in mg·L−1; C124 − TCB,0 is the initial concentration
of the pollutant (0.15 mM) and X124−TCB is the experimental conversion of the contaminant
at 360 min of reaction. In addition, n is the number of chlorine released (3, as is shown in
Equation (2), and PMCl is the molar weight of chlorine (35.5 g·mol−1).

Figure 7 shows the experimental and stoichiometric data of chloride concentration
measured in runs R1 to R12. As can be seen, the experimental concentration of chloride in
the aqueous phase is lower than expected by stoichiometry. Therefore, the total dechlorina-
tion of 124-TCB is not reached, forming chlorinated intermediate compounds [52]. These
could be unidentified products or volatile chlorinated by-products, which could evaporate
from the reaction media. Moreover, the higher conversion of 124-TCB, the lower the differ-
ence between these values (experimental and stoichiometric). Thus, the higher conversion
of 124-TCB is related to mild oxidant reaction conditions, promoting the fast mineralisation
of the chlorinated by-products, avoiding its volatilisation from the reaction media.

To elucidate the by-products of 124-TCB oxidation, the organic compounds generated
in an experiment where 18 mg of 124-TCB were added to 100 mL of water, as detailed in
the experimental section, were qualitatively analysed. This amount of 124-TCB remains
partially non-dissolved at the initial reaction time but disappears with the reaction progress.
The solubilised 124-TCB was oxidised, and a new equilibrium was reached between the
aqueous and organic phases. Aqueous phase samples were taken at different reaction times,
being extracted with n-hexane and analysed by GC-MS. The organic compounds identified
in these samples are listed in Scheme 1. The main by-products detected from 124-TCB
oxidation are 1,2-dichlorobenzene (12-DCB) and 1,4 dichlorobenzene (14-DCB). Moreover,
traces of trichlorophenols (235-TCP and 245-TCP) and chlorobenzene were found (less than
1 mg·L−1). At the beginning of the reaction (30 min), traces of two-ring aromatic chlorinated



Catalysts 2021, 11, 139 10 of 21

compounds were also detected (2,2′,4,4′,5,5′-hexachloro-1,1′-Biphenyl). 235-TCP, 245-TCP,
and 2,2′,4,4′,5,5′-hexachloro-1,1′-Biphenyl were identified comparing the mass spectra
of each peak in the GC/MS chromatogram with the National Institute of Standards and
Technology (NIST) library records [53] (version NIST011) obtaining a match-factors higher
than 95%.

At early stages of the reaction, concentrations of 12-DCB and 14-DCB up to 4 mg·L−1

were detected, decreasing these concentration values with the reaction progress. These
compounds have a lower boiling point (180 ◦C, and 174 ◦C, respectively) than 124-TCB
(214 ◦C) and, therefore, they can be more easily removed from the reaction media by
volatilisation. Moreover, these compounds can be oxidised at higher rates than 124-TCB [29].
Similarly, CB has a low boiling point (132 ◦C) and could be easily removed from the aqueous
phase by evaporation. The volatilisation of CB and DCBs will explain the mismatch of
chlorides in the chlorine mass balance. On the other hand, the higher the oxidation media
strength, the higher the by-products oxidation rate and the lower the volatilisation that
occurs, explaining the better fit of chloride mass balance at these conditions (Figure 7).

At the final reaction time (360 min), no other chlorinated compounds, apart from those
previously stated, were detected by GC/ECD and GC/MSD. Only short-chain organic
acids (mainly acetic acid, less than 24 mg·L−1) were detected as oxidation by-products at
the final reaction time. That means that the treatment studied in the current work leads to
the detoxification of the polluted water.
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Scheme 1. Organic by-products found as intermedia in the degradation of 124-TCB using 18 mM
of H2O2, 0.1 g·L−1 of goethite, and 18 mg of pure 124-TCB in 100 mL of water with an absolute
irradiance of 0.24 W·cm2 after 60 min of reaction.

