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JOSÉ L. RICCARDO∗, FEDERICO J. ROMÁ† and ANTONIO J. RAMIREZ-PASTOR‡7

Departamento de F́ısica,

Laboratorio de Ciencias de Superficies y Medios Porosos,9

Universidad Nacional de San Luis, CONICET, Chacabuco 917

San Luis, 5700, Argentina11
∗jlr@unsl.edu.ar

†froma@unsl.edu.ar13
‡antorami@unsl.edu.ar

Received 14 September 200615

The adsorption of polyatomics on one- and two-dimensional lattices is studied by com-
bining theoretical modeling, Monte-Carlo (MC), simulations and their correspondence17

with experimental results. In one dimension, the rigorous statistical thermodynamics of
interacting chains has been presented. With respect to two-dimensional adsorption, six19

different models to study non-interacting adsorbates have been discussed: (i) an exten-
sion to two dimensions of the exact thermodynamic functions obtained in one dimension;21

(ii) the Flory–Huggins’s approximation and its modification to address linear adsorbates;
(iii) the well-known Guggenheim–DiMarzio approximation; (iv) the fourth one is a new23

description of adsorption phenomena, based on Haldane’s fractional statistics; (v) the
fifth so-called Occupation Balance, based on the expansion of the reciprocal of the fugac-25

ity; and (vi) a simple semi-empirical model obtained by combining exact one-dimensional
calculations and Guggenheim–DiMarzio approach. In addition, the statistical thermo-27

dynamics of interacting polyatomics has been developed on a generalization in the spirit
of the Bragg–Williams and the quasi-chemical approximations. Comparison with MC29

simulations and experimental adsorption isotherms are used to test the accuracy and
reliability of the proposed models. Finally, applications to heterogeneous systems and31

multilayer adsorption are discussed.

Keywords: Adsorption; multisite occupancy; lattice-gas models; chain adsorption.33

1. Introduction

This review is concerned with the theoretical description of thermodynamic equi-35

librium of adlayers with the polyatomic components.

Adsorption is a relevant elementary phenomenon in interface and surface sci-37

ence with significant impact in technological applications. From the simplest case

of atoms or small molecules adsorbed on perfectly defined surfaces, such as Ar39

and N2 on graphite,1 or small adsorbates like O2, CO, CO2 and oligomers2–5 in

1
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molecular carbon or zeolites, polymer films,6, 7 the problem of elucidating the ad-1

sorption configurations, heats, entropy, phase behavior, and ordering has challenged

experimentalist and theoreticians for decades.3

It is known that various characteristics of the gas-solid system are important

in determining the equilibrium of the interface, namely, the surface atoms lattice,5

the geometrical disorder, chemical heterogeneities, the polar-nonpolar character of

the atom-surface interaction and the size and internal degrees of freedom of the7

adsorbate.

The relatively recent development of single-walled and multiwalled carbon nan-9

otubes8–12 and synthetic zeolites (AlPO4 − 5, SAPO − 5),13 along with their po-

tential technological application as unique reference systems, molecular sieves and11

storage systems, has raised new questions about the equilibrium and transport

properties of gases in low-dimensional adsorption potentials.13

Various studies have been carried out on conductivity, electronic structure and

mechanical strength of nanotubes. However, theoretical and experimental research15

focused in the interaction, equilibrium and dynamical properties of noble, simple

(H2, N2, O2, CO)14–32 and polyatomic (CO2, CH4, hydrocarbons) gases within17

nanotubes is relatively more scarse.33–50

From a fundamental point of view, it is expected that adlayers of linear and19

branched molecules will exhibit a rich phase behavior that is not possible in films

of spherical adsorbates. The ultimate behavior of adsorbed layers of polyatomic21

species will be strongly affected by quantities such as molecular size, aspect ratio,

possible orientation of the molecular axis with respect to the surface and flexibility.23

Although, many relevant studies of linear adsorbates on particular planar sur-

faces such as graphite have shed light on two-dimensional ordered phases,51–58 solid25

phases of the adsorbate with different orientation of the molecular axis with respect

to the surface,54–56, 59, 60 and two-dimensional melting mechanisms,60–69 there is27

still not well understood the complexity of the entropic/energetic balance arising

from the non-spherical character and various degrees of freedom of the adsorbate.29

Here we present a comprehensive description of recent advances in the theoret-

ical description of adsorption of structured particles on regular (usually referred as31

multisite occupancy adsorption) with emphasis in the role and effect of the par-

ticle size and structure on the configurational entropy of the adlayer; an aspect33

that almost none thermodynamic adsorption description has ever taken properly

and comprehensively into account. Insight into the entropic behavior of model poly-35

atomic systems is of major interest to understand the complex properties of alkanes

and hydrocarbons mixture adsorption with significant impact in petrochemical sep-37

aration technology. Analytical and lattice-like simulations result are reported and

compared as to disclose the degree of accuracy of the various formalisms. Peculiar39

critical properties of interacting linear species are addressed as well. When available,

comparison and interpretation of experimental results in the light of the described41

approximations are presented. The work is organized as follows: the thermody-
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namic functions for a one dimensional lattice-gas of interacting linear particles is1

addressed in Sec. 2. Section 3 is devoted to present the approximations for the ther-

modynamic functions of polyatomic model species in two dimensions, namely, an3

extension ansatz (EA) of the exact one-dimensional functions, the Flory–Huggins

(FG) and the modified Flory–Huggins (FGL) for linear species, the Guggenheim–5

DiMarzio (GD) approximation, the recently presented Fractional Statistical Theory

of Adsorption (FSTA) based on the Haldanes statistics conjecture; the Ocuppa-7

tion Balance (OB) approximation and the Semiempirical Adsorption Model (SE).

Comparison between analytical predictions and Monte-Carlo simulations are pre-9

sented and analyzed in this section. Two dimensional lattice gases of interacting

linear species in two dimensions are dealt with in section 4 through mean-field,11

quasi-chemical and Monte-Carlo techniques. Applications of the various theoretical

description to monolayer and multilayer adsorption of polyatomics are shown and13

discussed in Sec. 5. Conclusions are drawn in Sec. 6.

2. Exact Thermodynamic Functions in One Dimension15

2.1. Non-interacting k-mers

Let us assume a one-dimensional lattice of M sites with lattice constant a (M → ∞)17

where periodic boundary conditions apply. Under this condition all lattice sites are

equivalent hence border effects will not enter our derivation. From the experimental19

point of view, the adsorption potential within the narrowest nanotubes can be

matched to a homogeneous one-dimensional lattice of adsorption sites. It has also21

been reported the one-dimensional character of adsorption in grooves of surface

crystal planes of TiO2.
70

23

N linear k-mers (molecules containing k identical units) are adsorbed on the

lattice. The distance between k-mer units is assumed in registry with the lattice25

constant a; hence exactly k sites are occupied by a k-mer when adsorbed. Small ad-

sorbata with spherical symmetry would correspond to the monomers limit (k = 1).27

Double site occupancy is not allowed as to represent properties in the monolayer

regime. Since different k-mers do not interact each other through their ends, all con-29

figurations of N k-mers on M sites are equally probable; henceforth, the canonical

partition function Q(M, N, T ) results31

Q(M, N, T ) = Ω(M, N) exp(−βkU0N) (1)

where Ω(M, N) is the number of ways to arrange N k-mers on M sites; U0 is33

the interaction energy between every unit forming a k-mer and the substrate and

β = 1/kBT , being kB the Boltzmann constant [for simplicity, we have also assumed35

the internal and vibrational contributions to the partition factor to be a unitary

factor in Eq. (1)].37
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Ω(M, N) can be readily calculated as the total number of permutations of the

N indistinguishable k-mers out of ne entities, being ne
71

ne = number of k-mers+number of empty sites

= N + M − kN = M − (k − 1)N . (2)

Accordingly,1

Ω(M, N) =

(

ne

N

)

=
[M − (k − 1)N ]!

N ![M − kN ]!
(3)

(a particular solution for dimers was presented in Ref. 72).3

In the canonical ensemble the Helmholtz free energy F (M, N, T ) relates to

Ω(M, N) through5

βF (M, N, T ) = − lnQ(M, N, T ) = − lnΩ(M, N) + βkU0N . (4)

The remaining thermodynamic functions can be obtained from the general7

differential form73

dF = −SdT − ΠdM + µdN (5)9

where S, Π and µ designate the entropy, spreading pressure and chemical potential

respectively, which, by definition, are11

S = −
(

∂F

∂T

)

M,N

Π = −
(

∂F

∂M

)

T,N

µ =

(

∂F

∂N

)

T,M

. (6)

Thus, from Eqs. (3) and (4)13

βF (M, N, T ) = −{ln[M − (k − 1)N ]! − ln N ! − ln[M − kN ]!} + βkU0N (7)

which can be accurately written in terms of the Stirling approximation

βF (M, N, T ) = −[M − (k − 1)N ] ln[M − (k − 1)N ] + [M − (k − 1)N ]

+ [N ln N − N ] + [(M − kN) ln(M − kN)

− (M − kN)] + βkU0N

= −[M − (k − 1)N ] ln[M − (k − 1)N ] + N ln N

+ (M − kN) ln(M − kN) + βkU0N . (8)

Henceforth, from Eqs. (6) and (8)

S(M, N)

kB
= [M − (k − 1)N ] ln[M − (k − 1)N ] − N ln N

− (M − kN) ln(M − kN) (9)

βµ = ln
kN

M
+ (k − 1) ln

[

1 − (k − 1)
N

M

]

− k ln

[

1 − kN

M

]

+ βkU0 . (10)
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Then, by defining the lattice coverage θ = kN/M , molar free energy f = F/M and

molar entropy s = S/M , Eqs. (8)–(10) can be rewritten in terms of the intensive

variables θ and T .

βf(θ, T ) = −
{[

1 − (k − 1)

k
θ

]

ln

[

1 − (k − 1)

k
θ

]

− θ

k
ln

θ

k
− (1 − θ) ln(1 − θ)

}

+ βU0θ (11)

s(θ)

kB
=

[

1 − (k − 1)

k
θ

]

ln

[

1 − (k − 1)

k
θ

]

− θ

k
ln

θ

k
− (1 − θ) ln(1 − θ) (12)

Ck exp[β(µ − kU0)] =

θ

[

1 − (k − 1)

k
θ

]k−1

(1 − θ)k
(13)

where Ck = k.1

2.2. Interacting k-mers

Now, we address the general case of interacting adsorbata.74 Thus, two k-mers in-3

teract through their ends with an interaction energy that amounts w when the ends

are nearest-neighbors. Without any loss of generality, we assume the interaction en-5

ergy between a chain unit and a lattice site to be zero (U0 = 0). We can now think

of a mapping L → L′ from the original lattice L to an effective lattice L′ where7

each empty site of L transforms into an empty one of L′, while each set of k sites

occupied by a k-mer in L is represented by an occupied site in L′.75 Thus, the total9

number of sites in L′ is

M ′ = M − (k − 1)N (14)11

and the coverage of L′

θ′ = N/M ′ = (θ/k)

/[

1 − (k − 1)

k
θ

]

. (15)
13

The canonical partition functions Q(kN, M, T ), Q′(N, M ′, T ) in the original and

effective lattice must be equal. Thus,15

Q(kN, M, T ) =
∑

{X}

exp [−βE(X)] = Q′(N, M ′, T ) =
∑

{X′}

exp [−βE(X′)] (16)

where {X} and {X′} refer to a sum over all possible configurations in L and L′
17

respectively.
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Accordingly, the Helmholtz free energies per site in L and L′, f and f ′,

respectively, are related through

f(kN, M, T ) = − 1

βM
ln[Q(kN, M, T )]

= − 1

βM
ln[Q′(N, M ′, T )]

=
M ′

M
f ′(N, M ′, T )

f(kN, M, T ) =
M ′

M
f ′ =

{

1 −
[

(k − 1)

k
θ

]}

f ′(N, M ′, T ) . (17)

This relationship makes complete the mapping from the original problem of k-

mer adsorption on L to an effective Ising-like one (monomer adsorption) on L′. f ′

can then be written in terms of the probability y of having two nearest-neighbor

sites occupied in L′, by means of the cumulant variation method,73, 76 as

βf

(

N

M ′
, T

)

= βwy − [θ′ ln θ′ + (1 − θ′) ln(1 − θ′) − y ln y]

− [−2(θ′ − y) ln(θ′ − y) − (1 − 2θ′ − y) ln (1 − 2θ′ − y)] . (18)

For each set of values θ′, T , y is obtained by minimizing f ′. Thus,1

y = θ′ −
(

A

2

)

+

[

A2

4
− θ′(1 − θ′)A

]1/2

(19)

where A = [1− exp(−βw)]−1. In the infinite temperature limit βw → 0, A ≈ 1/βw3

and y ≈ θ′
2
+ O(βw), as expected for a totally random distribution of units on the

lattice. For infinitely repulsive interactions βw → ∞, A → 1 and y = 0 if θ′ ≤ 1/2.5

(i.e. no two nearest-neighbor occupied sites are present on the lattice), or y = 2θ′−1

if θ′ ≥ 1/2. For infinitely attractive interactions, βw → −∞, it yields y = θ′, as7

physically expected.

By using the relationship between θ′ and θ [from Eq. (15)] in Eq. (19), and

replacing Eq. (19) in Eq. (18), the exact form of f is obtained

βf(θ, T ) = βw

[

θ

k
− α

]

−
[

θ

k
ln

θ

k
+ (1 − θ) ln(1 − θ) − 2α ln α

]

−
{

−
[

θ

k
− α

]

ln

[

θ

k
− α

]

− (1− θ − α) ln (1 − θ − α)

}

(20)

where α is given by9

α =
2θ(1 − θ)

k

[

1 − (k − 1)

k
θ + b

] and b =

{

[

1 − (k − 1)

k
θ

]2

− 4

kA
(θ − θ2)

}1/2

. (21)
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All the equilibrium properties of the adlayer can be deducted from Eqs. (20)

and (5). Then the coverage dependence of the chemical potential and the entropy

per site s result

βµ = k

(

∂βf

∂θ

)

M,T

= βw + ln[k(b − 1 + θ) + θ] + (k − 1) ln

[

1 − (k − 1)

k
θ + b

]

+ (k − 1) ln k − ln[k(b + 1 − θ) − θ] (22)

s/kB = −
(

∂f

∂T

)

M,N

=
θ

k
ln

θ

k
+ (1 − θ) ln(1 − θ) − 2α ln α

−
[

θ

k
− α

]

ln

[

θ

k
− α

]

− (1 − θ − α) ln(1 − θ − α) (23)

and finally the specific heat at constant volume

cv/kB = −
(

∂2f

∂T 2

)

M,N

=
4θ2(1 − θ)

2

bk2

[

1 − (k − 1)

k
θ + b

]2 [βw]
2
exp [βw] . (24)

Equation (22) represent the exact form for the adsorption isotherm of interacting1

adsorbates (k-mers) in one dimension. For non-interacting adsorbates (w = 0),

Eq. (22) reduces to the rigorous isotherm of non-interacting chains [Eq. (13)].3

The coverage dependence of the chemical potential (adsorption isotherm), molar

entropy and specific heat are shown in Figs. 1–3 for various k-mer’s sizes and inter-5

action energies [attractive (w < 0) as well as repulsive (w > 0)]. MC simulations in
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Fig. 1. Lattice coverage θ versus relative chemical potential βµ for interacting (repulsive as well
attractive) dimers and 10-mers; (a) k = 2, βw = −10; (b) k = 2, βw = −2, (c) k = 2, βw = +10;
(d) k = 2, βw = +2; (e) k = 10, βw = +10; (f) k = 2, βw = 0. The symbols represent results from

Monte-Carlo Simulation in the lattice gas model with the parameters specified in the respective
case. The upper axis corresponds to βµ for the repulsive case (βw > 0).
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Fig. 2. Entropy per site, s(θ), versus lattice coverage, θ; the curves denoted (a) to (f), correspond

one-to-one to the cases displayed in Fig. 1.
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Fig. 3. Specific heat in units of kB (at constants volume) versus 4kBT/|w| at θ = 0.5.
(a) monomers (k = 1); (b) dimers (k = 2); (c) trimers (k = 3); (d) 10-mers (k = 10). The
cases (a) and (b) correspond to the left hand side axis and the cases (c) and (d) correspond to
the right hand side axis.

the grand canonical ensemble (shown in symbols) fully agree with the predictions1

from Eqs. (22)–(24).

