
Personalizing user–agent interaction

Silvia Schiaffino a,b, Analia Amandi a,b,*

a ISISTAN, Universidad Nacional del Centro Pcia. Bs. As., Campus Universitario, Paraje Arroyo Seco, Tandil 7000, Argentina
b CONICET, Comisión Nacional de Investigaciones Cientı́ficas y Técnicas, Buenos Aires Argentina

Received 16 July 2003; accepted 1 July 2005

Available online 10 November 2005

Abstract

Interface agents are computer programs that provide personalized assistance to users with their computer-based tasks. The interface agents

developed so far have focused their attention on learning a user’s preferences in a given application domain and on assisting him according to

them. However, in order to personalize the interaction with users, interface agents should also learn how to best interact with each user and how

to provide them assistance of the right sort at the right time. To fulfil this goal, an interface agent has to discover when the user wants a suggestion

to solve a problem or deal with a given situation, when he requires only a warning about it and when he does not need any assistance at all. In this

work, we propose a learning algorithm, named WoS, to tackle this problem. Our algorithm is based on the observation of a user’s actions and on a

user’s reactions to the agent’s assistance actions. The WoS algorithm enables an interface agent to adapt its behavior and its interaction with a user

to the user’s assistance requirements in each particular context.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Interface agents; User profiling; Personalization
1. Introduction

Interface agents have become a technology widely used to

provide personalized assistance to users with their computer-

based tasks. Interface agents are computer programs that have

the ability to learn a user’s preferences and working habits, and

help him to deal with one or more computer applications,

improving in this way the user’s productivity.

A commonly used metaphor for understanding interface

agent paradigm is comparing them to a human secretary or

personal assistant who is collaborating with the user in the

same work environment [11]. Initially, a personal assistant is

not very familiar with the habits and preferences of her

employer and may not be very helpful.1 However, the assistant

becomes gradually more effective and competent as she

acquires knowledge about him. This knowledge can be

acquired by observing how the employer performs tasks, by
0950-7051/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2005.07.005

* Corresponding author. Address: ISISTAN, Universidad Nacional del

Centro Pcia. Bs. As., Campus Universitario, Paraje Arroyo Seco, Tandil

7000, Argentina.

E-mail addresses: sschia@exa.unicen.edu.ar (S. Schiaffino), amandi@exa.

unicen.edu.ar (A. Amandi).
1 For simplicity, we use ‘he’ for the boss and ‘she’ for the assistant, but we do

not mean to be sexist.
asking the employer for information, by receiving explicit

instructions and feedback from him, or by learning from other

assistants’ experience. Then, the assistant can perform tasks

that were initially performed by the employer, she can suggest

him the execution of tasks, she can notify the employer about

situations interesting for him and warn him about problems that

may arise. In the same way, an interface agent can become

more competent as it interacts with a user and learns about him.

The many interface agents that have been developed have

focused their attention on learning a user’s preferences and

working habits in a given application domain and on assisting

the user according to them. However, interface agent

developers have paid little attention to some key issues when

assisting a user: how to best interact with each user and how to

provide them assistance of the right sort at the right time.

In a mixed-initiative interaction context like the one we are

considering, both user and agent can initiate a dialogue [6]. At

any time, one of them might have the initiative while the other

works to assist him, contributing to the interaction as required.

At other times, the roles are reversed; and at other times again

the participants might be working independently, interacting

with each other only when specifically asked.

In this context, Horvitz [7] has pointed out some problems

with the use of interface agents: poor guessing about the goals

and needs of users, inadequate consideration of the costs and

benefits of each agent action, poor timing of agent actions and

inadequate attention to opportunities that allow a user to guide
Knowledge-Based Systems 19 (2006) 43–49
www.elsevier.com/locate/knosys

http://www.elsevier.com/locate/knosys


S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–4944
the invocation of agent services and to refine potentially sub-

optimal results provided by the agent.