2.5. Catalyst Stability Test

The stability of goethite as a catalyst in CWPO enhanced by visible LED light was
tested in cycles of 24 h of reaction, using the highest irradiance value (I = 0.24 W·cm−2),
0.1 g·L−1 of goethite concentration (selected previously as an optimal load of catalyst),
and 18 mM of H2O2. The catalyst recovering from the reaction media was unaffordable
due to the low concentration used, and therefore, it was decided to add more 124-TCB
to the reaction media at the beginning of each cycle, as explained in the experimental
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section. Thus, 18 mg of pure 124-TCB were added to 100 mL of the aqueous phase at
the beginning of each new cycle. Five cycles were carried out, each one lasting for 24 h.
Hydrogen peroxide was also added at the beginning of each cycle to keep the initial oxidant
concentration constant. The oxidant concentration was measured at the end of the cycles.
It was found that the consumption of hydrogen peroxide at each cycle was around 20%.
The pH at the end of the cycles was also measured, and this value was close to 6.5.

The conversion of 124-TCB at the end of a certain number of cycles was measured.
The total reactor content was sacrificed, and n-hexane was added to the reactor content to
extract the organic compounds. It was found that the conversion of 124-TCB was almost
complete at the end of each cycle. Moreover, no chlorinated by-products were accumulated
in the reaction medium. Therefore, it can be concluded that goethite shows a good catalyst
activity and high stability, at least at the five reaction cycles tested.

The dechlorination of 124-TCB was studied at the end of each cycle, measuring the
chloride concentration in the aqueous phase. Figure 8 shows the stoichiometric concen-
tration of chloride ions (estimated from Equation (2)) and the experimental concentration
measured in the aqueous phase. As can be seen, some differences between the theoretical
and real values of chlorides concentration were noticed. This fact can be explained due to
the formation of the chlorinated by-products previously identified that could be partially
volatilised. Remarkably, the chloride mass balance fits better when the number of cycles
increased. This finding can be explained considering that DCBs and other chlorinated
by-products produced at each cycle are not removed from the media in the successive
cycles. Therefore, they have higher reaction rates than 124-TCB to be oxidised, releasing
the corresponding chlorides to the aqueous phase.
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Moreover, the high chloride concentration obtained in successive cycles does not
decrease the efficiency of the CWPO. Therefore, this catalyst could be applied to real
wastewater, surface water, or groundwater that usually show high chlorine content (up to
500 mg·L−1). Moreover, after 120 h of reaction, only 1.3 mg·L−1 of total iron was found
in the aqueous phase. The goethite used shows excellent physicochemical stability in the
CWPO process.

3. Materials and Methods

124-TCB, 12-DCB, 14-DCB, and CB of analytical quality were purchased from Sigma-
Aldrich (Darmstadt, Germany). Those pure compounds were dissolved in n-hexane (Sigma-
Aldrich Darmstadt, Germany) to prepare the standards used in the calibration curves. The
quantification of pollutants in reaction samples was accomplished using bicyclohexyl as a
standard internal compound (ISTD) purchased from Sigma-Aldrich (Darmstadt, Germany).
To simulate the polluted water, 124-TCB was spiked in milli-Q water. The water saturation
was carried out under controlled temperature (25 ◦C ± 1 ◦C) and 72 h of agitation; the
124-TCB saturation concentration was 28 mg·L−1 (0.15 mM).

Hydrogen peroxide (35 wt %), used as oxidant, was supplied by Sigma-Aldrich
(Darmstadt, Germany). The theoretical stoichiometric dosage of H2O2 required for the
total mineralisation of 124-TCB in the saturated water was 63 mg·L−1 (1.86 mM). Goethite,
used as a catalyst in CWPO reactions, was supplied by Sigma-Aldrich (Darmstadt, Ger-
many). It was compounded by 57.3 wt % of Fe (III), with a specific surface area (SBET) of
10.24 m2/g [29].

Other reagents used in the present work were used to quantify H2O2 (titanium oxisul-
fate, Sigma-Aldrich (Darmstadt, Germany)) and chloride concentration and short-chain
organic acids by Ion Chromatography (sodium carbonate, sodium bicarbonate, sulphuric
acid, and acetone, all of them from Sigma-Aldrich Darmstadt, Germany).