The stronger the lateral interaction the more steeped the adsorption isotherm for3

attractive k-mers becomes. Qualitatively, no significant changes are observed as the

k-mer size increases. However, the curves have a pronounced plateau at θ = (k−1)/k5

for strongly repulsive interactions, which smoothes out for already βw = +2. This

type of isotherm has very recently been reported for Kr and CH4 adsorbed in7



2nd Reading
October 17, 2006 13:37 WSPC/140-IJMPB 03573

Adsorption of Polyatomics: Theoretical Approaches in Model Systems and Applications 9

AlPO4-5, where, very likely, the mistmatch between the equilibrium separation of1

the intermolecular interaction and the lattice constant along the nanochannels give

rises to repulsive interaction between NN molecules as assumed in our calculations.3

It is worth noticing that although the double-steep isotherm may be indicative of

a second order phase transition (as speculated in Ref. 77), they may be not for an5

adsorbate whose size is comparable to the nanotube diameter that behaves as a one-

dimensional confined fluid. It is well known that no phase transition develops in a7

one-dimensional lattice when weak coupling between neighboring particles exists.73

Since our model of adsorbed k-mers is isomorphous to a one-dimensional Ising model9

it will not present phase transition either. This is clearly seen in Fig. 3 where the

smooth dependence of the specific heat on temperature is depicted for various k-11

mers. More recently molecular simulations78, 79 of alkenes in AlPO4 − 5 have also

shown that a plateau in the adsorption isotherm arises along with a rearrangements13

of the adsorbate molecules within the channels. From isosteric heat of adsorption

calculations is concluded that the plateau is due to a net repulsive potential felt15

by molecules. As the coverage approachs the typical value θ ≈ 2/3 the molecules

rearrange within the channel to increase their ads-ads interaction; however, this17

forces the molecules to occupy new adsorption sites where their interaction with

the AlPO4−5 framework diminishes (become more repulsive) giving a net decrease19

of the isosteric heat of adsorption.

The general features of the coverage dependence of the entropy per site are21

shown in Fig. 2. The agreement between theory and MC simulation80, 81 is remark-

able for weak as well as strong lateral interactions regarding the intrinsic difficulties23

of entropy calculation for polyatomic species at low temperatures. For attractive

interactions s is symmetrical with a maximun at θ = 0.5 for interacting as well as25

for non-interacting monomers (k = 1). For interacting k-mers (k > 1) the max-

imun shifts to higher coverages (θ > 0.5). However, given a ratio βw ≤ 0 the27

maximun shift to higher coverages such a way that the larger k the more apart

the maximun gets from θ = 0.5. This result differs from the one-dimensional limit29

of non-interacting k-mers (βw = 0) in the Flory–Huggins’s approximation73, 82–86

for which the maximun of s shifts to lower coverages as k increases. Given a k-mer31

size the stronger the interaction the smaller the shift of the maximun from θ = 0.5.

For repulsive interactions, the entropy develops a local minimum at θ ≥ 0.5, which33

gets sharper as the ratio βw increases and shifts to higher coverages as the k-mer

size increases. In all cases the minimum traces to a non-degenerate ground state35

where k-mers structure is an ordered sequence leaving one empty site between

nearest-neighbor particles. None of the minima correspond to a second order phase37

transition as expected for particles with short-ranged interactions in one dimension.

The specific heat, from Eq. (24), is compared with MC simulations at θ = 0.539

(see Fig. 3). A continuum variation of cv/kB on T is observed with a maximun that

lowers and broadens as the k-mers size increases; accordingly no phase transition41

develops as expected.



2nd Reading
October 17, 2006 13:37 WSPC/140-IJMPB 03573

10 J. L. Riccardo, F. J. Romá & A. J. Ramirez-Pastor

3. Two-Dimensional Lattice Gas of Non-Interacting Polyatomics1

The model is the same as in Sec. 2.1, except that the sites form a two-dimensional

array instead of a one-dimensional lattice. Accordingly, the adsorbate molecules3

are assumed to be arranged in two type of configurations: (i) as a linear array of

monomers, which we call “linear k-mer”a; and (ii) as a chain of adjacent monomers5

with the following sequence: once the first monomer is in place, the second monomer

occupies one of the γ nearest-neighbor of the first monomer. Third and successive7

monomers occupy one of the γ − 1 nearest-neighbors of the preceding monomer.

This process continues until k monomers are placed without creating an overlap.9

We call this feature “flexible k-mer”.

From an analytical point of view, the problem in which a two-dimensional lat-11

tice contains isolated lattice points (vacancies) as well as k-mers has not been

solved in closed form and approximated methods have been utilized to study this13

problem. Six of these methods are described in the present section: (i) the first

(EA) is an extension to 2-D of the exact partition function obtained in 1-D;71, 87, 8815

(ii) the second is a virial expansion (V E);88 (ii) the second is the Flory–Huggins’s

approximation (FH) and its modification to address linear adsorbates (FHL);82–86
17

(iii) the third is the well-known Guggenheim–DiMarzio approximation (GD);89, 90

(iv) the fourth is a new theoretical description of adsorption phenomena (FSTA),19

which is based on Haldane’s fractional statistics;91, 92 (v) the fifth, which we called

Occupation Balance (OB), is based on the expansion of the reciprocal of the fu-21

gacity;80, 81, 88 and (vi) the sixth is a simple semi-empirical adsorption model for

polyatomics (SE), which is obtained by combining exact one-dimensional calcula-23

tions and GD.93

3.1. Exact thermodynamic functions in one dimension and25

extension to higher dimensions (EA)

We address the calculation of approximated thermodynamical functions of chains27

adsorbed on lattices with connectivity γ higher than 2 (i.e. dimensions higher than

one).29

In general, the number of configurations of N k-mers on M sites, Ω(M, N, γ),

depends on the lattice connectivity γ · Ω(M, N, γ) can be approximated consider-31

ing that the molecules are distributed completely at random on the lattice, and

aThe concept of linear k-mer is trivial for square and triangular lattices. However, in a honeycomb
lattice, the geometry does not allow the existence of a linear array of monomers with k ≥ 2. In this
case, we call linear k-mer to a chain of adjacent monomers with the following sequence: once the
first monomer is in place, the second monomer occupies one of the three nearest-neighbors of the
first monomer. Third monomer occupies one of the two nearest-neighbors of the second monomer.
i-esime monomer (for i ≥ 4) occupies one of the two nearest-neighbors of the preceding monomer,
which maximizes the distance between first monomer and i-esime monomer. Then, once a site is
chosen, there exists six equilibrium states available to a single k-mer (k ≥ 2) on a honeycomb
lattice at infinitely low density.
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assuming the arguments given by different authors73, 82, 83, 94–97 to relate the con-1

figurational factor Ω(M, N, γ) for any γ with respect to the same quantity in one

dimension (γ = 2). Thus3

Ω(M, N, γ) = K(γ, k)NΩ(M, N, 2) (25)

where Ω(M, N, 2) can be readily calculated from Eq. (3) and K(γ, k) represents the5

number of available configurations (per lattice site) for a k-mer at zero coverage.

K(γ, k) is, in general, a function of the connectivity and the size/shape of the7

adsorbate. It is easy demonstrate that,

K(γ, k) =

{

γ/2 for linear k-mers

[γ(γ − 1)(k−2)]/2 − m′ for flexible k-mers
(26)

9

the term m′ is subtracted in Eq. (26) since the first term overestimates K(γ, k) by

including m′ configurations providing overlaps in the k-mer.11

In this way, the entropy s and the adsorption isotherm corresponding to an

adsorbed molecule/surface geometry result,

s(θ, γ)

kB
=

[

1 − (k − 1)

k
θ

]

ln

[

1 − (k − 1)

k
θ

]

− θ

k
ln

θ

k
− (1 − θ) ln (1 − θ)

+
θ

k
ln K(γ, k) (27)

kK(γ, k) exp [β (µ − kU0)] =

θ

[

1 − (k − 1)

k
θ

]k−1

(1 − θ)
k

. (28)
13

Equations (26)–(28) provide the basic thermodynamic functions for non-

interacting polyatomics in lattices with general connectivity γ.15

3.2. Flory Huggins’s approximation for flexible (FH) and linear

(FHL) adsorbates17

The theory to be presented here, due to Flory82, 83 and Huggins,84–86 is a general-

ization of the lattice-gas theory of binary solutions,73 but in this case, as a solvent19

molecule occupies only one site in the lattice, the polymer molecule occupies k sites.

We calculate first the number Ω(N1, N2) of possible configurations of N2 poly-21

mers and N1 molecules of a monoatomic solvent on a lattice with M sites and

connectivity γ · Ω(N1, N2) is just equal to the number of ways of arranging N223

polymer molecules on M sites, for after we place the polymer molecules in the orig-

inally empty lattice, there is only one way to place the solvent molecules (i.e. we25

simply fill up all the remaining unoccupied sites). Imagine that we label the poly-

mer molecules from 1 to N2 and introduce them one at a time, in order, into the27

lattice. Let wi be the number of ways of putting the i-th polymer molecule into the
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lattice with i − 1 molecules already there (assumed to be arranged in an average,1

random distribution). Then the approximation to Ω(N1, N2) which we use is

Ω(N1, N2) =
1

N2!

N2
∏

i=1

wi (29)
3

The factor (N2!)
−1 is inserted because we have treated the molecules as distin-

guishable in the product, whereas they are actually indistinguishable.5

Next, we derive an expression for wi−1. With i polymer molecules already in

the lattice, the fraction of sites filled is θi = ki/M . The first unit of the (i + 1)th

molecule can be placed in any one of the M − ki vacant sites. The first unit has γ

nearest neighbor sites, of which γ(1−θi) are empty (random distribution assumed).

Therefore the number of possible locations for the second unit is γ(1−θi). Similarly,

the third unit can go in (γ − 1)(1 − θi) different places. At this point we make the

approximation that units 4, 5, . . . , k also each have (γ − 1)(1 − θi) possibilities,

though this is not quite correct. Multiplying all of these factors together, we have

for wi+1,

wi+1 = (M − ki)γ(γ − 1)k−2(1 − θi)
k−1

= (M − ki)k

(

γ − 1

M

)k−1

(30)

where we replaced γ by γ − 1 as a further approximation.

Now we will need7

ln

N2
∏

i=1

wi = N2(k − 1) ln

(

γ − 1

M

)

+ k

N2−1
∑

i=0

ln(M − ki) . (31)

We approximate the sum by an integral:

∑

≈
∫ N2

0

ln(M − ki)di =
1

k

∫ M

N1

ln udu

=
1

k
(M ln M − M − N1 ln N1 + N1) . (32)

From Eqs. (29)–(32), we find

ln Ω(N1, N2) = −N2 ln N2 + N2 − N1 ln N1 + N1 + M ln M − M

+ N2(k − 1) ln

[

(γ − 1)

M

]

. (33)

All results presented here can be straightforwardly applied to the corresponding9

k-mers adsorption problem, with N2 ≡ N (number of k-mers) and N1 ≡ M − kN

(number of empty sites). Then, by rewriting Ω(N1, N2) in terms of θ ≡ kN/M , and11

by using Eqs. (4), (6) and (8), we get,

s(θ, γ)

kB
= − θ

k
ln

θ

k
− (1 − θ) ln (1 − θ) +

(

k − 1

k

)

θ ln

(

γ − 1

e

)

(34)
13
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exp[β(µ − kU0)] =
θ

k(γ − 1)k−1(1 − θ)k
. (35)

1

The last equation is the classical adsorption isotherm in the framework of the

Flory–Huggins’s approximation, which was developed for flexible polymers. In the3

following, we will introduce appropriate modifications in the formalism, in order to

obtain the adsorption isotherm corresponding to linear k-mers. In this case,5

wi+1 =
γ

2
(M − ki)k

(

1

M

)k−1

(36)

where two modifications have been included with respect to Eq. (30): (i) the number

of possible locations for the third and successive units is (1−θi), instead of γ(1−θi),

as it was considered for flexible k-mers, and (ii) a factor 1/2 is inserted because

we have treated the extremes of the k-mers as distinguishable, whereas they are

actually indistinguishable. Under these considerations, the desired Flory–Huggins

thermodynamic functions of linear k-mers results

s(θ, γ)

kB
= − θ

k
ln

θ

k
− (1 − θ) ln (1 − θ) −

(

k − 1

k

)

θ − θ

k
ln
(γ

2

)

(37)

× exp [β(µ − kU0)] =
2θ

kγ(1 − θ)k
. (38)

The validity of the last equation is restricted to the range k ≥ 2. Note that7

Eq. (38) does not reproduce the Langmuir isotherm for monomers.73

3.3. Guggenheim Di Marzio approximation (GD)9

In 1944, Guggenheim proposed an interesting method to calculate the combinatory

term in the canonical partition function.89 Later, in a valuable contribution, Di-11

Marzio obtained the Guggenheim’s factor for a model of rigid rod molecules.90 In

this section we reproduce the calculations developed by DiMarzio, who obtained13

the number of ways to pack rigid rods onto a cubic lattice and its generalization to

lattices of connectivity γ.15

Let us place N straight rigid rods (linear k-mers) onto a cubic lattice. We will

assume that only the three mutually perpendicular base vector directions in which17

the rigid rods lie. The number of molecules that lie in the direction i will be denoted

by Ni(i = 1, 2, 3). We ask for the number of ways, Ω({· · ·Ni · · ·}, N0) to pack the19

N molecules such that Ni of them lie in the direction i and there are N0 holes. The

advantage of allowing only those orientations for which the molecules fit exactly21

onto the lattice is that for the case of an isotropic distribution the value of Ω

reduces to the value obtained previously by Guggenheim.8923

Let us place N1 molecules, one at a time, onto the lattice in orientation 1, and

then the N2 molecules, one at a time, in orientation 2 and then place the remaining25

N3 molecules, one at a time, in orientation 3. In order to estimate the number of

ways to place the (j1 + 1)th molecule onto the lattice, given that j1 molecules have27
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already been placed, we must know the probability that k contiguous sites lying in1

this orientation are empty. Here the subscript reminds us that we are discussing type

1 molecules. Consider a contiguous pair of sites arbitrarily chosen except for the fact3

that the line determined by the centers of these sites lies along orientation 1. Label

the sites A and B. Site A has a probability of being empty equal to the fraction of5

sites that are unoccupied by molecular segments since site A can be thought of as

chosen arbitrarily. If site A is empty, the ratio of the number of times it adjoins a7

polymer to the number of times it adjoins a vacant site is 2j1/2(M−kj1), where M

is the total number of sites in the lattice. Notice that in writing this expression for9

the ratio we counted only those pairs of contiguous sites which lie along orientation

1. The pairs which lie along orientations 2 and 3 are of no consequence as far as11

the nearest-neighbor statistics along orientation 1 are concerned.

The above ratio is also the ratio of the number of times a polymer adjoins site13

A (presumed empty) to the number of times a vacant site adjoins site A. Thus the

probability that site B is empty given that site A is empty is15

2(M − kj1)

2(M + kj1) + 2j1
. (39)

We see that νj1+1, the number of ways to place the (j1 + 1)th molecule onto the17

lattice, is

νj1+1 = (M − kj1)

[

2(M − kj1)

2(M + kj1) + 2j1

]k−1

. (40)
19

The total number of ways to place N1 indistinguishable molecules onto the lattice

in this orientation is21

∏N1−1
j1=0 νj1+1

(N1)!
=

M ! (M − kN1 + N1)!

(M − kN1)!M ! (N1)!
=

(M − kN1 + N1)!

(M − kN1)! (N1)!
. (41)

Note that this result so far is equal to the exact number. That is to say, the number23

of ways to pack the molecules is the number of ways to arrange N1 linear molecules

and N0 holes on a linear lattice [see Eq. (3)].25

In order to count the number of ways to pack the N2 molecules in the second

orientation, given that we have already placed the N1 molecules, we need to know27

the statistics for those pairs of neighboring sites whose centers are connected by

a line in this direction. The number of these kind of nearest-neighbors to polymer29

molecules is 2kN1 + 2j2 where j2 is the number of polymer molecules in the second

orientation and the number of these kind of nearest-neighbors to holes is 2M −31

(2kN1 + 2kj2).

The first segment of the (j2 + 1)th molecule can go into the lattice in (M −33

kN1−kN2) places. The expectancy that a site is unoccupied when it is known that

the adjacent site in the direction in which the molecules lies is unoccupied is35

2(M − kN1 − kj2)

2(M − kN1 − kj2) + 2(kN1 + j2)
. (42)
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We therefore have for νj2+11

νj2+1 = (M − kN1 − kj2)

[

(M − kN1 − kj2)

(M − kN1 − kj2) + (kN1 + j2)

]k−1

. (43)

The total number of ways to pack these indistinguishable molecules is3

∏N2−1
j2=0 νj2+1

(N2)!
=

(M − kN1)! (M − kN2 + N2)!