Among these problems, we have focused our attention on

the interaction between users and interface agents, and we have

identified several problems that have to be solved for this

interaction to succeed. In this work we will address one of these

problems. When an interface agent detects a problem situation

or a situation in which the user might need assistance, it has to

decide among warning the user about the problem and let him

decide how to deal with it, suggesting him how to solve it or

doing nothing. This decision will be mainly influenced by the

knowledge the agent has to make a suggestion, since if it does

not know what to suggest it will merely warn the user about the

problem or situation. However, although the agent probably

knows what to suggest, it has to learn whether the user wants it

to suggest him something or not in that particular situation, or if

he does not even want to be warned. In order to take the best

decision, the agent must discover which assistance action the

user expects in each situation that may arise.

In this work, we propose a learning algorithm, named WoS,

to tackle the problem presented before. The goal of the

algorithm is learning when to make a suggestion to a user,

when to make him a warning and when to do just nothing,

personalizing in this way the interaction with each user. Our

algorithm is based on the observation of a user’s actions,

particularly on a user’s reactions to the agent’s actions. WoS

enables an interface agent to adapt its behavior and its

interaction with a user to the user’s assistance requirements.

This work is organized as follows. Section 2 describes how

an agent chooses among several assistance actions. Section 3

presents our proposed learning algorithm. Section 4 reports

some experimental results. Section 5 describes some related

work. Finally, Section 6 presents our conclusions and future

work.

2. Decision making

When an agent is about to assist a user, it has to decide

which of several possible actions to execute. An interface agent

has knowledge about the application domain, about the user (in

the user profile), about itself and about other agents (possibly

humans) that inhabit its environment. When a situation of

interest or a problem arises, the agent uses this knowledge to

decide whether to do something to assist the user or not, and

what to do if it decides to do something.

Several algorithms have been used to decide what an agent

should do next [4,5,7,9,11]. In the most common approach,

agents have three possibilities when they want to assist a user:

executing a task autonomously, suggesting the user what to do,

and doing nothing. These agents use two threshold values to

take decisions, which are established by the user to control the

agent’s behavior: do-it threshold and tell-me threshold. If the

confidence value associated with an agent action is smaller

than the tell-me threshold the agent does nothing; if the

confidence value is greater than the tell-me threshold but

smaller than the do-it threshold, the agent makes a suggestion

to the user; and if the confidence value is greater than the do-it
threshold the agent executes the task autonomously on the

user’s behalf.

The confidence-based approach has several problems. The

selection of an assistance action is centered on the calculus of

confidence values associated with these actions. The confi-

dence associated with a suggestion, for example, indicates the

amount of times the agent made the suggestion successfully,

over the total amount of times the agent made this suggestion.

This calculus does not take into account whether the user

wanted that type of assistance or if he preferred another one, a

warning for example. Besides, thresholds are generally

established by the user or by the agent developer and they

have fixed values. Thus, if the agent wants to modify them

according to the user’s behavior, it cannot do it. Finally, the

same thresholds are used for every agent action and every

problem situation or situation of interest. This generalization

can lead to inappropriate agent behavior since the agent is not

supposed to act in the same way in every situation.

Our approach improves this decision-making process by

taking into account the user’s requirements regarding the

agent’s assistance actions. Thus, when the agent has to decide

among various actions it will not only take into account the

confidence values associated with them, but also how the user

wants to be assisted in the particular situation the agent is

dealing with.

3. WoS learning algorithm

The goal of our algorithm is learning in which contexts the

user prefers a suggestion to solve the problem or deal with a

situation, when he wants only a warning and when the user

does not want any assistance at all. The WoS algorithm enables

an interface agent to choose the action that is the most

acceptable to the user in that particular instance of a given

situation.

The input for our learning algorithm is a set of user–agent

(or agent–user) interaction experiences. An interaction experi-

ence ExZ!Sit,A,UF,EO is described by a situation Sit, by the

assistance action A the agent executes to deal with the problem,

by the user feedback UF obtained after assisting the user and

(sometimes) by an evaluation E of the assistance experience

(success, failure or undefined). Each situation Sit is described

by a set of features and the values these features take, SitZ
{(featurei, valuei)}. An assistance action may be a suggestion, a

warning or no action. A suggestion is described by the action

suggested by the agent, the problem originating it and a

justification of the proposed solution. Similarly, a warning is

described by the problem situation the user is being warned

about. The user feedback may be implicit if the agent has to

obtain it from the user’s actions (this occurs in most cases), or

explicit if the user explicitly evaluates the agent’s actions. If

the agent has enough information, the experience can be

evaluated as a success or as a failure. If it does not have enough

information (e.g. no user feedback at all), the evaluation is not

available.