3.1. Experimental Setup

The experiments were carried out in a cylindrical batch reactor made of borosilicate
glass, with an operating volume of 0.1 L. The reaction mixture was well agitated in a mag-
netic plate, IKA C-MG HS 7 (Staufen, Germany), decreasing the mass transfer limitations.
A jacket and a pumping bath of water were used to maintain a constant temperature in
the reactor, and the temperature was fixed using a PID controller at 25 ◦C. The reaction
mixture was illuminated with an LED lamp located at the top of the reactor. The distance
between the light and the reaction surface was 110 mm. A scheme of the experimental
setup is shown in Figure 9. The light source was provided by a High-power collimated
LED of Migthtex (LCS-0470-50-11, Lasing, Spain). The LED emits at 470 nm. The LED
features an integrated heat sink and a cooling fan.

The light emitter was placed at the focal plane of a collimating lens with a clear
aperture of 11 mm (pre-adjusted in the factory). The collimator light sources produce
an optical power output of up to 4.17 W. The power could be adjusted using a Mightex
BLS-13000-1E LED controller. The output current (0–13 A) can be controlled manually. The
light LED source emits over a surface reaction of 11 cm2 (reactor window).
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Figure 9. Schematic representation of the experimental setup used.

3.2. Selection of the Wavelength of the LED Light

The role of the LED light in the abatement of 124-TCB is to enhance the redox cycle of
Fe (III) to Fe (II) in the Fenton-like reaction. The first step was to select the best wavelength
in which goethite presents the lowest transmittance, ensuring the highest absorbance of
incident energy by the material. Figure 10a shows the transmittance (T) of goethite at
different wavelengths, considering the diffuse reflection to calculate it. The inflection point
was located at 545 nm, using the first derivate of the transmittance to wavelength shown in
Figure 10b. At this wavelength, a tangential line to the transmittance curve (dotted line in
Figure 10a) is plotted. The line cuts the x-axis at 500 nm, so the optimal wavelength, where
the lowest transmittance is found (maximum absorbance), is lower than 500. In this way,
the wavelength of the lamp source was selected as 470 nm. In this case, photons have the
energy (hν) of 2.6 eV, which is larger than the energy gap (EG) of the goethite (2.2 eV). This
conclusion was in concordance with that previously reported in the literature [41].
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The absolute irradiance (I) of the LED lamp calculated with Equation (6) was measured
over the reactor window (11 cm2) at different lamp nominal power (Pn) within the range
1.04–4.17 W. Here, a UV-VIS spectrometer coupled with an optical fiber was used.

I =
∫ 565

350
Ia,λ·dλ (6)

where I is the total absolute irradiance (µW·cm−2), and Ia,λ is the discretised spectral
irradiance (µW·cm−2·nm−1) over the reactor window (11 cm2) In Figure 11, the values of
Ia,λ for different real lamp nominal power (Pn) over the reactor window (11 cm2) are given.

Moreover, as can be seen in Table 2, the real lamp power (E) is close to its nominal (Pn)
value over the reactor window.

Table 2. Total power irradiated and total irradiance at the surface of the reaction mixture at the
reactor window.

E, W I, W·cm−2

Pn, W Top Top

3.13 2.64 0.24
2.09 1.98 0.18
1.04 1.01 0.10
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Figure 11. Discretised spectral irradiance measured at the reactor window for different lamp nominal
powers (Pn).

Additionally, a study to estimate the light scattering by the solid through the walls of
the reactor was accomplished. In addition to the light irradiance at the bottom of the reactor,
0.1, 0.25, and 0.5 g·L−1 of goethite was measured. Finally, the flux reflexed by the surface
of the reactor window parallel to the light beam was also measured. The points where the
scattering out was measured are summarised in Figure S1, and the spectra obtained are
plotted in Figures S2 and S3.