(M − kN1 − kN2)!M ! (N2)!
. (44)

By an exactly analogous reasoning process we obtain for νj3+1,

νj3+1 = (M − kN1 − kN2 − kj3)

×
[

(M − kN1 − kN2 − kj3)

(M − kN1 − kN2 − kj3) + (kN1 + kN2 + j3)

]k−1

, (45)

∏N3−1
j3=0 νj3+1

(N3)!
=

(M − kN1 − kN2)! (M − kN3 + N3)!

(M − kN1 − kN2 − kN3)!M ! (N3)!
. (46)

5

The product obtained from Eqs. (41), (44) and (46) gives the total number of ways

to pack the molecules

Ω(N0, N1, N2, N3) =
(M − kN1 + N1)!

(M − kN1)!(N1)!

(M − kN1)!(M − kN2 + N2)!

(M − kN1 − kN2)!M !(N2)!

× (M − kN1 − kN2)!(M − kN3 + N3)!

(M − kN1 − kN2 − kN3)!M !(N3)!

=

∏3
j=1[M − (k − 1)Ni]!

(N0)!
∏3

i=1(Ni)!(M !)2
. (47)

As remarked before, this expression is exact when all the molecules are in one

direction. Eq. (47) has the proper symmetry requirements. It is invariant under the7

permutation of the Ni. For the case N1 = N2 = N3 = N/3 we obtain

Ω =
{[N0 + (2kN/3) + (N/3)]!}3

N0![(N/3)!]3(M !)2
. (48)

9

Equation (47) can be generalized for a lattice of connectivity γ. If ones uses a

mole fraction for molecules that are parallel to one another and a volume fraction11

for molecules that are perpendicular (it is assumed that the base vectors of the new

space are orthogonal) then the appropriate generalization of Eq. (47) is13

Ω(N0, {Ni}) =

∏γ/2
i=1[M − (k − 1)Ni]!

(N0)!
∏γ/2

i=1(Ni)!(M !)γ/2−1
, (49)

where γ/2 is the dimensionality of the space. Again, if we allow Ni = (2/γ)N (and15

N0 = M − kN) then Eq. (47) reduces to the well-known Guggenheim’s factor

Ω(M, N, γ) =
(γ

2

)N M !

N !(M − kN)!

[{M − kN + [(γ − 2)k + 2]N}!
M !

]γ/2

. (50)
17
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By operating as in previous sections, configurational entropy per site and

adsorption isotherm can be obtained from Eq. (50)

s(θ, γ)

kB
=

[

γ

2
− (k − 1)

k
θ

]

ln

[

γ

2
− (k − 1)

k
θ

]

− θ

k
ln

θ

k

−(1 − θ) ln(1 − θ) +
(

θ − γ

2

)

ln
γ

2
(51)

k
γ

2
exp[β(µ − kU0)] =

θ

[

1 − (k − 1)

k

2θ

γ

]k−1

(1 − θ)k
. (52)

1

3.4. Fractional statistics thermodynamic theory of adsorption of

polyatomics (FSTA)3

We present the basis of the phenomenological fractional statistic thermodynamic

theory of adsorption of polyatomics91, 92 from a novel conceptual framework in-5

spired in the formalism of the recently developed Haldane’s Statistics,98, 99 on a

generalization of the Pauli’s Principle. For the sake of simplicity we contrive our7

formulation to adsorption in a homogeneous adsorption field. FSTA is based in

the following conceptual framework: the interaction of one isolated molecule with9

a solid surface can be represented by an adsorption fieldb having a total number

G of local minima in the space of coordinates necessary to define the adsorption11

configuration (we can think of G being the total number of a equilibrium states for

a single molecule).13

Depending on the typical size of the particle in the adsorbed state and on

the adsorption configuration, some states out of G are prevented from being fur-15

ther occupied upon adsorption of a molecule. We characterize the mean number of

states excluded per molecule upon adsorption by the quantity g, being a measure17

of the “statistical interactions” as it will be shown latter. The parameter g (or

better the function g in general) is the fundamental phenomenological parameter19

of the theory that turns to have a precise physical meaning in either lattice and

off-lattice systems; it can be obtained from thermodynamic experiments and relates21

straightforwardly to the configurational state of the adsorbed particle. Essentially,

the configurational entropy of the system will be characterized by the parameter g23

making either the statistical as well as the thermodynamic properties of complex

adsorbed polyatomics much simpler and understandable. Because of possible con-25

current exclusion of states by two or more particles g depends in general on the

density. Thus, g ≡ g(N) in general.27

bThis adsorption field is usually represented by a lattice of adsorption sites although in the case
of particles or molecules composed by more than one elementary unit there is not a one-to-one
correspondence between an equilibrium state and a lattice as will be made clear later.
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Let us assume (N − 1) identical particles within a fixed volume V containig G1

equilibrium states. The number of states available to the Nth particle when added

to the volume is983

dN = G −
N−1
∑

N ′=1

g(N ′) = G − G0(N) . (53)

This is basically the definition proposed by Haldane98 as a generalization of5

Pauli’s Exclusion Principle, from which the Haldane’s Statistics follows (so called

Quantum Fractional Statistics). Accordingly, we propose to describe the general7

class of physical system addressed here by means of a generalized statistics with

g(N) ≥ 1 for which the number of configurations of a system of N molecules and9

G states is

W (N) =
(dN + N − 1)!

[N !(dN − 1)!]
=

[G − G0(N) + N − 1]!

{N ![G − G0(N) − 1]!} . (54)
11

It is clear that, for particles that exclude only one state g(N) = 1 and G0(N) =

(N − 1) ∀N , and W (N) reduces to the one expected for fermion-like particles,13

W (N) = G!/[N !(G − N)!]. On the other hand, no exclusion at all, i.e. g(N) = 0

∀N , the boson-like form of W (N), W (N) = (G+N −1)!/[N !(G−N)!] is recovered.15

In general, configurational entropy per site and adsorption isotherm of non-

interacting adsorbed polyatomics can be obtained from Eq. (54)

s(n, γ)

kB
= − n

ak
ln n +

1

ak
[1 − G̃0(n) + n] ln[1 − G̃0(n) + n]

− 1

ak
[1 − G̃0(n)] ln[1 − G̃0(n)] (55)

exp[β(µ − kU0)] =
n[1 − G̃0(n) + n](G̃

′

0
−1)

[1 − G̃0(n)]G̃
′

0

(56)

where n = N/G is the density (n finite as N , G → ∞), which is proportional17

to the standard surface coverage θ, n = aθ, θ being either the ratio N/Nm or

the ratio v/vm, where N (v) is the number of admolecules (adsorbed amount) at19

given µ, T and Nm (vm) is the one corresponding to monolayer completion. In

addition, G̃0(n) ≡ limN,G→∞ G0(N)/G and G̃′
0 ≡ dG̃0/dn. Hereafter we examine21

the simplest approximation within FSTA, namely g =constant,c which is rather

robust as it will be shown below. Considering that G̃0 = gn and G̃′
0 = g, a particular23

isotherm function arises from Eq. (56)

exp[βµ] =
aθ[1 − aθ(g − 1)]g−1

[1 − aθg]g
. (57)

25

cIt is worth to note that in general adsorbed molecules may adopt different configurations as
the density increases. In this case the values obtained for g from experiments will depend on the
pressure range analyzed, according to the general form of Eq. (56). In turn, a relates to the low
density limit θ → 0, βµ ≈ lnaθ.
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Equation (57) has well-known adsorption isotherms as limiting cases. Namely, for1

spherical particles (or single-site occupation in the lattice fashion of the adsorption

field) which exclude only one state (one minimum), g = 1 and Eq. (57) corre-3

sponds to the Langmuir isotherm.73 On the other hand, it can be demonstrated

that Eq. (57) reduces to the rigorous isotherm of non-interacting chains adsorbed5

flat on a one-dimensional lattice [see Eq. (3)] if g equals the number of chain units

(size) k. This is already a simple example of the underlaying relationship between7

the statistical exclusion parameter g and the spatial configuration of the admolecule.

Finally, we shortly mention some examples out of a whole variety of adsorption9

configurations that the proposed formalism allows to deal with. Let us consider ad-

particles composed by k elementary units in which k′ out of k units of the molecule11

are attached to surface sites and (k − k′) units are detached and tilted away from

them. For a lattice of M sites, θ = k′N/M . Thus, for a molecule with k units,13

each of which occupying an adsorption site, k′ = k and G = Mm, where m is the

number of distinguishable configurations of the molecule per lattice site (at zero15

density) and depends on the lattice/molecule geometry. Then 1/a = k′m. For in-

stance, straight k-mers adsorbed flat on sites of a square lattice would correspond17

to m = 2, g = 2k and a = 1/(2k). On the other hand, m = 1, g = 1 and a = 1

represents the case of end-on (normal to the surface) adsorption of k-mers. Instead,19

m = 1, g = k′ and a = 1/k′ represents an adsorption configuration in which k′

units of the k-mer are attached to a one-dimensional lattice and (k − k′) units at21

the ends are detached.

3.5. Occupation balance approximation (OB)23

As it is well known, the mean number of particles in the adlayer N̄ and the chemical

potential µ are related through the following general relationship in the grand25

canonical ensemble

N̄ = λ

[

∂ ln Ξ(M, λ)

∂λ

]

M

(58)
27

where λ = exp(βµ) and Ξ is the grand partition function. By solving λ−1 from

Eq. (58)29

λ−1 =
1

N̄

[

∂ ln Ξ(M, λ)

∂λ

]

M

=
R̄(M, λ)

N̄
(59)

where the quantity R̄(M, λ) can be proven to be the mean number of states available31

to a particle on M sites at λ. If Yt(M, N) and Ri(M, N) denote, the total number

of configurations of N distinguishable particles on M sites, and the number of33

states available to the (N +1)th particle in the ith configuration [out of Yt(M, N)],

respectively, then35

Yt(M, N + 1) =

Yt(M,N)
∑

i=1

Ri(M, N) . (60)
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The total number of configurations of (N + 1) indistinguishable particles on M

sites, Gt(M, N + 1) can be obtained from Eq. (60).

Gt(M, N + 1) =
Yt(M, N + 1)

(N + 1)!
=

∑Yt(M,N)
i=1 Ri(M, N)

(N + 1)!

=
N !

(N + 1)!

Gt(M,N)
∑

i=1

Ri(M, N) =
1

N + 1

Gt(M,N)
∑

i=1

Ri(M, N) . (61)

In the last arguments, we consider that for each configuration of N indistinguishable1

particles there exist N ! configurations of N distinguishable particles.

The average of Ri(M, N) over a grand canonical ensemble is

R̄(M, λ) = 〈Ri(M, N)〉 =
1

Ξ

Nm
∑

N=0

{

λN
Gt
∑

i=1

Ri(M, N)

}

=
1

Ξ

Nm−1
∑

N=0

(N + 1)λNGt(M, N + 1)

=
λ−1

Ξ

Nm
∑

N ′=1

λN ′

N ′Gt(M, N ′) =
N̄

λ
(62)

as already advanced in Eq. (59). N ′ = N + 1, Nm being the maximum number of3

particles that fit in the lattice, and Ri(M, Nm) = 0.

The advantage of using Eq. (59) to calculate the coverage dependence of the5

fugacity λ can be seen by dealing with adsorption of dimers in the monolayer

regime. R̄[M, λ(N̄)] = R̄(M, N̄) for dimers (occupying two nearest neighbor lattice7

sites) is, at first orderd, R̄(M, N̄) ≈ γM/2 − (2γ − 1)N̄ , where the second terms

account for the mean number of states excluded by the adsorbed dimers on a lattice9

with connectivity γ. Thus,

lim
M→∞

λ−1 ≈ lim
M→∞

γM/2− (2γ − 1)N̄

N̄
=

γ

θ
− (2γ − 1) (63)

11

where limM→∞ 2N̄/M = θ.

The term (2γ − 1) overestimates the number of excluded states because of si-13

multaneous exclusion of neighboring particles. Then, the approximation can be

further refined by considering the mean number of states that are simultaneously15

excluded by N̄ dimers, L̄(M, N̄). It is possible to demonstrate that, in general,

R̄(M, N̄) = γM/2− (2γ − 1)N̄ + L̄(M, N̄) for linear k-mers.17

dIf it is assumed that each dimer is independent from the neighboring ones, each dimer excludes
(2γ − 1) states out of total γM/2
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For dimers, L̄(M, N̄) is the average number of occupied nearest-neighbor. Due1

to it is not possible to obtain exacts solutions for L̄(M, N̄), we approximate

L̄(M, N̄) ≈ N̄
(

N̄ − 1
)

2
L̄(M, 2) (64)3

where N̄(N̄ − 1)/2 is the number of possible pairs for N̄ indistinguishable particles.

Considering a system of two adsorbed dimers on a square lattice (γ = 4), we5

can write

L̄(M, 2) =
g1(M, 2) + 2g2(M, 2)

Gt(M, 2)
=

18

(2M − 7)
(65)

7

where Gt(M, 2) = M(2M − 7). In addition, g1(M, 2) = 14M and g2(M, 2) = 2M ,

are the number of states with one and two occupied nearest-neighbor. Finally, we

can write

lim
M→∞

λ−1 = lim
M→∞

2M − 7N̄ + L̄(M, N̄)

N̄

≈ lim
M→∞

1

N̄

[

2M − 7N̄ +
9N̄(N̄ − 1)

(2M + 7)

]

≈ 4

θ
− 7 +

9

4
θ + O(θ2) . (66)

Finally, by considering that the terms neglected in Eq. (66) are O(θ2), it becomes

λ−1 =
4

θ
− 7 +

9

4
θ + aθ2 (square lattice) (67)9

and the constant a = 3/4 can be determined from the limiting condition λ → ∞
for θ → 1. Similarly,

λ−1 =
3

θ
− 5 +

4

3
θ +

2

3
θ2 (honeycomb lattice) (68)

λ−1 =
6

θ
− 11 +

23

6
θ +

7

6
θ2 (triangular lattice) . (69)

The entropy per lattice site can be evaluated in the limit T → ∞ as follows

µ

kBT
= ln λ = − 1

kB
lim

M,T→∞

[

∂S(M, N, T )

∂N

]

M,T

= − 2

kB

[

ds(θ)

dθ

]

(70)
11

then

s(θ)

kB
= −1

2

∫ θ

0

ln λ(θ′)dθ′ . (71)
13

From Eqs. (67)–(69) and (71) we obtain

s(θ)

kB
=

θ

2
[ln C − ln θ − 2] − (1 − θ)

2
ln(1 − θ) − (A − θ)

2
ln(A − θ)

+
(B + θ)

2
ln(B + θ) +

A

2
ln A − B

2
ln B (72)
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where A = 2(
√

7/3− 1), (3/2)(
√

3 − 1) and (15/7)(
√

53/5 − 1); C = 3/4, 2/3 and1

7/6; B = 2(
√

7/3+1), (3/2)(
√

3+1) and (15/7)(
√

53/5+1) for square, honeycomb

and triangular lattices, respectively.3

3.6. Semi-empirical adsorption model for polyatomics (SE)

In this section, we propose an approximation of the adsorption isotherm for non-5

interacting k-mers on a regular lattice, based on semi-empirical arguments, which

leads to very accurate results.7

We start from Eq. (59), which is called Occupation Balance, and approximate

R by using a variant of the method developed by Flory to obtain Ω(N1, N2) as a9

function of the wi’s [Eq. (29)]. Thus, R(M, λ), can be written as,

R =
(γ

2
M
)

k
∏

i=1

Pi . (73)
11

Equation (73) can be interpreted as follows. The term between parentheses cor-

responds to the total number of linear k-uples on the surface. These k-uples can13

be separated in three groups: full k-uples (occupied by k-mers), empty k-uples

(available for adsorption) and frustrated k-uples (partially occupied or occupied by15

segments belonging to different adsorbed k-mers). Then, an additional factor must

be incorporated, which takes into account the probability of having a empty k-uple.17

We suppose that this factor can be written as a product of k functions (Pi’s), being

Pi the conditional probability of finding the i-th empty site into the lattice with19

i−1 already vacant sites (the i sites are assumed to be arranged in a linear k-uple).

In the particular case of i = 1,21

P1 = 1 − θ , (74)

which represents an exact result.23

Now, let us consider the simplest approximation within this scheme, namely,

Pi = P1 for all i. Then, from Eqs. (59)–(74) result,25

λ−1 =
R

N̄
=

γk

2

M

kN̄
P1

k =
γk(1 − θ)k

2θ
. (75)

Equation (75) reduces to the FHL isotherm of non-interacting linear k-mers ad-27

sorbed flat on homogeneous surfaces. This is already a simple example out of a

whole variety of multisite adsorption models that the proposed formalism allows to29

deal with.