For example, considering an agenda agent, an assistance

experience could be the following. The user is scheduling



S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–49 45
a new event: a meeting to discuss the evolution of project A

with his employees Johnson and Dean. The event is being

scheduled for Saturday at 10 a.m. at the user’s office. The agent

decides to warn the user that Mr. Dean will probably disagree

about the meeting date and time because he never schedules

meetings on Saturdays. In reply to this warning, the user asks

the agent to suggest him another date for the event. In this

example, the different parts of the assistance experience are:

† SitZ{(type, new-event), (event-type, meeting), (organizer,

user), (participants, [Johnson,Dean]), (topic, project A

evolution), (date, Saturday), (time, 10 a.m.), (place, user’s

office)}

† AZ{(type, warning), (message, Dean no meetings on

Saturdays)}

† UFZ{(type, explicit), (action, asks for a suggestion)}

† EZ{(type, failure), (certainty, 1.00)} (suggestion instead of

warning)

The WoS algorithm uses the information of several user–

agent interactions to formulate a set of hypotheses about the

user’s assistance requirements. These hypotheses may adopt

one of the following forms: ‘in situation Sit the user requires a

warning W’, ‘in situation Sit the agent requires a suggestion S

(with justification J)’ or ‘the user does not want assistance

(in situation Sit)’. Each hypothesis has a certainty degree

associated with it that indicates how sure the agent is about it.

After formulating a hypothesis, the algorithm has to validate

it according to the amount of positive evidence that supports

the hypothesis and the amount of negative evidence that rejects

it: If a hypothesis is highly supported, it is turned into a fact that

establishes the assistance action that the user requires in a given

problem situation. These facts are periodically revised in order

to verify if they are still valid or not. Algorithm 1 shows the

main steps our algorithm involves. The following sections

explain how we perform each of them.

Algorithm 1 WoS Overview

Input: A set Ex of user–agent interaction experiences Exi

Z!Siti, Ai, UFi, EiO (where Sit: situation description, A:

assistance action, UF: user feedback, E: evaluation)

Ouput: A set F of facts and a set H of hypotheses about the

user’s assistance requirements

1: Formulate a set of hypotheses H from Ex and compute

certainty degrees

2: Validate hypotheses in H according to positive and negative

evidence

3: Turn validated hypotheses into a set of facts F

4: Revise facts in F
2 If readers want more information about association rule-mining they should

read [1,2,12].
3.1. Formulating hypotheses: using association rules

In our context, a hypothesis expresses the agent’s belief that

the user requires a certain type of assistance in a given

situation. The agent formulates a hypothesis by analyzing the

information it has obtained by observing the user’s behavior
during several assistance experiences. A hypothesis expresses

that whenever situation Sit occurs, the user will require action

A (W, S or N) with a certainty degree of Cer(A). Then, if this

certainty degree is high enough the agent will execute action A

when Sit occurs.

To generate hypotheses from a set of user–agent interaction

experiences we use Association Rules. Association rules

enable us to rapidly discover associations between different

situations and the expected assistance actions. Our algorithm

calls an association rule-mining module and then processes the

discovered rules to formulate hypotheses. An association rule

is a rule, which implies certain association relationships among

a set of objects (such as they occur together or one implies the

other) in a database [1]. Association discovery finds rules about

items that appear together in an event (called transactions),

such as a purchase transaction or a user–agent interaction

experience. Given a set of transactions, where each transaction

is a set of literals (called items), an association rule is an

expression of the form X/Y, where X and Y are two sets of

attributes (called itemsets) in the given database. X is the

antecedent of the rule and Y is the consequent.

