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ABSTRACT 1 

Aim: to identify new transcriptomic alterations in pancreatic islets associated with 2 

metabolic dysfunctions in people with prediabetes (PD)/type 2 diabetes (T2D). 3 

Materials and methods: We collected information from public data repositories T2D 4 

related microarray datasets from pancreatic islets. We identified Differential Expressed 5 

Genes (DEGs) in non-diabetic (ND) versus people with T2D in each study. To identify 6 

relevant DEGs in T2D, we selected those that varied consistently in the different studies 7 

for further meta-analysis and functional enrichment analysis. DEGs were also evaluated 8 

at the PD stage.  9 

Results: A total of 7 microarray datasets were collected and analyzed to find the DEGs 10 

in each study and meta-analysis was performed with 245 ND and 96 T2D cases.  11 

We identified 55 transcriptional alterations potentially associated with specific 12 

metabolic dysfunctions in T2D. Meta-analysis showed that 87% of transcripts identified 13 

as DEGs (48 out of 55) were confirmed as having statistically significant up- or down-14 

modulation in T2D compared to ND. Notably, 9 of these DEGs have not been 15 

previously reported as dysregulated in pancreatic islets from people with T2D. 16 

Consistently, the most significantly enriched pathways were related to the metabolism 17 

and/or development/maintenance of β-cells. 18 of the 48 selected DEGs (38%) showed 18 

an altered expression in islets from people with PD. 19 

Conclusions: These results provide new evidence to interpret the pathogenesis of T2D 20 

and the transition from PD to T2D. Further studies are necessary to validate its potential 21 

use for the development/implementation of efficient new strategies for the prevention, 22 

diagnosis/prognosis and treatment of T2D.  23 

 24 

 25 
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INTRODUCTION 1 

Type 2 diabetes (T2D) is a worldwide, continuously increasing disease characterized by 2 

metabolic dysfunction diagnosed from persistent hyperglycemia resulting from 3 

impaired insulin secretion or/and action1. It represents a serious public health problem 4 

due to its frequent association with other cardiovascular risk factors and the 5 

development/progression of chronic complications that decrease the quality of life of 6 

the patients and significantly increase their cost of care2. Although they can be 7 

prevented, these complications result mainly from delayed diagnosis and poor metabolic 8 

control of the disease3. 9 

The clinical manifestations of T2D are preceded by a period of metabolic dysfunction 10 

known as prediabetes (PD), characterized by impaired fasting glucose, impaired glucose 11 

tolerance, or the association of these alterations4. The transition from PD to T2D can be 12 

significantly prevented (up to 58%) by adopting healthy lifestyles5,6.  13 

A key factor in the pathogenesis of T2D is the early and progressive decrease in 14 

pancreatic β-cell mass and function which results in deficient insulin secretion 15 

frequently associated with decreased response of target tissues to this hormone’s 16 

action7,8. Although several molecular alterations have been identified in the pancreatic 17 

β-cells of people with T2D9, its gene expression profiling and the underlying molecular 18 

alterations of its pathogenia are still subjects of active research.   19 

In recent years, comprehensive assessments of molecular alterations have been obtained 20 

by studying the transcriptomic features of isolated islets by microarray or RNA-21 

sequencing. However, these studies require high technology and economic resources 22 

not always easily available. In this regard, some databases compile data from these 23 

types of assays, such as ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) and GEO 24 

(https://www.ncbi.nlm.nih.gov/gds). These data are freely available for utilization by 25 
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the research community, and their adequate integration/interpretation facilitates 1 

elucidation of significant biological alterations.  2 

On account of this situation we have currently collected, integrated, and analyzed 3 

datasets of microarray studies attempting to identify new relevant transcriptomic 4 

alterations in pancreatic islets/ β-cells from people without diabetes (ND), with T2D and 5 

with PD. We assume that these data may provide new evidence to understand the 6 

pathogenesis of PD/T2D, facilitating the development of effective strategies for early 7 

diagnosis of both diseases, and also prevent the transition of PD to T2D.   8 

 9 

MATERIALS AND METHODS 10 

Selection of microarray datasets from GEO and ArrayExpress  11 

T2D related microarray datasets from pancreatic islets were collected from public data 12 

repositories: Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and 13 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/). The keywords used to perform the 14 

search were "type 2 diabetes" and "pancreatic islets/pancreatic β-cells” and "homo 15 

sapiens".  16 

We selected only those studies from transcription profiling by array in which both ND 17 

and T2D people were included and each group contained more than five samples. The 18 

search was expanded using PubMed with the same selection criteria mentioned above. 19 