In general, the Pi’s can be written as31

Pi = (1 − θ)Ci , (76)

where a correction factor, Ci, has been included (being C1 = 1 and Ci → 1 as33

θ → 0). From Eqs. (73)–(76), we obtain

R =
γ

2
M(1− θ)k

k
∏

i=2

Ci =
γ

2
M(1 − θ)kC̃k−1 (77)

35
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and1

C̃ =

(

k
∏

i=2

Ci

)

1

k−1

(78)

being C̃ the average correction function, which is calculated as the geometrical3

mean of the Ci’s. Then, from Eqs. (59) and (77), the general form of the adsorption

isotherm of linear k-mers can be obtained:5

λ−1 =
γk(1− θ)kC̃k−1

2θ
(79)

or7

β(µ − kU0) = ln

(

θ

k

)

− k ln(1 − θ) ln
(γ

2

)

(k − 1) ln−C̃ . (80)

It is interesting to compare Eq. (80), obtained in the framework of the OB for-

malism, with the corresponding ones from the main theories of adsorption of linear

polyatomics described in previous sections. For this purpose, we rewrite Eqs. (28),

(35), (38), (52) and (25) in a convenient form

β(µ − kU0) = ln

(

θ

k

)

− k ln(1 − θ) − ln
(γ

2

)

+ (k − 1) ln

[

1 − (k − 1)θ

k

]

EA (81)

β(µ − kU0) = ln

(

θ

k

)

− k ln(1 − θ) − ln
(γ

2

)

FHL (k ≥ 2) (82)

β(µ − kU0) = ln

(

θ

k

)

− k ln (1 − θ) − ln
(γ

2

)

+ (k − 1) ln

[

1 − (k − 1)

k

2θ

γ

]

GD (83)

β(µ − kU0) = ln

(

θ

k

)

− kγ

2
ln(1 − θ) ln

(γ

2

)

+

(

k − γ

2
− 1

)

ln

[

1 − θ
(kγ − 2)

kγ

]

FSTA . (84)

As it can be observed, EA, FHL and GD have already the structure of Eq. (80).9

In the case of FSTA (and its simplest approximation to linear k-mers), an iden-

tical structure can be obtained after simple algebraic operations. From this new11

perspective, the differences between the theoretical models arise from the distinct

strategies of approximating C̃. These arguments can be better understood with13

an example: EA and GD provide the exact solution for the one-dimensional case.
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Then, the comparison between Eq. (80) and the adsorption isotherm from EA (or1

GD with γ = 2) allows us to obtain:

C̃−1 = 1 − k − 1

k
θ (γ = 2) . (85)3

The result in Eq. (85) is exact. Moreover, it can be demonstrated that Ci = C̃ for

all i.905

On the other hand, previous work93, 100 (comparisons between theoretical mod-

els and simulation results in two-dimensional systems) shown that GD fits very

well the numerical data at low coverage, while EA behaves excellently at high cov-

erage. Once the equations are written as in Eqs. (81) and (83), it is clear that the

differences between EA and GD can be only associated to the average correction

function C̃. These findings, along with the structure proposed for the adsorption

isotherm [Eq. (80)], allow us to build a new semi-empirical adsorption isotherm for

polyatomics (SE),

β (µ − kU0) = ln

(

θ

k

)

− k ln (1 − θ) ln
(γ

2

)

+ (1 − θ)(k − 1) ln

[

1 − (k − 1)

k

2θ

γ

]

+ θ(k − 1) ln

[

1 − (k − 1)θ

k

]

. (86)

The last equation can be interpreted as follows. First line includes three terms,

which are identical in both EA and GD. Second and third lines represent a com-7

bination of the average correction functions corresponding to GD and EA, with

(1 − θ) and θ as weights, respectively. The behavior of SE will be discussed in the9

next section, in comparison with MC simulation results.

3.7. Comparison between theory and Monte-Carlo simulations11

We shall discuss some basic characteristics of the adsorption isotherms. For this

purpose, Fig. 4 shows a comparison between the exact adsorption isotherm of13

monomers and the simulation adsorption isotherms of dimers on honeycomb, square

and triangular lattices. As it can be observed, the symmetry particle-vacancy, valid15

for monoatomic species, is broken for k ≥ 2. In addition, even though adsorption

isotherms of dimers look very similar for all connectivities, curves shift to lower val-17

ues of β(µ− 2U0) as γ is increased. In other words, for a given value of β(µ− 2U0),

the equilibrium surface coverage increases as γ is increased. This behavior can be19

easily understood from the following equation:

ln θ = ln γ + β(µ − kU0) (87)21

which is valid for linear k-mers at low concentrations [see Eq. (80)]. The effect

diminishes as chemical potential is increased and consequently, the slope of the23

isotherms diminishes as γ is increased.
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� ��� ��� � � ���
��� �

��� �

��� 	

��� 


��� �

��� �

����
������������
������������
������ � ���

β µ � �

θ

Fig. 4. Comparison between the exact adsorption isotherm of monomers and the simulation
adsorption isotherms of dimers on honeycomb, square and triangular lattices.
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Fig. 5. (a) Adsorption isotherms of 6-mers on a honeycomb lattice. Symbols represent MC results,
and lines correspond to different approaches (see inset). (b) Percentage reduced coverage, ∆θ(%),
versus surface coverage. The symbols are as in part (a).

We now analyze the case corresponding to linear adsorbates larger than dimers.1

In the case of honeycomb lattices, the k-mers are adsorbed as indicated in Sec. 3.

Then, once a site is chosen, there exists six equilibrium states available to a single3

k-mer (k ≥ 2) on a honeycomb lattice at infinitely low density. Consequently, the

term between parentheses in Eq. (73), which corresponds to the total number of5

k-uples on the surface, results 3M (γ = 6), as in the case of triangular lattices.

Under these considerations, an extensive work of simulation has been carried out7

for linear adsorbates with k ranging between 2 and 10. As an example, Figs. 5(a),

6(a) and 7(a) show the comparison between simulation adsorption isotherms and9
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Fig. 6. As per Fig. 5 for a square lattice.
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Fig. 7. As per Fig. 5 for a triangular lattice.

the corresponding ones obtained from theoretical approaches for 6-mers adsorbed on1

honeycomb, square, and triangular lattices, respectively. In all cases, the agreement

between simulation and analytical data is very well for small values of the coverage.3

However, as surface coverage is increased, the classical theories fail to reproduce

adsorption results.5

The differences between simulation and theoretical results can be expressed by

mean of the percentage reduced coverage, which is defined as88
7

∆θ(%) = 100

∣

∣

∣

∣

θsim − θappr

θsim

∣

∣

∣

∣

µ

(88)

where θsim (θappr) represents the coverage obtained by using MC simulation (ana-9

lytical approach). Each pair of values (θsim, θappr) is obtained at fixed µ.
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The dependence of ∆θ(%) on the surface coverage is shown in Figs. 5(b), 6(b)1

and 7(b) for the different connectivities. The behavior of the analytical approaches

can be explained as follows. FSTA (dash line) provides a good approximation with3

very small differences between simulated and theoretical results. FHL (dash dot

dot line) and GD (dash dot line) predict a smaller θ than the simulation data over5

all range of coverage. In the case of EA (dot line), the disagreement turns out

to be large for intermediate θ’s and a good approximation is recovered for high7

coverage. With respect to the connectivity, EA and FSTA (FHL and GD) become

more accurate as γ diminishes (increases). The behavior of GD and EA justifies the9

methodology used to build the SE isotherm (solid line) in Eq. (86). This situation

is also reflected in Figs. 8–10, where the percentage reduced coverage is plotted as11

a function of concentration for SE approximation and different values of γ and k.
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Fig. 8. Percentage reduced coverage versus concentration for k-mers adsorbed on a honeycomb
lattice and SE approximation. Symbols are indicated in the inset.
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Fig. 9. As per Fig. 8 for a square lattice.
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Fig. 10. As per Fig. 8 for a triangular lattice.
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Fig. 11. (a) Average percentage reduced coverage ∆̄θ , as a function of k for different connectivi-
ties. (b) As in part (a) for the maximum percentage reduced coverage ∆max

θ
. The symbols are the

same as Fig. 4.

The results in Figs. 8–10 can be much easily rationalized with the help of: (1) the1

average of the absolute values of the difference between simulation and analytical

results, ∆̄θ; and (2) the maximum value of the percentage reduced coverage, ∆max
θ .3

These quantities are shown in Fig. 11. Several conclusions can be drawn from the

figure: (i) in general, the theoretical isotherm performs better for square lattices;5

(ii) ∆̄θ and ∆max
θ remain practically constant for k ranging between 2 and 8; and

(iii) ∆̄θ and ∆max
θ increase for k > 8. Finally, the values obtained for ∆̄θ, which7

are lower than 6%, imply that SE is a very good approximation for representing

multisite occupancy adsorption, at least for the sizes considered here.9
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4. Two-Dimensional Lattice-Gas of Interacting Polyatomics1

The introduction of intermolecular forces brings about the possibility of phase tran-

sitions.101–104 Among the common types of phase transitions are, condensation of3

gases, melting of solids, transitions from paramagnet to ferromagnet and order-

disorder transitions. From a theoretical point of view, when nearest-neighbor inter-5

actions are present, an extra term in the partition function for interaction energy

is required. With this extra term, only partition functions for the whole system can7

be written. Ising105 gave an exact solution to the one-dimensional lattice problem

in 1925. All other cases are expressed in terms of series solution,73, 106, 107 except9

for the special case of two-dimensional lattices at half-coverage, which was exactly

solved by Onsager108 in 1944. For the one-dimensional lattice, there is no evidence11

of phase transitions. Close approximate solutions in dimensions higher than one

can be obtained, and the two most important of these are the Bragg–Williams13

approximation (BWA)73 and the quasi-chemical approximation (QCA).73, 109 Both

show phase transitions in two-dimensional systems and the BWA incorrectly pre-15

dicts a phase transition for a linear lattice. These leading models, along with much

recent contributions, have played a central role in the study of adsorption systems17

in presence of lateral interactions between the adatoms. One fundamental feature

is preserved in all these theories. This is the assumption that an adsorbed molecule19

occupies one adsorption site. In this section, we generalize BWA and QCA in order

to include multisite-occupancy.21

4.1. Mean-field approximation for k-mers

The Bragg–Williams approximation is the simplest mean-field treatment for inter-23

acting adsorbed particles, even in the case of multisite occupancy. In this context,

the canonical partition function Q(N, M, T ) for a system of N k-mers adsorbed25

on M sites at a temperature T , considering nearest neighbor lateral interaction of

magnitude w between adsorbed molecules is given by,27

Q(N, M, T ) =
∑

{Ek}

Ω(Ek)e−βEk(N,M) (89)

where Ω(Ek) is the number of configurations of N k-mers on M sites with energy29

Ek. If a mean-field approximation is introduced at this point

Q(N, M, T ) = e−βEk(N,M)
∑

{Ek}

Ω(Ek) = e−βEk(N,M)Ω(N, M, γ) (90)
31

where Ek(N, M) is the mean total energy of the system assuming that the kN

occupied sites of the lattice are randomly distributed over M sites. On the other33

hand, Ω(N, M, γ) depends on the spatial configuration of the k-mer and the surface

geometry. Even in the simplest case of linear k-mers, there not exist the exact form35

of Ω(N, M, γ) in two (or more) dimensions. However, as it was discussed in Sec. 3,
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different approximations have been developed for Ω(N, M, γ). In this case, we will1

calculate Ω(N, M, γ) in the framework of EA model [Eq. 25].

On the other hand,3

Ek(N, M) = kNU0 +
1

2
λN

(

kN

M

)

w (91)

where the first and second terms in the RHS of Eq. (16) account for the k-mer-lattice5

and k-mer-k-mer interactions, respectively; and λ = [2(γ−1)+(k−2)(γ−2)] is the

number of nearest neighbor sites of an adsorbed k-mer (in a linear configuration).7

Hence, the canonical partition function Q(N, M, T ) can be written as

Q(N, M, T ) = K(γ, k)N [M − (k − 1)N ]!

N ![M − kN ]!
e−(kNU0+ 1

2
λk N2

M
w)/kBT . (92)

9

The Helmholtz free energy F (N, M, T ) is given by:

βF (N, M, T ) = ln Q(N, M, T )

= ln Ω(N, M, γ) − βkNU0 −
1

2
βwλk

N2

M

= ln[M − (k − 1)N ]! − ln N ! − ln[M − kN ]!

+N ln K(γ, k) − βkNU0 −
1

2
βwλk

N2

M
. (93)

The Helmholtz free energy per site can be obtained as a function of coverage

and temperature,

βf(θ, T ) = −
[

1 − k − 1

k
θ

]

ln

[

1 − k − 1

k
θ

]

+
θ

k
ln

θ

k
+ (1 − θ) ln(1 − θ)

− θ

k
ln K(γ, k) + βθεo +

1

2
βλw

θ2

k
. (94)

Accordingly, from Eq. (19) and the formalism presented in Sec. 2.1, s is given

by

s(θ)

kB
=

[

1 − k − 1

k
θ

]

ln

[

1 − k − 1

k
θ

]

− θ

k
ln

θ

k
− (1 − θ) ln(1 − θ) +

θ

k
ln K(γ, k)

(95)

In addition, the isotherm equation takes the form

y(θ, T ) = CkK(γ, k)e[β(µ−kU0)]

=

θ

[

1 − (k − 1)

k
θ

](k−1)

(1 − θ)k
eβλwθ (96)

where Ck = k. Finally, the differential heat of adsorption, qd, and total adsorption

energy per site u result

qd(θ) = −λwθ − kU0 (97)
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and

u(θ) =
1

2
λ

θ2

k
w + θU0 . (98)

4.2. Quasi-chemical approximation for polyatomics1

Here, we address the general case of interacting adsorbates assumed as linear

molecules in the framework of the quasi-chemical approach. As in the previous3

section, two different energies are considered in the adsorption process: (1) U0, con-

stant interaction energy between a k-mer unit and an adsorption site and (2) w,5

lateral interaction energy between two nearest-neighbor units belonging to different

k-mers. Then, the canonical partition function can be written as:737

Q(N, M, T ) =
∑

N11

Ω(N, M, N11) exp [−β (wN11 + k N U0)] (99)

where N11 is the number of pairs of nearest-neighbor units belonging to different9

k-mers and Ω(N, M, N11) is the number of ways to array N k-mers on M sites with

N11 pair of occupied sites. In addition, U0 can be arbitrarily chosen equal to zero11

without losing generality.

As it is usual in the case of single-site occupation, it is convenient to write the

canonical partition function as a function of N01, being N01 the number of pairs

formed by an empty site adjacent to a occupied site. For this purpose, we calculate

the relations between N11, N01 and N00 (being N00 the number of pairs of empty

nearest-neighbor sites):

2N11 + N01 + 2N(k − 1) = γkN , (100)

2N00 + N01 = γ(M − kN) , (101)

where “number of 01 pairs” = “number of 10 pairs” = N01/2. In the case of k = 1,13

the well-known relations for single-site occupation are recovered.73

Now, the canonical partition function can be written in terms of N0115

Q(N, M, T ) = exp [−βN (λw/2)]
∑

N01

Ω(N, M, N01) exp (βwN01/2) (102)

and λ = (γ − 2)k + 2.17

By using the standard formalism of the QCA, the number of ways of assigning

a total of [γM/2 − N(k − 1)] independent pairse to the four categories, 11, 10, 01,19

and 00, with any number 0 through [γM/2−N(k−1)] per category consistent with

the total, is21

Ω̃(N, M, N01) =
[γM/2− N(k − 1)]!

[(N01/2)!]
2
[γ(M − kN)/2 − N01/2]! [λN/2 − N01/2]!

. (103)

eThe term N(k−1) is subtracted since the total number of nearest-neighbor pairs, γM/2, includes
the N(k − 1) bonds belonging to the N adsorbed k-mers.
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This cannot be set equal to Ω(N, M, N01) in Eq. (102), because treating the pairs as1

independent entities leads to some unphysical configurations (see Ref. 73, p. 253).