Given a transaction database D, the problem of mining

association rules is to find all association rules that satisfy:

minimum support (called minsup) and minimum confidence

(called minconf). The support of a rule X/Y is the probability

of attributes (or attribute sets) X and Y occurring together in

the same transaction. If there are n total transactions in the

database, and X and Y occur together in m of them, then the

support of the rule X/Y is m/n. The confidence of rule X/Y is

defined as the probability of occurrence of X and Y together in

all transactions in which X already occurs. If there are t

transactions in which X occurs, and in exactly s of them X and Y

occur together, then the confidence of the rule is s/t. minsup is

an input parameter to the algorithm for generating association

rules. It defines the support threshold, and rules that have

greater support than minsup are the only ones generated.

minconf is an input parameter that defines the minimum level

of confidence that a rule must possess.

In this work, we are not concerned about how association

rules are generated since we merely call the rule-mining

algorithm (Apriori, for example) within our algorithm WoS.2 In

general, the values of the confidence and support thresholds are

specified by the developer or the user of the association rule

algorithm. In this work, determining the most appropriate

values of minconf and minsup is also part of the WoS algorithm.
3.2. Filtering out uninteresting and redundant rules

We are interested in some particular association rules

generated from a set of user–agent interaction experiences. The

rules we are interested in are those association rules of the form

‘problem description, assistance action/user feedback,

evaluation’ having appropriate support and confidence values.



S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–4946
Other combinations of items are irrelevant since we are trying

to discover which ‘problem situation-assistance actions’ pairs

have received a positive user feedback and were evaluated, in

consequence, as a success.

We can use an intuitive approach [8] to select those rules we

are interested in. Relevant (and also irrelevant) classes of rules

can be specified with templates. Templates describe a set of

rules by specifying which attributes occur in the antecedent and

which attributes occur in the consequent. A template is an

expression of the form: A1,.,Ak/AkC1,.,An, where each Ai

is an attribute name, a class name, or an expression CC and C*,

which correspond to one or more and zero or more instances of

the class C, respectively. A rule B1,.,Bh/BhC1,.,Bm

matches the pattern if the rule can be considered to be an

instance of the pattern.

Once the agent has filtered out those rules that are not

interesting for its purpose, it will still have many rules to

process, some of them redundant or insignificant. We can then

use a technique that removes those redundant and insignificant

associations and then finds a special subset of the unpruned

associations to form a summary of the discovered rules [10].

Many discovered associations are redundant or minor

variations of others. Thus, those spurious and insignificant

rules should be removed. For example, consider the following

rules:

R1: EventTypeZdoctor, warning/failure, ask for suggestion

[sup:60%,conf:90%]

R2: EventTypeZdoctor, PriorityZhigh, warning/failure,

ask for suggestion [sup:40%,conf:91%]

If we know R1, then R2 is insignificant because it gives little

extra information. Its slightly higher confidence is more likely

due to chance than to true correlation. It thus should be pruned.
…..

Meeting, me, me => ask for suggestion, failure S:
0.66 C: 1

Meeting, boss => ok, success S: 0.33 C: 1

Meeting, me, projects, employees, meeting, me,
projects, employees => ask for suggestion, failure S:
0.5 C: 1

…..

Transactio

Event type 1 Host 1 Topic 1 Participants 1 Event type 2 Ho
Meeting Me Projects Employees Meeting Me
Meeting Boss Budget Boss and

workmates
Party Mo

Meeting Boss Projects Me and boss Gym class Me
Appointment Me None Doctor Appointment Me
Meeting Me Projects Employees Meeting Me
Meeting Me Projects Employees Meeting Me

Association Rules

Fig. 1. Formulatin
R1 is more general and simple. Besides, we have to analyze

certain combinations of attributes in order to determine if two

rules are telling us the same thing. For example, a rule

containing the pair ‘suggestion, failure’ and another one

containing the pair ‘warning, success’ are redundant provided

that they refer to the same problem situation and they have

similar confidence values. Fig. 1 shows, as an example, how a

set of hypotheses is derived from a set of user–agent

interactions. In this example, the assistance action executed

by the agent was a warning about two overlapping events.
3.3. Turning hypotheses into facts

Once the agent has formulated a set of hypotheses it has to

validate them. Our algorithm tries to prove a hypothesis by

analyzing the evidence for and against it. If the hypothesis

involves a warning, the evidence supporting it is composed of

those assistance experiences in which the user has accepted the

warning without asking for a suggestion, and those in which the

user would have preferred a warning instead of a suggestion.