In the case of PD, we also searched related microarray datasets from pancreatic islets 20 

using the keywords: “prediabetes/impaired glucose tolerance/impaired fasting glucose”, 21 

“pancreatic islets/pancreatic β-cells”, and “homo sapiens”. These searches were updated 22 

in April 2019.  23 

Using the GEO and ArrayExpress databases and the keywords mentioned above, we 24 

found 22 different studies containing samples of people without (ND) and with T2D. 25 
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Although 6 of them were array-based transcriptomics studies, one was excluded because 1 

it included only one patient with diabetes. Therefore, we used 5 studies from this 2 

source: GSE50397 (Fadista J et al10, Taneera J 2014 et al11, Taneera J 2019 et al12), 3 

GSE38642 (Taneera J 2012 et al13, Taneera J 2013 et al14, Kanatsuna N et al15), 4 

GSE25724 (Dominguez V et al16), GSE20966 (Marselli L et al17), E-CBIL-20 (Gunton 5 

JE et al18), plus two others from PubMed search: GSE76894 and GSE76895 (Solimena 6 

M et al19). Their main data characteristics are summarized in Table 1.  7 

 8 

Identification of Differential Expressed Genes (DEGs) across T2D studies 9 

Raw data (CEL. format files) of the following studies were downloaded from 10 

GEO/ArrayExpress: GSE5039710–12, GSE3864213–15, GSE2572416, GSE2096617, E-11 

CBIL-2018, GSE76894 and GSE7689519. These datasets were preprocessed using 12 

R/Bioconductor package Oligo20 (GSE50397, GSE38642) or Affy21R packages 13 

(GSE25724, GSE20966, E-CBIL-20, GSE76894, GSE76895) according to the platform 14 

of each dataset. 15 

Data were subjected to background correction, normalization and calculation of 16 

expression values using the robust multi-array average algorithm22.  17 

Differential Expressed Genes (DEGs) between ND and T2D people were detected 18 

employing the LIMMA package (Linear Models for Microarray data)23. P value <0.05 19 

was considered statistically significant and fold change (FC) >1.5 was considered 20 

biologically significant. Genes that met both criteria were considered DEGs in this 21 

study. Those that varied consistently in the same direction (down- or up-regulated) in at 22 

least 3 studies were considered relevant DEGs in T2D. This identification was effected 23 

using Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/). To integrate 24 

the information of the different studies, a random effect size meta-analysis for each 25 
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relevant DEG identified across the seven studies was performed using Comprehensive 1 

Meta-Analysis Software (https://www.meta-analysis.com/). Since more than one probe 2 

can map a gene, to perform this analysis we choose the probe that presented expression 3 

level values with the greatest variance (among the significant ones, if there were). 4 

 5 

Pathway and molecular interaction analysis  6 

Pathway analysis of the relevant DEGs in T2D were performed using the resource 7 

InnateDB (https://www.innatedb.com)24, one of the most comprehensive sources of 8 

pathways available. This type of analysis allows determination of those biological 9 

pathways that are significantly over-represented (represented more than expected by 10 

chance) in a list of certain genes/proteins.  11 

Since molecular interactions are important for studies of regulation of biological 12 

systems, we have built, visualized, and analyzed molecular interactions among proteins 13 

encoded by the relevant DEGs using the platform NetworkAnalyst 14 

(http://www.networkanalyst.ca)25. Specifically, a protein-protein interaction network 15 

was done with IMEx Interactoma database (International Molecular Exchange 16 

Consortium), a non-redundant set of physical molecular interaction data from a broad 17 

taxonomic range of organisms. The proteins involved in the most interactions were key 18 

nodes in the network.  19 

 20 

Analysis of selected DEGs expression in ND versus PD cases  21 

The expression level of the relevant DEGs was determined in ND, people with PD and 22 

people with T2D from GSE50397 and GSE76895 studies. Since more than one probe 23 

can map a gene, to perform this analysis we choose the probe that presented expression 24 

level values with the greatest variance. Scatter dot plots and statistical analyses were 25 
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performed using GraphPad Prism version 5.01 (GraphPad Software, USA). Data are 1 

presented as the mean ± standard error of the mean (SEM). Analyses between two 2 

groups (ND vs. PD) were done using one-tailed t-test. P values < 0.05 were considered 3 

statistically significant for each comparison.  4 

 5 

RESULTS 6 

Identification of relevant differentially expressed genes (DEGs) in T2D 7 

Each selected microarray study was analyzed using R/Bioconductor to find the DEGs 8 

comparing islets from people with/out diabetes (ND vs. T2D). Following this procedure, 9 

we found a total of 756, 576, 492, 381, 246, 196 and 78 DEGs in studies GSE76894, 10 