Thus Ω̃ overcounts the number of configurations. To take care of this, we must3

normalize Ω̃:

Ω(N, M, N01) = C(N, M, γ)Ω̃(N, M, N01) (104)5

and

Ω(N, M) =
∑

N01

Ω(N, M, N01) = C(N, M, γ)
∑

N01

Ω̃(N, M, N01) . (105)
7

Once Ω(N, M) is approximated in some of the forms given in Sec. 3, C(N, M, γ)

can be obtained.9

In order to calculate C(N, M, γ), we replace
∑

N01
Ω̃(N, M, N01) by the maxi-

mum term in the sum, Ω̃(N, M, N∗
01). By taking logarithm in Eq. (103), using the

Stirling’s approximation and operating, it results,

ln Ω̃(N, M, N01) = [γM/2− (k − 1)N ] ln[γM/2− (k − 1)N ] − N01 ln N01/2

− [γ(M − kN)/2− N01/2] ln[γ(M − kN)/2 − N01/2]

− (λN/2 − N01/2) ln(λN/2 − N01/2) . (106)

By differentiating the last equation with respect to N01

Ω̃′(N, M, N01) =
Ω̃(N, M, N01)

2
ln

{

[γ(M − kN) − N01](λN − N01)

N2
01

}

. (107)
11

Setting Ω̃′(N, M, N01) = 0 and solving for N∗
01, the value of N01 in the maximum

term of Ω̃,13

N∗
01 =

γλN(M − kN)

γM − 2(k − 1)N
= λN − λ2N2

γB
, (108)

and15

B = M − 2(k − 1)N/γ . (109)

Then,17

Ω̃(N, M, N∗
01) =

(γB/2)!
[(

λN/2 − λ2N2

2γB

)

!

]2(

γB/2− λN +
λ2N2

2γB

)

!

(

λ2N2

2γB

)

!

, (110)

and, by simple algebra,19

Ω̃(N, M, N∗
01) =

[

B!

(B − λN/γ)! (λN/γ)!

]γ

. (111)
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Equation (111) allows us to calculate C(N, M),

C(N, M, γ) =
Ω(N, M, γ)

Ω̃(N, M, N∗
01)

= Ω(N, M, γ)

[

(B − λN/γ)! (λN/γ)!

B!

]γ

. (112)

Now, ln Q(N, M, T ) [see Eq. (102)] can be written as

ln Q(N, M, T ) = −βNλw/2 + ln

{

∑

N01

C(N, M, γ)Ω̃(N, M, N01) exp (βwN01/2)

}

.

(113)

As in Eq. (105), we replace
∑

N01
C(N, M, γ)Ω̃(N, M, N01) exp(βwN01/2) by the

maximum term in the sum, C(N, M, γ)Ω̃(N, M, N∗∗
01 ) exp(βwN∗∗

01 /2). Thus,

C(N, M, γ)Ω̃′(N, M, N∗∗
01 ) exp(βwN∗∗

01 /2) + C(N, M, γ)Ω̃(N, M, N∗∗
01 )

× exp(βwN∗∗
01 /2)βw/2 = 0 , (114)

and1

Ω̃′(N, M, N∗∗
01 )

Ω̃(N, M, N∗∗
01 )

= −βw/2 . (115)

From Eqs. (107) and (115),3

(γB − λN − N∗∗
01 )(λN − N∗∗

01 ) = N∗∗
01

2 exp(−βw) (116)

and5

[1 − exp(−βw)]N∗∗
01

2 − γBN∗∗
01 + (γB − λN)λN = 0 . (117)

Solving Eq. (117) we obtainf
7

N∗∗
01

γB
=

1 −
√

1 − 4A(1 − λN/γB)(λN/γB)

2A
. (118)

where A = 1 − exp(−βw).9

Finally, the canonical partition function can be written in terms of N ∗∗
01 ,

Q(N, M, T ) = exp(−βNλw/2)Ω(N, M, γ)

[

(B − λN/γ)!(λN/γ)!

B!

]γ

× Ω̃(N, M, N∗∗
01 ) exp(βwN∗∗

01 /2) . (119)

As in the previous section, we will use the following expression for Ω(N, M, γ),

Ω(N, M, γ) = K(γ, k)N (B − λN/γ + N)!

N !(B − λN/γ)!
, (120)

11

fThe solution N∗∗
01 /γB =

(

1 +
√· · ·

)

/2A is discarded for physical reasons.



2nd Reading
October 17, 2006 13:37 WSPC/140-IJMPB 03573

Adsorption of Polyatomics: Theoretical Approaches in Model Systems and Applications 33

which is an extension to two dimensions of the exact configurational factor obtained1

in one dimension. In the particular case of rigid straight k-mers, the simplest ap-

proximation provides K(γ, k) = γ/2.3

Introducing Eq. (120) in Eq. (119), taking logarithm and using the Stirling’s

approximation, it results

ln Q(N, M, T ) = −βNλw/2 + N ln K(γ, k) + βwN∗∗
01 /2

+ (B − λN/γ + N) ln(B − λN/γ + N) − N ln N

+ (γ − 1)(B − λN/γ) ln(B − λN/γ) + λN ln λN/γ

− γB ln B + γB/2 lnγB/2− N∗∗
01 ln N∗∗

01 /2

− (γB/2− λN/2 − N∗∗
01 /2) ln(γB/2− λN/2 − N∗∗

01 /2)

− (λN/2− N∗∗
01 /2) ln(λN/2 − N∗∗

01 /2) . (121)

From Eq. (121), the Helmholtz free energy per site, f(N, M, T ), can be obtained

as a function of surface coverage and temperature,

βf(θ, T ) = − θ

k
ln K(γ, k) + βw

(

λθ

2k
− α

)

−
[

γ

2
−
(

k − 1

k

)

θ

]

× ln



















[

1 −
(

k − 1

k

)

θ

]2/γ

(1 − θ)2(γ−1)/γ

[

γ

2
−
(

k − 1

k

)

θ

]

[

1 − 2

γ

(

k − 1

k

)

θ

]2
[γ

2
(1 − θ) − α

]



















− θ

k
ln



















(

λθ

γk

)λ
[γ

2
(1 − θ) − α

]λ/2

θ

k

[

1 −
(

k − 1

k

)

θ

](λ−γ)/γ

(1 − θ)(λγ−λ)/γ

[

λθ

2k
− α

]λ/2



















− 2α ln



















[γ

2
(1 − θ) − α

]1/2
[

λθ

2k
− α

]1/2

α



















(122)

where α is

α =
N∗∗

01

2M
=

λγ

2k

θ(1 − θ)
[

γ

2
−
(

k − 1

k

)

θ + b

] . (123)

5

and

b =

{

[

γ

2
−
(

k − 1

k

)

θ

]2

− λγ

k
Aθ(1 − θ)

}1/2

. (124)
7



2nd Reading
October 17, 2006 13:37 WSPC/140-IJMPB 03573

34 J. L. Riccardo, F. J. Romá & A. J. Ramirez-Pastor

The coverage dependence of the chemical potential arises straightforwardly from

Eqs. (5) and (122)

K(γ, k)

(

2

γ

)2(k−1)

exp [β (µ − wλ/2)]

=
θ

k

(1 − θ)k(γ−1) [k − (k − 1)θ]
k−1

[

λθ

2k
− α

]λ/2

[

γk

2
− (k − 1)θ)

]k−1
[γ

2
(1 − θ) − α

]kγ/2
(

λθ

γk

)λ
. (125)

The configurational energy per site, u, can be calculated as

u = w
N∗∗

01

M
= w

(

λN

2M
− N∗∗

01

2M

)

= w

(

λθ

2k
− α

)

. (126)

In addition, f = u − Ts and the entropy per site, s, can be obtained from

Eqs. (122) and (126) as

s

kB
=

θ

k
ln K(γ, k) +

[

γ

2
−
(

k − 1

k

)

θ

]

× ln



















[

1 −
(

k − 1

k

)

θ

]2/γ

(1 − θ)2(γ−1)/γ

[

γ

2
−
(

k − 1

k

)

θ

]

[

1 − 2

γ

(

k − 1

k

)

θ

]2
[γ

2
(1 − θ) − α

]



















+
θ

k
ln



















(

λθ

γk

)λ
[γ

2
(1 − θ) − α

]λ/2

θ

k

[

1 −
(

k − 1

k

)

θ

](λ−γ)/γ

(1 − θ)(λγ−λ)/γ

[

λθ

2k
− α

]λ/2



















+ 2α ln



















[γ

2
(1 − θ) − α

]1/2
[

λθ

2k
− α

]1/2

α



















. (127)

The isosteric heat of adsorption qst is defined as1101
(

∂βµ

∂T

)

θ

=
qst

kBT 2
(128)

which can be calculated explicitly from Eq. (125),

qst(θ, T ) = −λw

2
+

{

λ

2

(

λθ

2k
− α

)−1

− kγ

2

[γ

2
(1 − θ) − α

]−1
}

wα2 exp (−βw)

b
.

(129)
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Finally, the heat capacity per site, cv , results1

cv

kB
=

1

kB

∂u

∂T
= (βwα)

2 exp (−βw)

b
. (130)

4.3. Comparison between BWA, QCA and Monte-Carlo3

simulations

In the present section, we will analyze the main characteristics of the thermody-5

namic functions given in BWA and QCA, in comparison with simulation results for

a lattice-gas of interacting dimers on honeycomb, square and triangular lattices.g7

The computational simulations have been developed for honeycomb, square and

triangular L × L lattices, with L = 144, 144 and 150, respectively, and periodic9

boundary conditions.111, 112 With this lattice size we verified that finite-size effects

are negligible. Note, however, that the linear dimension L has to be properly chosen11

such that the adlayer structure is not perturbed.

Typical adsorption isotherms obtained by MC simulations in the grand canonical13

ensemble (symbols) and comparison with QCA (solid lines) and BWA (dashed

lines) are shown in Figs. 12–14, for honeycomb, square and triangular lattices,15

respectively.

For attractive interactions [Figs. 12(a), 13(a) and 14(a)], as the temperature17

decreases, the system undergoes a first-order phase transition that shows as the

discontinuity in the simulated isotherms and as the typical loops in the theoretical19

isotherms. In this situation, which has been observed experimentally in numerous

systems,101, 110 the only phase which one expects is a lattice-gas phase at low cov-21

erage, separated by a two-phase coexistence region from a “lattice-fluid” phase at

higher coverage. This lattice-fluid can be considered as a version of the registered23

(1 × 1) phase (where every available site of the lattice is occupied) diluted with

vacancies.25

This condensation of a two-dimensional gas to a two-dimensional liquid is similar

to that of a lattice-gas of attractive monomers. However, the symmetry particle-27

vacancy (valid for monoatomic particles) is broken for k-mers and the isotherms

are asymmetric with respect to θ = 0.5.29

The isotherms in the repulsive case [Figs. 12(b), 13(b) and 14(b)] have more

features because of the existence of ordered structures in the adlayer. These struc-31

tures are clearly evidence of subcritical behavior [the systems undergoes continuous

gIn one dimension, QCA reduce to the rigorous functions of interacting chains adsorbed flat on a
one-dimensional lattice [see Sec. 2.2]. With respect to BWA, a characteristic van der Waals loop is
observed in the adsorption isotherm for the attractive case and BWA incorrectly predicts a phase
transition for γ = 2. For strong repulsive couplings, the BWA curves apart from the exact results
and does not reproduce the plateau in the adsorption isotherm. The limitations of the BWA can
be much easily ratinalized with the help of the entropy per site. In fact, the main assumption of
the BWA say that the configurational degeneracy and average nearest-neighbor interaction energy
are treated as though the molecules were distributed randomly among the sites. Consequently,
the entropy per site does not depend on w and adopts the form of Eq. (12).
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Fig. 12. Adsorption isotherms for homonuclear dimers adsorbed on a honeycomb lattice with
nearest-neighbor interactions. Symbols, solid lines and dashed lines represent results from Monte-
Carlo simulations, QCA and BWA, respectively. The dotted lines are included in the figure as
a guide for the eyes. (a) Attractive case: full circles, βw = 0; open circles, βw = −0.5; open
squares, βw = −1.0; open up triangles, βw = −1.5; open diamonds, βw = −2.0 and open down
triangles, βw = −3.0. (b) Repulsive case: full circles, βw = 0; full hexagons, βw = 2.0; full squares,
βw = 4.0; full up triangles, βw = 5.0; full diamonds, βw = 6.5; full down triangles, βw = 8.0 and
full stars, βw = 10.0. Inset: Adsorption isotherms from QCA for βw = 10.0 and different values
of k as indicated.
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Fig. 13. Adsorption isotherms for homonuclear dimers adsorbed on a square lattice with nearest-
neighbor interactions. Symbols, solid lines and dashed lines represent results from Monte-Carlo
simulations, QCA and BWA, respectively. The dotted lines are included in the figure as a guide
for the eyes. (a) Attractive case: full circles, βw = 0; open squares, βw = −0.5; open up triangles,
βw = −1.0; open diamonds, βw = −1.4 and open down triangles, βw = −2.0. (b) Repulsive case:
full circles, βw = 0; full squares, βw = 2.0; full up triangles, βw = 4.0; full diamonds, βw = 5.0
and full down triangles, βw = 7.5. Inset: Adsorption isotherms from QCA for βw = 7.5 and
different values of k as indicated.
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Fig. 14. Adsorption isotherms for homonuclear dimers adsorbed on a triangular lattice with
nearest-neighbor interactions. Symbols, solid lines and dashed lines represent results from Monte-
Carlo simulations, QCA and BWA, respectively. The dotted lines are included in the figure as a
guide for the eyes. (a) Attractive case: full circles, βw = 0; open circles, βw = −0.5; open squares,
βw = −0.75; open diamonds, βw = −1.0 and open up triangles, βw = −1.5. (b) Repulsive case:
full circles, βw = 0; full squares, βw = 2.0; full up triangles, βw = 3.0; full diamonds, βw = 4.0
and full down triangles, βw = 5.0. Inset: Adsorption isotherms from QCA for βw = 5.0 and
different values of k as indicated.

phase transitions, from disorder to ordered structures].111, 112 At high temperatures,1

the isotherms do not present any peculiar behavior. For low temperatures, we can

see the typical steps which correspond to the developing of some ordered phase3

structures and the shape of the isotherms is much dependent on the connectivity.

In fact, as the chemical potential µ increases and θ varies from 0 to 1, we found two5

different ordered phases in the adsorbate: (1) a low-coverage ordered phase (LCOP),

with 5/9, 1/2 and 2/5 of the sites occupied for honeycomb, square and triangular7

lattices, respectively; and (2) a high-coverage ordered phase (HCOP), with 2/3 of

the sites filled for the three geometries. Snapshots corresponding to LCOP [part9

(a)] and HCOP [part (b)] for honeycomb, square and triangular lattices are shown

in Figs. 15–17. For a more complete discussion of LCOP and HCOP, interested11

readers are referred to Refs. 111 and 112.

In the attractive cases, the two theoretical approximations agree qualitatively13

well and the adsorption isotherms for the BWA and QCA are hardly distinguishable

from each other. However, it is known that the isotherms resulting distinctly dif-15

ferent approximations can look very similar.113 The differences between numerical

and theoretical results can be much easily rationalized with the help of the absolute17

error, εa(θ), which is defined as

εa(θ) = |µtheor − µsim|θ (131)19

where µsim (µtheor) represents the chemical potential obtained by using MC sim-

ulation (analytical approach). Each pair of values (µsim, µtheor) is obtained at21

fixed θ.
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Fig. 15. Snapshots of the ordered phases corresponding to repulsive dimers adsorbed on a hon-
eycomb lattice. (a) Low-coverage ordered structure (LCOP); (b) high-coverage ordered structure
(HCOP) and (c) LCOP-HCOP mixture according to the predictions of QCA.

As an example, Fig. 18(a) shows εa(θ) for three typical attractive cases: squares,1

βw = −3.0; triangles, βw = −1.5 and circles, βw = −0.5. Full and open symbols

represent results from BWA and QCA, respectively. In all cases, QCA leads to3

appreciably better results than BWA. The curves in Fig. 18 correspond to a hon-

eycomb lattice. However, the behavior of εa(θ) for square and triangular lattices is5

very similar (data are not shown here for sake of simplicity).

With respect to repulsive interactions, the differences between QCA and BWA7

are very appreciable. This situation is clearly reflected in Fig. 18(b), where three

repulsive cases are depicted: squares, βw = 8.0; triangles, βw = 4.0 and circles,9

βw = 2.0. Full and open symbols are as in part (a). Beyond the quantitative discrep-

ancies between QCA and BWA, there exists qualitative differences between both11
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Fig. 16. As per Fig. 15 for square lattices.

approximations. Thus, while BWA does not predict the existence of ordered phases1

in the adsorbate, QCA isotherms present a pronounced plateau as the temperature

lowers. This singularity or critical coverage θQCA
c , which appears at a intermediate3

coverage between the LCOP and the HCOP, depends on both the geometry of the

substrate and the size of the adsorbate. The value of θQCA
c can be determined from5

the point of inflection in the adsorption isotherm equation [Eq. (125)], calculated

in the limit as βw → ∞. Thus,7

θQCA
c =

(γ/2) k

(γ − 1)k + 1
. (132)

Figure 19 shows the behavior of θQCA
c as a function of the k-mer’s size, for the9

different connectivities studied. In the particular case of k = 2, θQCA
c = 3/5, 4/7 and

6/11, for honeycomb, square and triangular lattices, respectively. The configuration11

of the adsorbate at θQCA
c “could be thought” as a mixture of LCOP and HCOP

[see part (c) in Figs. 15–17].13
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Fig. 17. As per Fig. 15 for triangular lattices.