3.3. Analytical Methods

The organic compounds concentration in reaction samples were identified and quanti-
fied by Gas Chromatography (Agilent 6890N, Santa Clara, CA, USA) with a Mass Spec-
trometry Detector (GC/MS). The reaction samples were also quantified using a GC (Ag-
ilent 6890 gas chromatograph, Santa Clara, CA, USA) with a Flame Ionisation Detector
(GC/FID) and an Electron Capture Detector (GC/ECD) simultaneously. Previously, 4 mL
of the filtered aqueous phase (once the goethite was removed from the reaction sample and
therefore, the reaction evolution was quenched), were extracted with 0.8 mL of n-hexane.
The mixture of both phases was shaken for 2 min followed by 10 min of settlement, al-
lowing the organic phase separation by decantation. The analytical methods used in the
present work have been reported elsewhere [54]. A chromatography column HP-5MS
(30 m × 0.25 mm ID × 0.25 µm) was used as a stationary phase and a constant flow rate
of 1.7 mL·min−1 of helium was used as a mobile phase. One µL of the liquid sample
was injected (injection port temperature: 250 ◦C). The chromatographic oven worked
under a programmed-temperature gradient (starting temperature =80 ◦C, increasing the
temperature at a rate of 18 ◦C·min−1 up to 180 ◦C, and then keeping it constant for 15 min).

The concentration of H2O2 was determined by colorimetric titration, using a spec-
trophotometer at 410 nm [55] (BOECO S-20 UV-VIS, Hamburg, Germany). The pH was
measured with a Basic 20-CRISON pH (Barcelona, Spain) electrode.
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Ionic organic by-products, such as carboxylic acids and chlorides, were measured
by Ion Chromatography (Metrohm 761 Compact IC, Gallen, Suiza) with anionic chemical
suppression and a conductivity detector, using a SUPP5 5-250 column (25 cm length, 4 mm
diameter) and an aqueous solution (0.7 mL·min−1) of Na2CO3 (3.2 mM) and NaHCO3
(1 mM) as mobile phase. The iron content in the aqueous solution was measured by
spectroscopy of atomic emission (AES MP-4100 Agilent Technology, Santa Clara, CA, USA)
at a wavelength of 259.94 nm and a nebuliser pressure of 100 kPa.

The goethite’s transmittance was obtained using a UV-VIS Spectrophotometer (Shi-
madzu, Kyoto, Japan) coupled with an integrating sphere and an accessory Selection Guide
for Solids, measuring the diffuse (and total) transmittance of the solid.

The irradiance and the intensity of the LED lamp were measured using a Flame
UV-VIS spectrometer within the wavelength range 200–850 nm coupled with a monacolin
UV-Visible optical fiber of 100 µm of core diameter using a cosine corrector (Ocean Insight,
Duiven, The Netherlands). The spectrometer and fiber was radiometrically calibrated
for use with a cosine corrector (CC-3) using a HL-3P-CAL lamp (Ocean Insight, Duiven,
The Netherlands).

3.4. CWPO Experiments

A previous set of experiments was carried at 25 ◦C and neutral pH to investigate if
the reaction could take place in absence of oxidant, catalyst, or light. The experimental
conditions of the blank runs (B1 to B5) are summarised in Table S1. They were carried out
in the experimental setup shown in Figure 9, and the reactions lasted for 6 h.

The effect of the initial concentration of oxidant (H2O2), irradiance, and catalyst
concentration (goethite) on the 124-TCB abatement was studied in runs R1 to R12 in
Table S1).

The reactor, shown in Figure 9, was initially loaded with 100 mL of synthetic polluted
water (28 mg·L−1 of 124-TCB). Then, the goethite was added. At this point, the lamp was
turned on. The agitation speed was fixed at 350 rpm, avoiding mass transfer limitations.
The reaction started when H2O2 was added, representing zero time. The runs were carried
at neutral initial pH, and the temperature of the reaction mixture was kept at 25 ◦C.

Reaction samples were analysed at different times. About 4 mL of the reaction media
was taken, and the goethite was separated from the aqueous phase using a nylon filter
(0.22 µm). The aqueous phase (4 mL) was extracted with 0.8 mL of n-hexane and analysed
by GC-MS. The concentrations of 124-TCB and H2O2 in the aqueous phase were measured
with time. At the end of the reaction time, the chloride ions generated from 124-TCB
dechlorination were quantified. Moreover, the Fe (III) leached to the aqueous phase was
measured at the end of the reaction time to elucidate if the reaction was heterogeneous
or homogeneous. Runs were carried out by triplicate, with the standard deviation being
lower than 5% in all cases.