GSE25724, GSE20966, E-CBIL-20, GSE76895, GSE38642 and GSE50397, 11 

respectively. Each study showed different proportions of down- or up-regulated genes 12 

(Figure 1A). Supplementary table 1 shows all genes (and all probes corresponding to 13 

each gene) that have been identified as differently expressed in each study. 14 

In order to identify transcriptional alterations associated with metabolic dysfunctions in 15 

people with T2D, we selected those DEGs that varied consistently in the same direction 16 

(down- or up-regulated) in at least 3 studies. Based on this criterion, we identified 55 17 

relevant DEGs: 36 down-regulated and 19 up-regulated as shown in Figure 1B and 18 

Table 2. Whereas the 19 upregulated DEGs were simultaneously found in only 3 19 

studies, 25 of those downregulated were commonly found in 3 studies, 7 in 4 studies 20 

and 4 in 5 studies.  21 

Hierarchical clustering analysis showed a separation among the studies and identified 22 

two main groups: E-CBIL-20 and GSE25724, GSE38642, GSE50397, GSE76894, 23 

GSE20966, GSE76895 (Figure 1B).  24 
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As a result of meta-analysis, 87% of DEGs (48 out of 55) showed a significant 1 

alteration by integrating all studies. Notably, 9 of these DEGs have not been previously 2 

reported as dysregulated in T2D (Table 2, highlighted in gray); the corresponding p-3 

values are also shown in that Table. 4 

 5 

Functional enrichment analysis of relevant DEGs in T2D 6 

Attempting to find a functional association between the 55 relevant DEGs in T2D, we 7 

performed an analysis of the pathway and the protein-protein interaction network. As 8 

shown in Figure 2A, we found that the most significantly enriched pathways were 9 

directly related to metabolism and/or development of β-cells.   10 

The protein-protein interaction network represented in Figure 2B showed that among 11 

the upregulated DEGs, IL7R and IL6, were involved in the most interactions (12 and 6, 12 

respectively), thereby becoming key nodes in the network. Among the downregulated 13 

DEGs, NR0B1, SCD and PFKFB2 were involved in 4 interactions each. A principal 14 

node in the network was UBC which encodes Polyubiquitin-C, which in turn 15 

participates in protein recycling, interacting primarily with several down-regulated 16 

DEGs. 17 

 18 

Analysis of relevant DEGs in pancreatic islets from PD cases 19 

Based on the identification of the 48 potentially relevant DEGs which could play a role 20 

in the pathogenesis of T2D, we attempt thereafter to evaluate whether they could also be 21 

manifested at an early stage of the disease, i.e. PD.  22 

For this purpose, we repeated the previous search using the same methodology 23 

described above but related to PD without success. However, we found that in the 24 

previous search related to T2D, two of the selected studies (GSE50397 and GSE76895) 25 

This article is protected by copyright. All rights reserved.



had included pancreatic islets from people with PD (Table 1); therefore, we used them 1 

for the pertinent analysis.  2 

This analysis demonstrated that 18 of the 48 selected DEGs (38%) showed altered 3 

expression in islets from people with PD in at least one of the two available studies 4 

(Figure 1B, column PD). These results indicate that some of the transcriptional 5 

alterations observed in people with T2D were already present in the PD stage. In fact, 6 

data from the GSE50397 study showed significantly reduced expressions of SLC2A2, 7 

CHL1, GLRA1, PFKFB2, RASGRP1, CAPN13, TMED6, GLP1R, G6PC2, ROBO2, 8 

PLCXD3, RBP4, VATL1 and SLC4A8. Conversely, SV2B expression was significantly 9 

increased in islets from PD compared to ND people. Additionally, in the GSE76895 10 

study, we found significantly reduced expressions of PLA1, LINC01933 and TMED6 11 

and significantly increased expression of CD44. Relative expressions of DEGs not 12 

previously reported as dysregulated in PD are shown in Figure 3. Supplementary table 2 13 

shows a statistic of differentially expressed genes identified in islets from people with 14 