Summarizing, we define the integral error εi, which takes into account the dif-1

ferences between theoretical and simulation data in all range of coverage,

εi =

∫ 1

0

εa(θ)dθ . (133)
3

The integral error is shown in Fig. 20 for all studied geometries and for a wide

range of values of βw. Several conclusions can be drawn from the figure:5

• In all cases, QCA gives a much better description of the MC adsorption isotherms

than the BWA. In the particular case of repulsive interactions, the disagreement7

between MC and BWA turns out to be significantly large, while QCA appears

as the simplest approximation capable to take into account the main features of9

the multisite occupancy adsorption.
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Fig. 18. Absolute error εa, versus surface coverage for adsorption isotherms of dimers. The sym-
bology is as follows: (a) Squares, βw = −3.0; triangles, βw = −1.5 and circles, βw = −0.5.
(b) Squares, βw = 8.0; triangles, βw = 4.0 and circles, βw = 2.0. Full and open symbols corre-

spond to comparisons with QCA and BWA, respectively.
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Fig. 19. Critical coverage θQCA
c , as a function of the adsorbate size k for different geometries:

stars, one-dimensional lattices; hexagons, honeycomb lattices; squares, square lattices and trian-
gles, triangular lattices.

• εi(θ) increases as the lattice connectivity is increased. A possible explanation for1

the deviation from QCA (and BWA) observed for high connectivity is associ-

ated with the choice of Ω(N, M, γ) in Eqs. (105) and (120). In fact, Ω(N, M, γ)3

is an extension to two dimensions of the exact configurational factor obtained

in one dimension. Consequently, the accuracy of Ω(N, M, γ) diminishes as γ is5

increased.88 In the future, other expressions for Ω(N, M, γ) will be investigated.

• There exists a wide range of βw’s (−1 ≤ βw ≤ 4), where QCA provides an7

excellent fitting of the simulation data. In addition, most of the experiments in
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Fig. 20. Integral error εi, versus lateral interaction (in β units) for different geometries as
indicated.

surface science are carried out in this range of interaction energy. Then, QCA not1

only represents a qualitative advance in the description of the adsorption k-mers

with respect to the BWA, but also gives a framework and compact equations3

to consistently interpret thermodynamic adsorption experiments of polyatomics

species such as alkanes, alkenes, and other hydrocarbons on regular surfaces.5

We now analyze the behavior of the isosteric heat of adsorption. qst versus

coverage is plotted in Figs. 21–23, for honeycomb, square and triangular lattices,7

respectively. The curves are denoted as in Figs. 12–14.
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Fig. 21. Isosteric heat of adsorption qst, versus surface coverage for attractive [part (a)] as well
repulsive [part (b)] interacting dimers and 5-mers adsorbed on a honeycomb lattice. The curves
are labeled as in Fig. 12. In two limit cases (βw = 10, k = 2 and βw = 10, k = 5), the data are
compared with BWA.
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Fig. 22. Isosteric heat of adsorption qst, versus surface coverage for attractive [part (a)] as well
repulsive [part (b)] interacting dimers and 5-mers adsorbed on a square lattice. The curves are
labeled as in Fig. 13. In two limit cases (βw = 7.5, k = 2 and βw = 7.5, k = 5), the data are
compared with BWA.
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Fig. 23. Isosteric heat of adsorption qst, versus surface coverage for attractive [part (a)] as well
repulsive [part (b)] interacting dimers and 5-mers adsorbed on a triangular lattice. The curves
are labeled as in Fig. 14. In two limit cases (βw = 5, k = 2 and βw = 5, k = 5), the data are
compared with BWA.

The general features of the coverage dependence of the isosteric heat of ad-1

sorption for attractive k-mers are the following [see part (a) in Figs. 21–23]: qst is

monotonically increasing on coverage. As the ratio βw is increased, two main ef-3

fects occur. (i) A plateau appears being qst = (γ−1)w. This behavior demonstrates

that the island of adsorbed dimers grows through the perimeter, being (γ − 1)w,5

the involved energy in one adsorption-desorption of a dimer in the perimeter of

the adsorbate island. (ii) The plateau flattens over a wide range of coverage since7

adsorbate islands are more compact for larger βw.
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As it can be noticed, the differences between the theoretical approximations are1

notable. While QCA agrees very well with the curves of qst, BWA presents a linear

behavior and does not reproduce the main characteristics of qst.3

For the repulsive case [part (b) in Figs. 21–23], qst varies from a smoothly

decreasing (at high temperatures) to a double stepped function of θ (at low tem-5

peratures). The abrupt steps are traced to the presence of the ordered phases shown

in Figs. 15–17. As in the attractive case, BWA varies linearly with the coverage and7

appears as a poor sensitive theory for studying qst. On the other hand, even though

QCA does not reproduce the two steps in the curves at very low temperatures, the9

approach agrees very well with the simulation data in a wide range of βw’s and pre-

dicts the value of qst at high coverage, qst(θ → 1). As it has been widely discussed11

in Refs. 87 and 112, the value of qst(θ → 1) can be only understood from reordering

processes occurring in the adsorbate at high coverage, which do not appear in the13

case of monomers and, consequently, are a clear signal of the presence of multisite

occupancy adsorption. These findings reinforce the validity of the proposed QCA15

to describe k-mers adsorption thermodynamics.

Finally, the behavior of the configurational entropy per site as a function of17

coverage is shown in Figs. 24–26. For attractive interactions [part (a) in Figs. 24–

26], the overall behavior can be summarized as follows: for θ → 0 the entropy tends19

to zero. For low coverage, s(θ) is an increasing function of θ, reaches a maximum,

then decreases monotonically. In the limit θ → 1 the entropy tends to a finite value,21

which is associated to the different ways to arrange the dimers at full coverage.

This value depends on the geometry, being s(θ = 1)/kB ≈ 0.19, 0.29 and 0.44 for23

γ = 3, 4 and 6, respectively. The effect of the interactions is to decrease the entropy

for intermediate coverage (0 < θ < 1), remaining constant in the limits θ → 0 and25
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Fig. 24. Entropy per site as a function of coverage for homonuclear dimers and 5-mers adsorbed
on a honeycomb lattice with nearest-neighbor interactions. The curves are labeled as in Fig. 12.
(a) Attractive case and (b) repulsive case. Solid lines from top to bottom correspond one-to-one
to the cases plotted with symbols. The dotted lines are included in the figure as a guide for the
eyes.
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Fig. 25. Entropy per site as a function of coverage for homonuclear dimers and 5-mers adsorbed
on a square lattice with nearest-neighbor interactions. (a) Attractive case: full circles, βw = 0;
open squares, βw = −0.5; open up triangles, βw = −1.0 and open diamonds, βw = −1.4.
(b) Repulsive case: full circles, βw = 0; full squares, βw = 2.94; full up triangles, βw = 3.13 and
full diamonds, βw = 7.5. Solid lines from top to bottom correspond one-to-one to the cases plotted
with symbols. The dotted lines are included in the figure as a guide for the eyes.
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Fig. 26. Entropy per site as a function of coverage for homonuclear dimers and 5-mers adsorbed
on a triangular lattice with nearest-neighbor interactions. The curves are labeled as in Fig. 14.
(a) Attractive case and (b) repulsive case. Solid lines from top to bottom correspond one-to-one
to the cases plotted with symbols. The dotted lines are included in the figure as a guide for the
eyes.

θ → 1. The curves from QCA present a qualitative agreement with simulation data,1

but overestimate the value of the entropy in the whole range of θ.

In the case of repulsive interactions [part (b) in Figs. 24–26], s/kB develops3

two minima as T decreases, corresponding to the presence of the LCOP and the

HCOP. In the case of QCA, the curves present a minimum at θQCA
c . The value of5

s(θ = θQCA
c )/kB decreases as βw is increased, reaching negative values for high
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βw’s. This spurious behavior also appears in the classical QCA for monomers.73, 1101

On the other hand and as it was discussed above, the entropy per site from BWA

does not depend on βw.3

5. Applications

We consider here a few applications of the results presented in previous sections.5

Namely, analysis of complex adsorbates by using FSTA;91, 92 adsorption of non-

interacting k-mers on heterogeneous surfaces;2, 96, 97, 114 and multilayer adsorption7

of polyatomics.115, 116

5.1. Analysis of complex adsorbates by using FSTA9

Analysis of simulation and experimental results have been carried out in order to

illustrate the applicability and versatility of FSTA to describe complex adsorption11

systems. Thus, experimental adsorption isotherms of propane117 and oxygen3, 4 in

5A and 13X zeolites, respectively, were examined in terms of the new isotherm13

function. In our analysis, Eq. (57) was used assuming that: (i) since g = constant,

if one molecule has m distinguishable ways of adsorbing per lattice site at zero15

density, then g = mk′ [a = 1/(mk′)] states are excluded when one k-mer is ad-

sorbed occupying k′ sites on the lattice; (ii) ad-ad interaction energy is introduced17

through a mean-field term as stated before. In addition, given that the analyzed

experimental isotherms were reported in adsorbed amount v, against pressure p,19

we rewrite Eq. (57) in the more convenient form:

K(T )p/po =
(v/vm)[g − (g − 1)v/vm]

g−1

[g − g(v/vm)]
g exp [βw(v/vm)] (134)

21

where exp [βw(v/vm)] is the mean-field term, p = po exp(βµ) and K(T ) =

K∞ exp (−βHst) is the equilibrium constant, Hst being the isosteric heat of23

adsorption.

Figure 27 shows adsorption isotherms of C3H8 in a 13X zeolite. Lines corre-25

spond to FSTA and symbols represent experimental data from Ref. 117. As widely

accepted, an alkane chain is considered a “bead segment”, in which each methyl27

group is represented as a single site (bead). In this frame, we fix k = 3 for propane.

In addition, the length of propane (6.7 Å) is relatively large with respect to the di-29

ameter of the cavity (11.6 Å). This fact suggests that the molecules should adsorb

aligned along a preferential direction. Otherwise, five or six molecules would hardly31

fit in the cavity. Accordingly, we fix g = 3 (k′ = k = 3 and m = 1 as in the one-

dimensional case). Then, we determine, by multiple fitting, the set of parameters33

[K(T ), vm, w] leading to the best fit to the experimental data of C3H8/13X from

Ref. 117 in the whole pressure and temperature range.35

The fitting process is as follows. We considered the least-squares statistics.118

Thus, suppose that we are fitting nm data points (xi, yi, zi), i = 1, . . . , nm, to37
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Fig. 27. Adsorption isotherms for C3H8 adsorbed in 13X zeolite fitted by FSTA. Symbols cor-

respond to data from Ref. 117 and lines represent theoretical results from Eq. (134).

a model that has L adjustable parameters aj , j = 1, . . . , L. The model predicts a1

functional relationship between the measured independent and dependent variables,

z(x, y) ≡ z(x, y; a1 . . . aL) (135)3

where the dependence on the parameters is indicated explicitly on the right-hand

side. What, exactly, do we want to minimize to get fitted values for the ajs? The first5

thing that comes to mind is the familiar least-squares fit, minimize over a1 . . . aL:

nm
∑

i=1

[zi − z(xi, yi; a1 . . . aL)]2 . (136)
7

The parameters of the model are then adjusted to achieve a minimum in function

(136), yielding best-fit parameters. The adjustment process is thus a problem in9

minimization in many dimensions.

In our particular case, the least-squares estimation of the isotherm parameters11

was performed for each adsorbate by minimizing the sum of the square difference be-

tween the experimental pressure and the predicted pressure, over all nm data points13

corresponding to the complete set of isotherms. That is, the function p(v, T ) ≡
p(v, T ; vm, K(T ), w) (from Eq. 134) corresponds to z(x, y) ≡ z(x, y; a1 . . . aL), being15

(v, T ) and (vm, K(T ), w) dependent variables and adjustable parameters, respec-

tively. In the case of Fig. 27, the fitting parameters are indicated in Table 1.17

As in the experiment, the resulting value of vm is smaller than six molecules

per cavity, and the fractional value of vm(= 5.75) is indicative that some molecules19

may stand across the cavity’s windows. Concerning the lateral interaction at full

coverage, the ratio between the value of w from fitting and the molecular interaction21

C3H8 − C3H8 in the liquid phase, ε, reported in Ref. 117 is w/ε ≈ 2.5. This value

indicates that each propane molecule in the adsorbed phase at maximum loading23
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Table 1. Table of fitting parameters of data in Figs. 27 and 29. HFSTA
st , Hexp

st , wFSTA and
wexp are expressed in kcal/mol (absolute values given). vm is expressed in molecules/cavity [(a)]
and ccSTP /g. of adsorbent [(b)] for data from Refs. 3 and 4, respectively. (c) and (d) represent
experimental values from Refs. 4 and 117, respectively; (e), simulation data from Ref. 119 and
(f), C3H8 − C3H8 interaction energy in the liquid phase (see Ref. 117).

System k m g vm HFSTA
st Hexp

st wFSTA wexp D

O2/5A 2 2 4 12(a) − 130.9(b) 3.10 3.37(c) 0.72 0.54(e) 5.60%

C3H8/13X 3 1 3 5.75 6.94 6.81(d) 1.27 0.50(f) 2.08%

interacts, in average, with 2.5 neighbors, and reinforces the argument that the1

system can be treated as a quasi-one-dimensional system.

An excellent agreement was also obtained in Fig. 28, by fitting non monotoni-3

cally increasing data (in Fig. 28, we carried out the fitting of the derivative of the

adsorbed amount versus pressure and obtained a good agreement).5

The differences between experimental and theoretical data can be very easily

rationalized with the help of the deviation D, which is defined as the ratio between7

the absolute value of the difference between the experimental and the corresponding

theoretical value, averaged over the total set of data:9

D =

nm
∑

i=1

{

100 ·
∣

∣

∣

∣

vi
theo − vi

sim

vi
sim

∣

∣

∣

∣

}

. (137)

The deviation between the set of experimental data and the fitting curves in11

Fig. 27 was 2.08% (see Table 1). This value is lower than the typical experimen-

tal errors in measurements of adsorption, which reinforces the robustness of the13

fits in the present contribution. In addition, it is worth emphasizing that a rather
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Fig. 28. Derivative of the adsorbed amount versus pressure (ln p) for the same set of data plotted
in Fig. 27.
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artificial model with eight fitting parameters was necessary to interpret analogous1

data in Ref. 117. In the present description of adsorption, the complexity of the

entropy of adsorbed polyatomics is characterized by the single parameter g car-3

rying meaningful quantitative information about the spatial configuration of the

admolecule.5

Adsorption isotherms of O2/5A are shown in Fig. 29. Symbols are experimental

data and lines represent theoretical results from Eq. (134). Experimental data were7

taken from two different sources in the literature, from Miller et al.4 and Danner

et al.3 In the first set of data (empty symbols),4 the amount adsorbed was measured9

in units of the number of molecules per cavity. In the other case (full symbols),3 the

amount adsorbed was reported in units of ccSTP per gram of adsorbent. In order11

to homogenize the plots, we have represented the amount adsorbed by using the

adimensional surface coverage θ = v/vm.13

The fit was carried out in two steps: (i) based on previous numerical simu-

lations,119 we fix g = 4 (k′ = k = 2 and m = 2). Under these considerations,15

analytical isotherms in Fig. 27. The value obtained for w is in excellent agreement

with the simulation calculation of w in Ref. 119. With respect to vm, it was not17

possible from the work of Razmus et al.120 to estimate vm in order to compare with

the one from Eq. (134). However, vm was independently validated through a second19

stage of fitting; (ii) the values of g, K(T ) and w arising from (i) were fixed. Then,

vm, set as to fit the experimental isotherm measured by Danner et al.,3 agrees with21

the monolayer volume reported in Ref. 3. The deviation between experimental and

fitting curves was 5.60% (see Table 1). Based in the consistency of this analysis,23
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Fig. 29. Adsorption isotherms for O2 adsorbed in 5A zeolite. Empty and full symbols correspond

to data from Refs. 3 and 4, respectively. Lines correspond to the adsorption isotherm function of
Eq. (134).
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O2 appears to adsorb flat with two possible orientations on a two-dimensional layer1

defined by the cavity’s inner surface.