The evidence against such a hypothesis is given by those

interaction experiences in which the user requested a

suggestion after the agent has warned him about a problem.

If the hypothesis involves a suggestion, it is supported by those

interaction experiences in which the user has requested the

suggestion and those in which the user has accepted an

autonomous suggestion from the agent. The evidence against

this kind of hypothesis is provided by those experiences in

which the user neglects suggestions.

The evidence for and against a given hypothesis can be

obtained by analyzing some of the association rules generated

from the interaction database. For example, if we are trying to

prove a hypothesis obtained from the rule ‘Situation X,

warning/fbk1, success Sup:x Conf:y’, and we have another
1. When there is a conflict between two meetings
organized by the user where the participants
are employees and the topic is projects, the
user prefers a suggestion instead of a warning

2. When there is a conflict between two organized
by the user and one of them is a meeting, the
user prefers a suggestion instead of a warning

3. When there is a conflict between two events
and one of them is a meeting organized by the
user’s boss, the user accepts a warning

4. ….

n Database

st 2 Topic 2 Participants 2 Feedback Evaluation
Projects Employees Ask for suggestion Failure

ther Birthday Family OK Success

None Me OK Success
None Dentist Ask for suggestion Failure
Projects Employees Ask for suggestion Failure
Projects Employees Ask for suggestion Failure

Hypotheses

g hypotheses.



S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–49 47
rule that expresses ‘Situation X, warning/fbk2, failure Sup:z

Conf:w’ (where fbk1 and fbk2 are feedback items) we should

discard the hypothesis or at least adjust its certainty degree.

Given a rule X/Y originating a hypothesis H, a rule of the

form X/Z where ZhYZ: is considered a negative evidence,

while a rule of the form X/Z where ZhYs: is considered a

positive evidence. The certainty degree of a hypothesis H is

computed as a function of the support of the rule originating the

hypothesis and the support values of the rules considered as

positive and negative evidence of H. The function we use to

compute certainty degrees is shown in Eq. (1), where a, b and g

are the weights of the terms in the equation (we use aZ0.8,

aZ0.15 and gZ0.05), Sup(AR) is the support of the rule

originating H, Sup(EC) is the support of the rules being

positive evidence, Sup(EK) is the support of the rules being

negative evidence, Sup(E) is the support value of an association

rule taken as evidence (positive or negative), r is the amount of

positive evidence and t is the amount of negative evidence

CerðHÞ Z aSupðARÞCb

Pr

kZ1

SupðECÞ

PrC1

kZ1

SupðEÞ

Kg

Pt

kZ1

SupðEKÞ

PrCt

kZ1

SupðEÞ

(1)

If the certainty degree of a hypothesis is greater than a

threshold value d the hypothesis is turned into a fact, otherwise

it is discarded. The value of this threshold is currently set to

0.5.

Facts are periodically revised to determine whether they are

still valid or not. Facts are validated in the same way as

hypotheses are validated, i.e. considering negative and positive

evidence. If a fact is found invalid, it is turned into a hypothesis

again.
3.4. Determining appropriate threshold values

The value of minsup determines which association rules are

generated and which are not. A high value will probably make

us miss some important association rules. Thus, we have to

determine a value for minsup that enables us to discover the

relationships between problem situations and users’ assistance

requirements that we need to assist users.

In our context, a transaction database contains assistance

experiences of a given type (for example those involving a

warning) and related to a particular problem situation. Suppose

that there are N different instances of a problem situation stored

in the database and that they are equally probable. Thus, 1/N

percent of the transactions will belong to a given problem

situation. Since we want those rules showing the most frequent

evaluation for a given pair of problem situation and assistance

action, a minsup value of 1/N will be then appropriate. In the

example in Fig. 1, the value of minsup is 0.25.