As can be seen in Table S1, the influence of H2O2 concentration was investigated
in runs R1 to R3 using different doses of hydrogen peroxide in a range of 1–10 times
the theoretical stoichiometric amount (R = CH2O2:CH2O2,stq), which was calculated for the
complete mineralisation of the pollutant (1.8 mM) to carbon dioxide, water, and chloride.
The influence of goethite concentration on the pollutant conversion was also investigated
in runs R4 to R6, varying it within the range 0.1–1 g·L−1. Finally, the power of the LED
emitter was tested between 1.04 and 3.13 W.

3.5. Catalyst Stability Test

The catalyst stability was studied in additional runs using the batch well-mixed reactor
setup shown in Figure 9. In the first cycle, the reactor was loaded with 0.1 g·L−1 of goethite,
100 mL of Milli-Q water, and 18 mg of pure 124-TCB. The amount of hydrogen peroxide
added was ten times the stoichiometric required to mineralise the mass of 124-TCB added
(18 mM). The 124-TCB added was initially present as an organic phase partially dissolved
in the aqueous phase. As the reaction progresses, the 124-TCB in the aqueous phase was
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oxidised, and a new equilibrium between the organic and the aqueous phases was reached
until the initial mass of 124-TCB added was completely oxidised and disappeared from
the reaction medium. This first cycle lasted 24 h. A new cycle begins by adding 18 mg of
pure 124-TCB to the reaction medium obtained in the previous cycle without replacing the
catalyst. Hydrogen peroxide was measured at the end of the cycle, and the reacted amount
was replaced before the starting of the following cycle. This procedure was repeated up to
5 cycles. Each new cycle lasted for 24 h. The reactor content after 1 cycle, 2 cycles, 3 cycles,
4 cycles, and 5 cycles was sacrificed. Chlorides, iron cation, and H2O2 concentration were
measured in the aqueous phase. Following, 20 mL of n-hexane were added to the total
reactor media. The mixture was agitated, and GC/MS was used to analyse the COCs
extracted in the organic phase.

4. Conclusions

It was proved that goethite intensified by VIS LED light is an effective system for the
CWPO of 124-TCB. This contaminant was selected as a model compound of COC that
are commonly found as pollutants in the aqueous phase. It was confirmed that visible
monochromatic LED light (470 nm) enhances the 124-TCB abatement. This can be explained
because the light lamp, at the selected wavelength attending to the optical properties of
goethite, promotes the reduction of Fe (III) in the goethite surface to Fe (II), which yields
hydroxyl radicals faster than Fe (III). Moreover, this process can be carried out at neutral
pH and room temperature. It was found that the oxidation of 124-TCB (around 90% at the
selected conditions: I = 0.24 W·cm−2, 10 times the stoichiometric H2O2 amount, 0.1 g·L−1

of goethite and 6 h) results in its dehalogenation (confirmed by the chloride production),
and only short-chain organic acids (mainly acetic acid) were detected as oxidation by-
products, meaning that this treatment leads to the detoxification of the polluted water. The
photonic efficiencies indicate the energy performance attained with the process and the cost
associated with the catalyst load used. A positive effect of hydrogen peroxide concentration,
light irradiance on the reaction rate, and an optimal catalyst concentration value (0.1 g·L−1)
was found. These reactions proved the high stability of goethite, promoting the oxidation
of 124-TCB after 120 h of reaction time.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/1/139/s1, Figure S1: Measuring points of the average absolute irradiance using to calculate the
scattering out of photons flow. Figure S2: Average absolute irradiance vs. wavelength measured in
the point marked in Figure S1 to study the scattering out of the light through the walls of the reactor,
L1, L2, and L3 at different values of the incident irradiance and catalyst concentration. Figure S3:
Average of absolute irradiance vs. wavelength measured in the point marked in Figure S1 to study
the scattering out of the light through the bottom of the reactor (Fb) and the surface of the reaction
mixture (Ft). At different values of the incident irradiance and catalyst concentration. Table S1:
Experimental conditions of runs carried out to study the effect of the variables on 124-TCB abatement
at 25 ◦C and neutral pH. Table S2: Photonic efficiency calculated using the photons flow irradiated
through the reactor window.
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