The values for Hst in Figs. 27 and 29 were obtained from the slope of ln K(T )3

vs. 1/T . This procedure is shown in Fig. 30. The fitting results, which are presented
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Fig. 30. Temperature dependence of equilibrium constant, K(T ), arising from fitting. Squares,
empty circles and full circles correspond to fitting from Refs. MILLER, DANNER and TAREK,
respectively. HFSTA

st reported in Table 1 is the absolute value of the slope of the solid line.

-5 0 5 10

0,0

0,2

0,4

0,6

0,8

1,0

flexible tetramers

    g = 68.3

flexible trimers

   g = 16.9

 dimers, g = 3.74

 
 

θ

βµ
Fig. 31. Comparison between Monte-Carlo simulations of dimers, trimers and tetramers adsorbed
on square lattices and theoretical isotherm from FSTA [Eq. (57)]. g values from best fitting are
indicated in the figure for each case.
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in Table 1, are in excellent agreement with the experimental value of Hst reported1

in Ref. 117 (C3H8/13X) and Ref. 120 (O2/5A).

In order to describe systems more complex than the one in the experiments3

analyzed here, we show in Fig. 31 the fit (solid lines) to numerical isotherms (sym-

bols) of dimers, flexible trimers and flexible tetramers adsorbed flat on a square5

lattice [a flexible k-mer is a chain of monomers occupying k adjacent sites of the

lattice (without overlapping)]. Solid lines represent the best fitting to computer7

experiments in the crudest approximation [g = constant, Eq. (57)] to the general

isotherm of Eq. (56). The values obtained for g in all cases are very consistent to9

the ideal value g = m k. It is worth mentioning that, at this elementary degree of

approximation FSTA is already more accurate than the classical Flory’s theory82, 83
11

of adsorbed chains as well as the multisite-adsorption approaches of Refs. 71,

96 and 97.13

For the case of dimers, Fig. 32 shows a comparison between the configurational

entropy per site, s, versus coverage from simulation80, 81 and the corresponding ones15

obtained from FSTA [being S = −( ∂F
∂T )N,M and s ≡ S/M ] for different values of g.

As it was calculated for the isotherm, the best fit corresponds to g = 3.74 (solid line).17

The three curves in dashed (dotted) lines correspond to increments (decrements)

of 2%, 4% and 6% with respect to g = 3.74. As it can be clearly visualized, small19

variations of g provide notable differences in the entropy curves. The more compact

the configuration of the segments attached to the surface sites the smaller g. For21

instance, g may vary from g = 6 (g = 8) for straight trimers (tetramers), to g = 18

(g = 72) for flexible trimers (tetramers). From the previous considerations, it arises23

that the best fitting of adsorption data within the framework of the FSTA shows a
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Fig. 32. Configurational entropy versus coverage for dimers adsorbed on square lattices. Symbols
represent simulation data and lines provide theoretical results for different values of g as indicated
in the text.
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high sensitivity to the value of g for the cases studied. This represents an evidence1

of the physical and experimental significance of g.

5.2. Non-interacting k-mers on heterogeneous surfaces3

We now turn to the description of multisite occupancy adsorption on heterogeneous

surfaces in the lattice gas approximation. Hereafter, we present the main character-5

istics of Nitta’s approach,2, 96, 97 provided that we will further introduce the rigorous

partition function for a homogeneous one-dimensional system into this approach to7

more accurately account for the entropic effects in the general case.

We assume a lattice with M1, M2, . . . , Mm sites of kind 1, 2, . . . , m, respectively.9

The total of adsorption sites amounts

M =

m
∑

i=1

Mi . (138)
11

The polyatomic adsorbate can be assumed as consisting of s type of units

(groups) that adsorb individually on the lattice sites.13

Provided the total number of units in a molecule is k, then

nk =

s
∑

j=1

kj (139)
15

with kj being the number of units of kind j in the molecule. The interaction energy

of a group of j type on an adsorption site of the i kind is denoted εij . The partition17

function in the canonical ensemble is given by

Q =
∑

Nij

Ωhet(M, N, Nij) exp
∑

i

∑

j

βNijεij (140)
19

where Nij is the number of pairs group j-site i. The term Ωhet can be approx-

imated by following the configuration-counting procedure of the quasi-chemical21

approximation.

Thus,23

ln Ωhet(M, N, Nij) = ln Ω(M, N) −
∑

i

∑

j

ln
Nij !

N∗
ij !

(141)

where Ω holds for k-mers on a homogeneous surface and the N ∗’s does for the ran-

dom distribution of N molecules on M sites. Accordingly the adsorption isotherm

can be obtained by equalizing the chemical potentials of the adlayer, µ, and the gas

phase, µg ,

βµg = βµ =

(

∂ ln Q

∂N

)

M,T

= −
(

∂ ln Ω

∂N

)

M,T

+

s
∑

j=1

kj ln

[

Yj

Y ∗
j

]

(142)
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where1

Yij =
θij/θtj

1 −
∑

j=1

θij

(143)

and Y1j = Y1. θij is the coverage of site of type i by units of type j, θtj the coverage3

of units type j on the whole surface, and Y ∗
j = (Mj/M)/(1 − kN/M).

The θij ’s and θtj ’s come from constrain equations5

w
∑

i=1

Mi

M
θij = θtj ; j = 1, . . . , s . (144)

and7

θij
(

1−∑j θij

) =
θ1j expβ (εij − ε1j)
(

1 −∑j θ1j

) ; i = 1, . . . , m; j = 1, . . . , s . (145)

Using the Flory–Huggins’s approximation for the first term on the right hand9

side of Eq. (142) one obtains2, 96, 97

βµ = ln θ − k ln(1 − θ) +

s
∑

i=1

kj ln
Yj

Y ∗
j

. (146)
11

However, from the exact combinatorial factor of k-mers on a homogeneous one-

dimensional lattice, Eq. (3),13

βµ = ln θ + (k − 1) ln

[

1 − (k − 1)

(k)
θ

]

− k ln(1 − θ) +

s
∑

i=1

kj ln
Yj

Y ∗
j

(147)

where the term corresponding to the contribution of heterogeneity has been left15

identical in both equations.

As it will shown in the next, by comparison of Eqs. (146) and (147) with MC17

simulations for dimers and 4-mers, the modified isotherm [Eq. (147)] performs signif-

icantly better than Eq. (146) in fitting simulation results in one and two dimensions19

using the same set of parameters in all cases.

The results can be sorted in two sets. In Figs. 33–36 comparisons between MC21

simulation for dimers (Figs. 33 and 35) and 4-mers (Figs. 34 and 36) in one and

two dimensions and analytical isotherms from Eqs. (146) and (147) are depicted.23

In all cases simulation data are represented by solid circles, the results from the

original (Eq. (146)) and modified isotherm [Eq. (147)] are plotted in dashed lines25

and solid lines, respectively. MC simulation were done by following the standard

Metropolis algorithm in the grand canonical ensemble.27

Three sets of curves are compared in each of these figures; one corresponds to

the homogeneous surface, β∆ε = 0, while the two remaining do for the simplest29

heterogeneous surfaces consisting of two types of sites whose relative adsorption

energy difference is β∆ε = 2 or 4 [since we are here dealing with homonuclear31

k-mers and only two type of sites β∆ε = β(ε11 − ε12)]. This enable us to observe
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the general effects of heterogeneity on the adsorption isotherm (which have been1

extensively discussed in Refs. 96, 97 and 2 as well as the accuracy of the model

isotherms for fitting the simulation data.3

For dimers (Figs. 33 and 35) both isotherms reproduce qualitatively well the

trend of the data, even for fairly strong heterogeneous surfaces (β∆ε = 4). The5
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Fig. 33. Adsorption isotherm for multisite occupancy adsorption on homogeneous and heteroge-
neous surfaces. The surface is assumed to consist of two type of sites, with equal concentration
distributed at random. The surface heterogeneity is related to the site energy difference β∆ε. In
this case MC simulation of dimer adsorption on a one-dimensional lattice are compared with ana-
lytical isotherms from Eqs. (146) and (147) for various values of surface heterogeneity; β∆ε = 2, 4.
The case of homogeneous surface, β∆ε = 0, is also shown. Solid circles correspond to MC simu-
lation in the grand canonical ensemble; dashed lines are isotherms from Nitta’s equation (146);
solid lines are results from modified equation (147).
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Fig. 34. Same as Fig. 33 for 4-mers in one dimension.
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Fig. 35. Same as Fig. 33 for dimers in two dimensions.
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Fig. 36. Same as Fig. 33 for 4-mers in two dimensions.

modified isotherm [Eq. (147)] performs quantitatively better in all the cases stud-1

ied. It is worth mentioning that (as a general characteristic) the accuracy is better

for two dimensions compared to one dimension as the surface becomes more het-3

erogeneous (see the case β∆ε = 4 in Figs. 33 and 35). This is also valid for 4-mers

(case β∆ε = 4 in Figs. 34 and 36) and it is expected to be the general behavior for5

larger molecules.

It is also interesting to notice that for a given heterogeneity (a given value7

of β∆ε), the larger the adsorbate molecule the better Eq. (147) reproduce the

simulation. This is also observed for Eq. (146) although in a qualitatively sense.9

This behavior can be traced to the fact that as the size of the adsorbate increases
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Fig. 37. (a) Comparison between experimental adsorption isotherms from Ref. 3 for CO,N2, O2

on zeolite 5A and the theoretical isotherm from Eq. (147). Solid squares represent experimental
data and solid lines correspond to the theoretical isotherm. The concentration of strongly and
weakly adsorptive sites is f1 = 0.33 and f2 = 0.67 taken from Ref. 2. The site energy differences
are ∆ε/kB = 0.00 K; 242.42 K; 500.00 K for O2,N2, CO respectively. In order to compare with
the experimental it has been assumed an ideal gas phase, thus βµ = ln(p/po). In all the cases the
adsorbed molecules are assumed to be dimers, thus the corresponding adsorbate size is n = 2.
(b) Same as part (a) for CO,N2,O2 on zeolite 10X. The concentration of strongly and weakly
adsorptive sites is f1 = 0.22 and f2 = 0.78 taken from Ref. 2. The site energy differences are
∆ε/kB = 0.00 K; 505.05 K; 757.57 K for O2,N2, CO respectively In all the cases the adsorbed
molecules are assumed to be dimers, thus the corresponding adsorbate size is n = 2.

the adsorption energy distribution smoothes out owing to the appearance of a larger1

number of adsorption energy levels which decreases the effective heterogeneity seen

by the adsorbate (a quantitative measure of this effective heterogeneity could be3

the ratio ε̄k/∆ε, where ε̄k is the mean adsorption energy of a k-mer and ∆ε the site

energy difference for individual units of the k-mer).5

In Figs. 37(a) and 37(b) experimental adsorption isotherms of CO, N2 and O2

on zeolites 5A and 10X from Danner et al.3 are fitted by the function Eq. (147).7

As discussed in Refs. 96, 97, 2 and 119 this systems can be characterized by an

adsorption lattice with two type of sites. The agreement is good in all cases although9

no adsorbate-adsorbate interactions have been accounted for.

It should be mentioned that good quantitative agreement can also be obtained11

by fitting the data with Eq. (146) although values of k 6= 2 are sometimes necessary

for a proper fitting.2, 96, 9713

5.3. Multilayer adsorption of polyatomics: An improved Isotherm

for surface characterization15

Multilayer adsorption has been attracting a great deal of interest since long

ago110, 113, 121 and the progress in this field has gained a particular impetu due17

to its importance for the characterization of solid surfaces. Various theories have
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been proposed to describe multilayer adsorption in equilibrium. Among them, the1

Brunauer-Emmet–Teller (BET) model122 is one of the most widely used and practi-

cally applicable. The great popularity of the BET equation in experimental studies3

of adsorption has led some authors to extend the original theory of multilayer ad-

sorption. Thus, numerous generalizations of the BET model have been reported5

in the literature, including surface heterogeneity, lateral interaction between the

admolecules, differences between the adsorption energy and structure between the7

first and upper layers, etc.113 These leading models, along with much recent con-

tributions, have played a central role in the characterization of solid surfaces by9

means of gas adsorption.2

In practical situations, most adsorbates are polyatomic. Hence, a more accurate11

description of multilayer adsorption should account for the fact that it develops in

general with multisite occupancy. Thus, the entropic contribution to the thermody-13

namic potentials will be appreciably different from the one expected for single-site

occupancy.71, 80, 81, 87 Although many other factors have been considered in multi-15

layer adsorption, multiple occupation of sites have been neglected at all. In this

context, the aim of the present section is to extend the treatment of Ref. 122 to in-17

clude adsorbates occupying more than one site. For this purpose, a new theoretical

formalism115 is presented based upon (i) the analytical expression of the adsorption19

isotherm at monolayer and (ii) a mapping from the grand partition function of the

monolayer to the grand function of partition of the multilayer, where the fugacity21

of the monolayer transforms into the grand partition function of a single column of

k-mers.23

In order to maintain the simplest model that accounts for multisite-occupancy

in multilayers we define it in the spirit of the BET’s original formulation.122 The25

adsorbent is a homogeneous lattice of sites. The adsorbate is assumed as linear

molecules having k-identical units each of which occupies an adsorption site. Fur-27

thermore, (i) a k-mer can adsorb exactly onto an already adsorbed one; (ii) no

lateral interactions are considered; (iii) the adsorption heat in all layers, except29

the first one, equals the molar heat of condensation of the adsorbate in bulk liq-

uid phase. Thus, c = q1/qi = q1/q with qi = q(i = 2, . . . ,∞) denotes the ratio31

between the single-molecule partition functions in the first and higher layers. The

fact that k-mers can arrange in the first layer leaving sequences of l empty sites33

with l < k, where no further adsorption of a k-mer can occur in such a configura-

tion, makes the calculation of entropy much elaborated than the one for monomer35

adsorption.

For a lattice having M adsorption sites, the maximum number of columns that37

can be grown up onto it is nmax = M/k. Let us denote by Ω(n, M) the total number

of distinguishable configurations of n columns on M sites. If an infinite number of39

layers is allowed to develop on the surface, the grand partition function, Ξmul, of the

adlayer in equilibrium with a gas phase at chemical potential µ and temperature41
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T , is given by1

Ξmul =

nmax
∑

n=0

Ω(n, M)ξn (148)

where ξ is the grand partition function of a single column of k-mers having at least3

one k-mer in the first layer. Then,

ξ =

∞
∑

i=1

q1q
i−1λi

mul = c

∞
∑

i=1

qiλi
mul =

cλmulq

1 − λmulq
=

cx

1 − x
(149)

5

where λmul = exp(µ/kBT ) is the fugacity. In addition, it is possible to demonstrate

that x = λmulq = p/po is the relative pressure.2, 115, 1167

On the other hand, the grand partition function of the monolayer, Ξmon, can be

written as9

Ξmon =

nmax
∑

n=0

Ω(n, M)λn
mon (150)

in this case, n represents the number of adsorbed k-mers and λmon is the monolayer11

fugacity.

By comparing Eqs. (148) and (150) and from the condition,

λmon = ξ

=
cp/po

1 − p/po
⇒ p

po
=

1

1 + cλ−1
mon

, (151)

we can write the monolayer coverage, θmon, as13

θmon =
k

M
n =

k

M
λmon

(

d ln Ξmon

dλ

)

M,T

=
k

M
ξ

(

d ln Ξmul

dξ

)

M,T

(152)

where T and n are the temperature and the mean number of columns, respectively.15

In addition, the total coverage, θ, can be written as

θ =
k

M
N =

k

M
λmul

(

d ln Ξmul

dλmul

)

M,T

(153)
17

where N is the mean number of adsorbed k-mers. After some algebra the total

coverage can be written in terms of the monolayer coverage,

θ =
k

M
λmul

(

d ln Ξmul

dξ

)

M,T

dξ

dλmul

=
θmon

(1 − p/po)
. (154)

Finally, the theoretical procedure can be described as follows:

(1) By using θmon as a parameter (0 ≤ θmon ≤ 1), the relative pressure is obtained19

by using Eq. (151). This calculation requires the knowledge of an analytical

expression for the monolayer adsorption isotherm.21
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(2) The values of θmon and p/po are introduced in Eq. (154) and the total coverage1

is obtained.

The items (1) and (2) are summarized in the following scheme:3

θmon + λ(θmon) + Eq. (151) → p/po ⇒ θmon + p/po + Eq. (154) → θ . (155)

By following the scheme presented in the last paragraph, we can obtain the5

exact solution for multilayer adsorption of k-mers on a one-dimensional lattice.