The value of minconf should be high since it indicates the

probability of failing or succeeding in assisting a user in a given

problem situation. We found that an appropriate value for

minconf is 0.8. Smaller minconf values can be used to obtain

positive and negative evidence when the algorithm is
validating a particular hypothesis. Algorithm 2 presents the

main steps of the WoS algorithm.

3.5. Decision making with WoS

When an agent detects a problem situation or a situation in

which the user might need help, it looks for facts telling it what

to do in that situation. If the fact implies a suggestion and the

confidence on the suggestion is high enough, the agent will

make the suggestion. However, if the fact implies a warning or

the confidence on the suggestion is low the agent will merely

warn the user about the problem. This decision-making process

improves the one described in Section 2 by taking into account

a user’s assistance requirements.

Algorithm 2 WoS learning algorithm

Input: A set Ex of user–agent interaction experiences

ExiZ!Siti, Ai, UFi, EiO (where Sit: situation description, A:

assistance action, UF: user feedback, E: evaluation)

Ouput: Facts F and hypotheses H about the user’s

assistance requirements

1: minsup)Obtain value for minsup and mincof)0.8

2: AR)Call rule-mining algorithm (e.g. Apriori) with Ex,

minconf and minsup

3: AR1)Filter out uninteresting rules from AR

4: AR2)Eliminate redundant and insignificant rules from

AR1

5: H)Transform rules in AR2 into hypotheses (just notation

transformation)

6: for iZ1 to size of H do

7: Find evidence for (EC) and against (EK)Hi

8: Cer(Hi))compute certainty degree of H considering

(EC) and (EK)

9: if Cer(Hi)Rd then
10: F)FgH

11: end if

12: end for

13: for iZ1 to size of F do

14: Validate Fi (as in 8 to 12)

15: end for
4. Experimental results

To evaluate the performance of our interface agents’

learning algorithm we used one of the metrics defined in [3].

The precision metric measures an interface agent’s ability to

accurately provide assistance to a user. We define our precision

metric as shown in Eq. (2)

Mprecision Z
number of correct assistance actions

number of assistance actions
(2)

The precision metric is used to evaluate the performance of

an interface agent when it has to decide among a warning, a

suggestion or no action. In this case, for each problem situation,

we compare the number of correct assistance actions against

the total number of assistance actions the agent has executed.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10 11 12 13 141 2

Assistance Session No.

P
re

ci
si

on

Precision with WoS

Precision without
WoS

Fig. 2. Agent’s assistance precision using WoS.

S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–4948
An assistance action is correct if it is the one the user expected

in a given problem situation. The user’s feedback tells us

whether an assistance action is correct or not.

We tested our algorithm with a set of 30 users of an agenda

system. For this purpose, we incorporated the WoS algorithm

into an agent that provided assistance to these users. We

compared the assistance capability of this agent with WoS and

without WoS. Half of the users used the agent with WoS and the

other half used the agent without our algorithm. We obtained

the user feedback after each assistance action executed by each

agent and we classified the assistance experience as a success

or as a failure.

The graph in Fig. 2 plots the evolution of the precision

metric both for an agent using WoS and for an agent not using

WoS. For each assistance session the graph plots the average

precision value. We used the following numeric parameters to

perform the tests: minconfZ0.8, minsupZ0.2 (we fixed this

value for simplicity purposes), dZ0.5, number of association

rules generatedZ2000, number of assistance actionsZ30.

We can observe that the number of correct assistance

actions is bigger for the agent using our learning algorithm.

There is a pattern of improving performance in our agent’s

assistance capability, which indicates that the WoS algorithm

enables agents to improve their interactions with the users they

are assisting.
5. Related work

Some related works have considered different approaches to

decide among several possible agent actions. In Section 1, we

have discussed those that use confidence values associated with

actions to decide what to do [3,9,11]. The main problem with

this approach is that it does not take into account the user’s

requirements in different situations to compute confidence

values and that threshold values are generally fixed or user-

defined.