PD in at least one of the two available studies. 15 

 16 

DISCUSSION 17 

Using the previously explained methodology and a slightly restrictive cutoff value (p 18 

value<0.05 and FC>1.5), we have currently identified 55 genes differentially expressed 19 

in islets from people with T2D that exhibited consistent transcriptional alterations 20 

among the different datasets. Then, we have performed the meta-analysis using 21 

combined data from different studies, thus attaining greater statistical power. As a 22 

result, 48 genes were confirmed as having statistically significant up- or down-23 

modulation in T2D vs. ND. This integrative approach allowed the identification of some 24 
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transcriptional alterations among these 48 genes that not being reported as relevant in 1 

the original studies. 2 

Despite RNA sequencing in recent years has become an important technology for 3 

transcriptomic analysis, at the time we performed the dataset search, most of the studies 4 

found corresponded to microarray assays. In the next few years however, new studies 5 

based on RNA sequencing would allow the identification of novel biomarkers, such as 6 

new alternative splicing isoforms, that cannot be identified by closed platforms like 7 

microarrays.  8 

Since the studies selected were carried out under variable conditions (different 9 

operators, people from different populations, diverse islet extraction and analysis 10 

techniques), the signature found represents the more reproducible transcriptional 11 

changes. Thus, we assumed that this signature could play an effective active role in the 12 

pathogenesis of T2D.  13 

As expected, the pathway analysis of these relevant DEGs showed several over-14 

represented pathways related to carbohydrate metabolism and the regulation of β-cell 15 

development and gene expression. Specifically, we found that the FOXA2 and FOXA3 16 

transcription factor network was the most enriched pathway. In this regard, Blodgett 17 

DM et al. have shown that several genes involved in early development are highly 18 

expressed in fetal islet cells, mainly those that are associated with 19 

inflammatory function26. Further, FOXA proteins are expressed early in embryonic 20 

endoderm playing an important role in the regulation of gene expression in liver and 21 

pancreas and in the regulation of several pancreas-specific genes27. These genes include 22 

Pdx-1, a transcription factor that plays a pivotal role in pancreas development and islet 23 

cell ontogeny, being a major regulator of β-cell identity and function28. 24 
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Thirty-six of the 48 (75%) relevant DEGs currently described have been previously 1 

reported as being dysregulated in islets from people with T2D in some of the original 2 

microarray studies (SLC2A2, CHL1, PPP1R1A, ARG2, GLRA1, RASGRP1, FFAR4, 3 

PPM1E, CAPN13, HHATL, EDN3, ABCC8, RASGRF1, TAGLN3, TMEM37, 4 

GLP1R, SCD, HADH, G6PC2, PLCB4, PLCXD3, ELAVL4, ALDOB, CD44, TMED6, 5 

NR0B1, RBP4, VAT1L, SLC4A8, IL7R, MYCN, PLA1A, HS6ST2, PFKFB2, IAPP, 6 

GAD1)10–19. Another 3 genes (6%) were also reported as dysregulated in pancreatic 7 

islets from T2D in other experimental studies (IL33, NNMT, SV2B). Altogether, their 8 

previous reported identification lends validity support to the methodology currently 9 

employed and the results obtained. 10 

On the other hand, as far as we know, 9 genes (19%) of the signature have not been 11 

previously reported as dysregulated in islets from people with T2D, namely, 12 

LINC01933, LOC101929550, ROBO2, PNLIPRP1, AADAC, CCDC69, TPD52L1, 13 

ITIH4 and LINC01116.  We discuss some of these genes, as well as other genes of the 14 

signature poorly discussed in literature. For that purpose, we will consider them 15 

separately according to their dysregulation (either down- or up-regulated) and the 16 

mechanisms associated with islet mass and function. 17 

DEGs downregulated in islets from people with T2D: The protein encoded by 18 

ROBO2 gene is a transmembrane receptor for the slit homolog 2 protein and its 19 

presence becomes essential for endocrine cell type sorting and mature architecture in 20 

mice islets29. It has also been shown that SLIT-ROBO signaling potentiates insulin 21 

secretion and is required for β-cell survival30.  22 

MYCN, a proto-oncogene that encodes a bHLH transcription factor, has been associated 23 

with β-cell mass expansion during pregnancy31. Thus, its downregulation might be 24 

involved in the long-term impairments of the offspring32.  25 
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Some other DEGs might be associated with the process of β-cell membrane 1 

depolarization which opens the voltage-gated calcium channel raising the cytoplasmic 2 

Ca2+ concentration that finally triggers exocytosis of insulin-containing granules33. For 3 

example, the protein encoded by SLC4A8 is a solute carrier that mediates sodium- and 4 

carbonate-dependent chloride-HCO3-exchange, an important process for intracellular 5 

pH regulation34 which could control membrane polarization/depolarization process. 6 