We start from the Eq. (13)7

λmon =
θmon

k

[

1 − (k − 1)

k
θmon

]k−1

(1 − θmon)k
(156)

which represents the one-dimensional exact isotherm of k-mers adsorbed at mono-9

layer.

Substituting Eq. (156) into Eq. (151), one obtains the following expression for11

the relative pressure,

p

po
=

θmon

[

1 − (k − 1)

k
θmon

]k−1

kc (1 − θmon)
k

+ θmon

[

1 − (k − 1)

k
θmon

]k−1
. (157)

13

Equations (154) and (157) represent the exact solution describing the adsorption

of k-mers at multilayer regime on a homogeneous surface in 1-D. In the case of15

monomer adsorption (k = 1), Eqs. (154) and (157) reduce to the well-known BET

isotherm,122 i.e.17

θ =
cp/po

(1 − p/po) [1 + (c − 1)p/po]
k = 1 . (158)

For k = 2, the dimer isotherm can be written in a simple form:19

θ =
1

(1 − p/po)

{

1 −
[

1 − p/po

1 + (4c − 1)p/po

]1/2
}

k = 2 . (159)

By using other methodology, Eq. (159) has been recently reported in the21

literature.116

In Fig. 38 we address the comparison between the analytical adsorption isotherm23

in 1-D and MC simulation. The simulations have been performed for monomers,

dimers and 10-mers adsorbed on chains of M/k = 1000 sites with periodic boundary25

conditions. Different values of the parameter c have been considered. In all cases,

the computational data fully agree with the theoretical predictions, which reinforces27

the robustness of the two methodologies employed here.

As it can be observed from Fig. 38, for certain values of the parameter c, the29

corresponding isotherm has a point of inflection. The point of inflection can be

obtained in three steps: (1) differentiating twice the adsorption isotherm equation31
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Fig. 38. Adsorption isotherms for k-mers on one-dimensional lattice and different values of the
parameter c (as indicated). Solid lines and symbols represent theoretical and simulation results,
respectively.
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Fig. 39. Coordinates of the point of inflection (being XF and YF coverage and relative pressure,
respectively) for one-dimensional adsorption isotherms with different values of k (k = 1, 2, 10).
Each point (solid circle) in a given curve corresponds to a determined value of c, as indicated.

to obtain d2θ/dY 2 (being Y = p/po for the sake of simplicity); (2) equating the1

resulting expression to zero and solving for Y gives YF , the value of p/po at the

point of inflection; and (3) inserting YF in the adsorption isotherm equation gives3

θF , the value of θ at the point of inflection.

The location of the point of inflection (XF ≡ θF , YF ) is plotted in Fig. 395

for different values of c and k. Clearly, the value of θ at the point of inflection

may deviate considerably from unity. However, there exist a certain value of c =7
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Fig. 40. (a) cm (as it is indicated in the text) as a function of size of adsorbate, k, for adsorp-
tionisotherms of k-mers on one-dimensional lattices. (b) cn (as it is indicated in the text) as a
function of size of adsorbate, k, for adsorption isotherms of k-mers on one-dimensional lattices.

cm, where the point of inflection coincides with the point corresponding to the1

monolayer capacity. Figure 40(a) shows the behavior of cm as a function of k. The

values of cm, which have been obtained numerically in the range k = 1−10, provide3

a exponential dependence [exp (bk)]. As shown in the inset, b ≈ 0.79, obtained from

the slope of ln cm vs. k. For values of c between cm and infinity the adsorption at5

the point of inflection exceeds the monolayer capacity; for values of c below cm the

two quantities deviate more and more and for a limit value of c = cn, the point of7

inflection disappears. cn vs. k can be calculated analytically.115 The result of this

calculation is presented in Fig. 40(b). As it is can be visualized from the figure, the9

function cn(k) = 2/(2k − 1) separates two well differentiate regions: (i) for c > cn,

the isotherm is of Type II and (ii) when c is less than cn the isotherm is of Type11

III and discussion of the point of inflection is meaningless.

As it is well known, the main application of BET model consists in taking an13

experimental isotherm in the low-pressure region and fitting values of the monolayer

volume, vm, and the parameter c, from the slope and intercept of the linearized form15

of the BET equation,

p/po

v(1 − p/po)
=

1

cBET vm,BET
+

(cBET − 1)

cBET vm,BET
p/po . (160)

17

The new adsorption isotherm can be presented similarly to the linearized form

of the BET equation. If θ = v/vm, where v and vm denote the adsorbed volume19

and the monolayer volume, respectively, it then follows from Eq. (159) that

p/po

v(1 − p/po)
=

p/po

vm

{

1 −
[

(1 − p/po)

(4c − 1)p/po + 1

]1/2
}−1

. (161)
21

Equation (161) is not a linear function of p/po as the one arising from the BET

isotherm [Eq. (160)]. Then, it is of interest to study the behavior of k-mers multi-23

layer isotherms (with k ≤ 2) in the low-pressure region in comparison with BET
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Fig. 41. [p/po]/[v(1− p/po)] versus p/po for different values of c and k. All curves are plotted in
the range (0 − 0.3) of relative pressure and vm is set equals to 1 (in arbitrary units).

isotherm (k = 1). This comparison is shown in Fig. 41 for c = 5, 10, 100; k = 1, 2, 10;1

and pressures ranging from p/po = 0 up to p/po = 0.30. A linear function is only

obtained if k = 1. The nonlinear behavior of k-mers isotherms (k > 1) at low3

pressures, which is a distinctive characteristic of many experimental isotherms, is

showing that the polyatomic character of the adsorbate must be taking into account.5

The significant differences observed as k is varied indicate that the analysis

of experimental isotherms of larger molecules by means of the k-mers isotherm7

[Eqs. (154) and (157)] would lead to values of the parameters c and vm appreciably

different from the BET ones. To analyze this effect, we expand the right hand of9

Eq. (161) in powers of p/po around p/po = 0, the first order approximation leads

to11

p/po

v (1 − p/po)
≈ 1

2cvm
+

(3c − 1)

2cvm
p/po . (162)

By matching the linear forms of Eqs. (160) and (162), it gives c = cBET /3, and13

vm = (3/2) vm,BET . In fact, the value vm = 1.5 vm,BET is consistent with the fact

that multiple site occupation of N2 on graphite would lead to surface areas 1.2215

times larger that the BET values, as discussed long ago in Ref. 123. Ultimately,

the rigorous treatment of multilayer adsorption considering the polyatomic nature17

of the adsorbate, is indicating that the surfaces area that can be obtained by using

the isotherm Eq. (159), results significantly larger than the BET area, consistently19

with much evidence about that the later generally underestimates the real surface

area when nonspherical probe molecules are used. However, the influence of the21

nonlinear terms of Eq. (161) will ultimately lead to a different relationship between

c, cBET , vm and vm,BET , when fitting of experimental data is carried out.23
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The nonlinear behavior of isotherm Eq. (159) at low pressure matches also a1

distinctive characteristic of many experimental isotherm. Although there are many

potential sources for such a nonlinearity (e.g. lateral interaction and surface het-3

erogeneity), the present results are showing that the entropic contributions coming

from the adsorbate structure are not non-negligible even though lateral interactions5

and surface heterogeneity are not accounted for in the model.

Nevertheless, the physical meaningfulness of the proposed adsorption isotherm7

for dimers has to be supported by an extensive analysis of experiments. Regarding

this purpose, accurate isotherms of N2, O2, CO, and light alkanes on nonporous9

solids, with significant number of data in the low pressure regime, are necessary

to ascertain the accuracy and applicability of adsorption isotherm of Eq. (159)11

as compared to the BET and other theories of multilayer adsorption.124 In addi-

tion, calorimetric measurements would provide an independent test for the values13

obtained from adsorption data.

Although such a detailed analysis is out of the main goal and scope of the15

present work, fitting of standard data for the systems Ar, N2/nonporous silica, and

Kr, n-butane, CHCl2F/ silver foil121 is displayed in Figs. 42(a) and 42(b). The17

corresponding fitting parameters are shown in Tables 2 and 3. It is worth noticing

that the values of vm and c resulting of the fitting from the isotherm Eq. (159)19

differ from those corresponding with BET analysis, and in all cases c < cBET and

vm > vm,BET .21
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Fig. 42. (a) Fitting of experimental adsorption isotherms of the systems N2, Ar/non porous
silica, through the dimer isotherm Eq. (159). The resulting values of the parameters c and mono-
layer volume vm are shown in the Table 2 along with the ones arising from fitting with the
BET model. (b) Idem as in part (a) for Kr, n-butane, CHCl2F/silver foil. The resulting values
of c and vm from fitting are shown in the Table 3. The solid line represents the isotherm for

dimers obtained in the present work [Eq. (159)], and the dashed line represents the BET isotherm
(monomers).
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Table 2. Resulting values of the parameters c and monolayer volume vm from fitting in

Fig. 42 (a).

Adsorbate/
non porous Dimer isotherm BET

silica c vm(cm3g−1) cBET vm,BET (cm3g−1) vm/vm,BET c/cBET

N2 106.9 ± 17.8 40.8 ± 0.5 135.2 ± 20.6 37.7 ± 0.4 1.16 0.56
Ar 23.4 ± 1.6 37.6 ± 0.4 41.5 ± 3.2 32.5 ± 0.5 1.08 0.79

Table 3. Resulting values of the parameters c and monolayer volume vm from fitting in Fig. 42(b).

Dimer isotherm BET

Adsorbate/ vm · 101 vm,BET · 101

silver foil c (cm3g−1) cBET (cm3g−1) vm/vm,BET c/cBET

Kr 17.34 ± 3.78 3.57 ± 1.19 21.24 ± 1.30 3.26 ± 0.00 1.09 0.82
CHCl2F 7.50 ± 1.63 1.71 ± 0.01 13.33 ± 2.72 1.47 ± 0.01 1.16 0.56

n − C4H10 2.58 ± 0.10 1.97 ± 0.00 6.35 ± 0.17 1.52 ± 0.00 1.30 0.41

6. Conclusions1

The problem of equilibrium adsorption of polyatomics has been dealt from vari-

ous perspectives. In one dimension, a comprehensive description of thermodynamic3

functions and their dependence on parameters as the type of interactions, adsorbate

size, temperature, and surface coverage was given through their exact forms. The5

model also provides a background to approximate the thermodynamic functions

of more complex quasi-one-dimensional adsorbents as carbon nanotube bundles,7

where molecules within a channel can interact with their neighbors along the same

channel, as well as with others adsorbed in neighboring channels because of the bun-9

dle packing. Transversal interactions can be easily accounted for by incorporating

them through a mean-field in the free energy expression.11

On the other hand, the knowledge of thermodynamic properties of polyatomic

gases in two dimensions is limited owing, basically, to the difficulties that ac-13

curate calculations of entropy and free energies pose. It is worth noticing that

even for the simple problem of non-interacting dimers on regular lattices, which15

we are addressing here, there no exist a rigorous solution for the configurational

entropy. However, new analytical contributions to this problem have been pre-17

sented in our contribution and and contrasted with former development on k-mers

themodynamics.19

The behavior of the analytical adsorption isotherms can be explained as follows.

FHL and GD predict a smaller θ than the simulation data over all range of coverage.21

In the case of EA, the disagreement turns out to be large for intermediate θ’s

and a good approximation is recovered for high coverage. With respect to the23

connectivity, EA and FSTA (FHL and GD) become more accurate as γ diminishes

(increases). The behavior of GD and EA justifies the methodology used to build25
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the SE isotherm in Eq. (86), being SE approximation the most accurate for all1

cases.

Of special interest results fractional statistics thermodynamic theory of adsorp-3

tion of polyatomics. In fact, even in its simplest degree of approximation, FSTA

provides already a good approximation with very small differences between simu-5

lated and theoretical results. The superiority of this description relies in its scope

(potentially applicable to a wide set of adsorption systems ranging from small poly-7

atomics, hydrocarbons, and perhaps up to light polymers), its simplicity (closed

forms of functions), the smallest number of parameters necessary to account for the9

surface-molecule/molecule-molecule interactions and the configuration state of the

admolecule, and the proposition of a general relationship to address the configura-11

tion spectrum of the admolecules upon density from thermodynamic (adsorption)

data.13

With respect to interacting polyatomic adsorbates in two dimensions, a gener-

alization of the Bragg–Williams and quasi-chemical approximations has been pre-15

sented. The main thermodynamic functions of adsorption (adsorption isotherm,

configurational energy, isosteric heat of adsorption, specific heat and configura-17

tional entropy of the adlayer) have been calculated. QCA leads to exact results

in one dimension and provides a close approximation to study adsorption of poly-19

atomics on two-dimensional surfaces with different geometries (square, honeycomb

and triangular).21

From the comparison with MC simulations, appreciable differences can be seen

for the different approximations, QCA being the most accurate for all cases. In23

addition, the artificial effects that the BWA induces on the main thermodynamic

functions can now be rationalized and compared with other analytical approaches.25

In summary, the proposed theoretical scheme represents a qualitative advance

with respect to the existing development on k-mers thermodynamics and seems to27

be a promising way toward a more accurate description of the adsorption thermody-

namics of polyatomic molecules. In this sense, future efforts will be directed to (1)29

study the critical behavior of the system for attractive and repulsive interactions,

(2) extend the calculations to kinetic properties as diffusion coefficient, thermal31

desorption, etc and (3) consider different forms for Ω(N, M, γ) in Eqs. (105) and

(120), analyzing its influence on the thermodynamic functions.33

Finally, three applications of the theoretical results presented in this review

have been discussed. In the first case, the applicability and versatility of FSTA to35

describe complex adsorption systems have been analyzed. For this purpose, simula-

tion data of flexible k-mers and experimental data of C3H8/13X and O2/5A have37

been studied by using FSTA model. The results show that the concept of statisti-

cal exclusion (g > 1) allows to handle the complexity of the entropy of adsorbed39

polyatomics traced to the adsorbate’s configuration and interactions, and thus, the

spatial mode of adsorption can be quantitatively assessed from experiments through41

the parameter g. Additionally, FSTA provides the basis to investigate the changes of
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adsorbate’s configuration upon density [configurational spectroscopy, G̃0
′
(N)] from1

thermodynamic data. The theory gives a framework and compact equations to

consistently interpret thermodynamic adsorption experiments ranging from simple3

species to elaborated polyatomics such as alkanes, alkenes, and other hydrocarbons

on regular surfaces.5

In the second case, the modification of the Nitta’s original isotherm for multisite

occupancy adsorption on heterogeneous surfaces, by incorporating the exact form7

for the homogeneous part of the Helmholtz free energy (instead of the approxi-

mate form of it resulting from the Flory–Huggins’s approach) has been proposed.9

The formalism leads to an improved modified adsorption isotherm equation enable

to accurately reproduce MC simulations of dimers and 4-mers adsorption on one11

and two dimensional heterogeneous surfaces. In addition, experimental isotherms

of dimers adsorbed in zeolites cages with two type of sites can be reproduced by the13

modified isotherm with a set of parameters that are thermodynamically reasonable

and in agreement with previous studies.2, 96, 97, 11915

The knowledge of the exact coverage and temperature dependence of the free

energy of linear adsorbates in a homogeneous one-dimensional space allows the17

development of a more accurate description of the adsorption isotherm for het-

erogeneous surfaces. In this case, the observed differences with respect to former19

approaches can be attributed to the configurational entropy that is more properly

taken into account in the present case.21

In the last case, an analytical approach to the multilayer adsorption isotherm of

polyatomic adsorbates has been proposed. The approximation provides the isotherm23

in the multilayer regime from the isotherm at monolayer. In this framework, exact

solution in one dimension was obtained and calculations can be extended to k-mers25

in two-dimensional surfaces.

Preliminary analysis of polyatomic adsorption data indicates that the values of27

monolayer volume, vm, and c, arising from using the dimers isotherm equation are

more realistic than the ones from BET characterization. The monolayer volume29

(or equivalently, surface area) and the parameter c resulting from experiments by

using the linearized form of the new isotherm could be up to 1.5 and 1/3 times the31

corresponding ones from BET.

The proposed model is simple, easy to apply in practice, and leads to new33

values of surface area and adsorption heats. Physically, these advantages are a

consequence of properly considering the configurational entropy of the adsorbate.35

This treatment, in which the entropic effects of the adsorbate size are accounted for,

bears theoretical interest because it represents a qualitative advance with respect37

to the existing models of multilayer adsorption.
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115. F. Romá, A. J. Ramirez-Pastor and J. L. Riccardo, Surf. Sci. 583, 213 (2005).
116. J. L. Riccardo, A. J. Ramirez-Pastor and F. Romá, Langmuir 18, 2130 (2002).17
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