On the other hand, the works described in [7] and [5] try to

infer the ideal action in light of costs and benefits of each

possible action given uncertainties about a user’s goals. Each

action has a utility function established by a domain expert. In a

given situation, the agent executes the action that has the
maximum expected utility value. The work described in [7]

presents the LookOut system, which helps users that use

Microsoft Outlook messaging and scheduling system. Depend-

ing on the inferred probability about a user’s goals and on an

assessment of the expected costs and benefits of action

(expected utility), the system decides to: do nothing but simply

wait for manual invocation of LookOut, to engage the user in a

dialog about his intentions with regards to providing a service,

and to go ahead and attempt to provide its service. Similarly,

the work presented in [5] describes a utility-based decision-

making process to determine when to take the initiative to

interact with a user to request further assistance from him in a

mixed-initiative system. The decision-making is based on a

calculation of the expected utility of several courses of action

and the likelihood that the user would be an effective

contributor of information, if an interaction was initiated.

The main problem of this utility-based approach is how utility

functions are computed. These functions have default values

(as in LookOut), they are specified by users (LookOut also

allows this) or they are established by a domain expert. None of

these alternatives takes into account how the user wants to

interact with the agent in different contexts.
6. Conclusions and future work

The work presented in this paper constitutes a contribution

both to the interface agents and the human–computer

interaction areas. The WoS algorithm enhances interface

agents’ capabilities by enabling them to determine how to

best assist users in different problem situations. In this way,

these agents personalize the interaction with each user. The

results obtained so far are quite promising, since our agents

have improved their assistance capabilities and their actions

tend to the users’ needs.

We used association rules to implement our proposed

learning algorithm because they enable us to rapidly discover

associations between different situations and the expected

assistance actions. Other machine learning or data mining

techniques could be also used, and they will be tested in the

future and compared with our first proposal.

We are now working on a temporal version of our

algorithm, which considers the ‘age’ of transactions to derive

association rules that will serve as hypotheses and as evidence.

In some cases, new positive or negative evidence is probably

more relevant than older one.

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in:

Proceedings of the 20th VLDB, 1994, pp. 487–499.

[2] R. Bayardo, R. Agrawal, Mining the most interesting rules, in:

Proceedings of the Fifth ACM SIGKDD, 1999, pp. 145–154.

[3] S. Brown, E. Santos, Using explicit requirements and metrics for interface

agent user model correction, in: Proceedings of the Second International

Conference on Autonomous Agents, 1998.

[4] S. Brown, E. Santos Jr., S. Banks, Utility theory-based user models for

intelligent interface agents, in: Proceedings of the 12th Canadian

Conference on Artificial Intelligence, 1998.



S. Schiaffino, A. Amandi / Knowledge-Based Systems 19 (2006) 43–49 49
[5] M. Fleming, R. Cohen, A utility-based theory of initiative in mixed-

initiative systems, in: IJCAI 01 Workshop on Delegation, Autonomy and

Control: Interacting with Autonomous Agents, 2001, pp. 58–65.

[6] M. Hearst, Mixed-initiative interactions: trends and controversies, in:

IEEE Intelligent Systems, September/October, 1999, p. 14.

[7] E. Horvitz, Principles of mixed-initiative user interfaces, in: ACM SIGCHI

Conference on Human Factors in Computing Systems—CHI99, 1999.

[8] M. Klementinen, H. Mannila, P. Ronkainen, H. Toivonen, A.I. Verkamo,

Finding interesting rules from large sets of discovered association rules,

in: Third International Conference on Information and Knowledge

Management, 1994, pp. 401–407.
[9] R. Kozierok, P. Maes, A learning interface agent for scheduling meetings,

in: ACM-SIGCHI International Workshop on Intelligent User Interfaces,

1993, pp. 81–93.

[10] B. Liu, W. Hsu, Y. Ma, Pruning and summarizing the discovered

associations, in: ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 1999.

[11] P. Maes, Agents that reduce work and information overload, Communi-

cations of the ACM 37 (7) (1994) 31–40.

[12] R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item

constraints, in: Proceedings of the Third International Conference on

KDD, 1997.


	Personalizing user-agent interaction
	Introduction
	Decision making
	WoS learning algorithm
	Formulating hypotheses: using association rules
	Filtering out uninteresting and redundant rules
	Turning hypotheses into facts
	Determining appropriate threshold values
	Decision making with WoS

	Experimental results
	Related work
	Conclusions and future work
	References