Therefore, its down regulation may play an active role in the impaired secretion of 7 

insulin in T2D.  8 

On the other hand, HS6ST2 (Heparan Sulfate 6-O-Sulfotransferase 2) is related to 9 

transferase activity and glycosaminoglycan metabolism. Hs6st2 knockout mice show 10 

increased body weight, impaired glucose metabolism and insulin resistance35.  11 

Since all these genes are related to metabolic and physical processes that promote β-cell 12 

function and mass, their downregulation might play a critical role in the pathogenesis of 13 

T2D.  14 

DEGs upregulated in islets from people with T2D: SV2B is one of the three 15 

homologous isoforms of synaptic vesicle protein 2, which participates in exocytosis 16 

process in a Ca2+-dependent manner36. Perhaps its upregulation is a compensatory 17 

response of β-cells to the higher hormone demand (insulin resistance) in people with 18 

T2D37. 19 

TPD52L1 gene which encodes a member of a family of proteins (D52-like proteins) has 20 

been identified as a cell cycle-regulated protein whose impairment affects the cell-21 

mitosis process38. Immune system dysregulation and inflammation have been strongly 22 

associated with T2D39,40. In our case, some of the novel DEGs identified in islets from 23 

people with T2D are related to immune response: ITIH4 and ILR7. It has been 24 

demonstrated that the protein encoded by ITIH4 gene was dramatically elevated in 25 
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poorly controlled T1D patients41. IL7R, is a key regulator of T lymphocyte development 1 

and homeostasis42, associated with adipogenesis and insulin resistance43-45. Moreover, 2 

based on the results of the protein-protein interaction analysis, IL7R was the molecule 3 

with the largest number of interactions, reflecting its crucial role in the regulation of 4 

biological systems implicated in T2D pathogenesis. Therefore, IL7R could be 5 

considered a novel therapeutic target. Altogether, this evidence shows that upregulation 6 

of the genes described strongly suggest that they might play an important role in the 7 

pathogenesis of development and progression of T2D.  8 

Others novel DEGs are associated with varied molecular function: lipid metabolism 9 

(PLA1A, PNLIPRP1 and AADAC), transcription activity (NR0B1), retinol binding 10 

(RBP4). Besides, little is known about the molecular function of the rest of the novel 11 

identified genes: CCDC69 (coiled-coil domain containing 69), VATL1 (vesicle amine 12 

transport 1 like) and 3 non-coding RNAs (LOC101929550, LINC01933 and 13 

LINC01116). Therefore, future studies are necessary to demonstrate their potential role 14 

in the islet function dysregulation associated with T2D.  15 

Throughout the identification of relevant DEGs in T2D islets, we aimed to assess 16 

whether these dysfunctional genes could be also identified at an early stage of this 17 

disease: i.e. prediabetes (PD). Data from GSE50397 and GSE76895 studies - which 18 

include analysis of prediabetic pancreatic islets - showed that 2 (SV2B and CD44) of 19 

the 13 upregulated genes (15%) and 16 (SLC2A2, CHL1, GLRA1, PFKFB2, 20 

RASGRP1, CAPN13, TMED6, GLP1R, G6PC2, ROBO2, PLCXD3, RBP4, VATL1, 21 

PLA1A, LINC01933 and SLC4A8) of the 35 downregulated genes (46%), were already 22 

present in people with PD.  23 

Some of these DEGs found in PD have not been previously associated with this disease 24 

stage in pancreatic islets. Among them, ROBO2, VAT1L, LINC01933, SV2B, 25 
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SLC4A8, PLA1A and RBP4 are discussed above. Otherwise, CD44, PFKFB2, GLP1R 1 

and CAPN13 have been reported to be altered in islets from patients with T2D, but not 2 

in islets from people with PD. Since they were not reported in PD islets but their effects 3 

on β-cell mass and function were already reported, we will not discuss them further19,46-4 

48. As for TMED6, it must be stressed that it was down-regulated in both studies 5 

performed with islets from people with PD.  6 

Altogether, the results above described suggest that the transcriptional alterations shown 7 

in all these genes could have an important role in the development of PD and also 8 

perhaps in its progression to T2D. 9 

In summary, we have identified several differentially expressed genes, not previously 10 

reported in islets from people with T2D that could potentially play a relevant role in the 11 

pathogenesis of the disease. Some of them were also identified in islets from people 12 

with an early stage of the disease (PD). It remains to be demonstrated whether their 13 

early expression in people with PD can be used as a marker to identify people with 14 

higher risk of its fast progression to T2D. Anyhow, these results provide new evidence 15 

to interpret T2D pathogenesis and the transition from PD to T2D. Further population 16 

studies are necessary to validate the latter hypothesis and its potential use for the 17 

development of new strategies to improve the prevention, diagnosis/prognosis and 18 

treatment of T2D. 19 
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 10 

Figure 1. Identification of relevant DEGs in T2D/PD 11 

A. Bar plot representing the number of DEGs (down- or up-regulated genes) in islets 12 

from ND versus T2D people of each selected microarray study. 13 

B. HeatMap plot of relevant DEGs in T2D and Hierarchical clustering analysis: each 14 

row represents DEGs that vary consistently in the same way (down- or up-regulated) in 15 

at least 3 studies, and each column represents a selected microarray study. Blue 16 

indicates down-regulated genes, red indicates up-regulated genes, and white indicates 17 

unaltered genes. The color intensity is proportional to the fold-change. Gray indicates 18 

relevant DEGs that present p-value of meta-analysis < 0.05. Black indicates relevant 19 

DEGs in islets from ND versus T2D people that also present altered expression in 20 

people with PD.  21 

 22 

Figure 2. Functional enrichment analysis of relevant DEGs in T2D. 23 

A. Visualization of pathway enrichment analysis of relevant DEGs in T2D. 24 

B. Protein-protein interaction network of relevant DEGs in T2D. Nodes represent the 25 
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genes/proteins inputs as seeds (Green and red nodes), as well as protein added by the 1 

platform to obtain a minimum network (Grey nodes). Green indicates down-regulated 2 

genes and red indicates up-regulated genes. The color intensity is proportional to the 3 

fold-change. Edges indicate interactions between the proteins. This network has 36 4 

seeds, 64 nodes and 95 edges. 5 

 6 

Figure 3. Relative expression of novel relevant DEGs in PD. 7 

Expression levels were extracted from the GSE50397 or GSE76895 studies. Data are 8 

presented as the mean ± standard error of the mean (SEM). Statistical analyses of two 9 

groups were done using one-tailed t-test. *p<0.05, **p<0.01, ***p<0.001. 10 

 11 

Table 1. Characteristics of selected microarray for analysis  12 

All the studies were performed on human pancreatic islets obtained from cadaverous 13 

donors except for the GSE76895 study that used material from pancreatectomized 14 

patients while the study GSE20966 was performed specifically on β-cell enriched 15 

tissue. Genders are expressed as males/females. Ages are expressed as mean±standard 16 

deviation (SD) in years. BMI are expressed as mean±SD in Kg/m². 17 

 18 

Table 2. List of relevant DEGs in TD2 19 

The novel relevant DEGs are highlighted in gray. Hits are the number of studies that 20 

share the specific DEG. The average fold-change (FC) for a certain gene was calculated 21 

by averaging the specific FC for each study. 22 

 23 

Supplementary table 1. DEGs in each selected study. 24 

Expression levels and statistics (for comparison ND vs T2D) of DEGs in each study (all 25 
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differentially expressed probes for each gene are shown). 1 

 2 

Supplementary table 2. Statistics for comparison ND vs. PD of relevant DEGs. 3 

The DEGs that show the same variation identified in T2D in at least one of the two 4 

available studies are shown (p-value<0.05). 5 

 6 

 7 

 8 

 9 
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Study information Patient information 

Serie Accession Platform Characteristics ND PD DT2 

GSE25724 (GEO) GPL96 n 7  - 6 

(reference 16)   Gender  4/3  -  3/3 

    Age 58±17  - 71±9 

    BMI  24.8±2.5  - 26.0±2.2 

E-CBIL-20 (ArrayExpress) GPL96 n 7  - 5 

(reference 18)   Gender  2/5  -  0/5 

    Age 48±13 (n=6)  - 47±8 (n=4) 

    BMI   -  -  -  

GSE38642 (GEO) GPL6244 n 54  - 9 

(reference 13, 14 and 15) Gender  25/29  -  4/5 

    Age 59±9  - 57±4 

    BMI  25.9±3.5  - 28.5±4.5 

GSE20966 (GEO) GPL1352 n 10  - 10 

(reference 17)   Gender  6/4  -  7/3 

    Age 60±5  - 67±7 

    BMI  30.5±6.5  - 30.9±6.2 (n=9) 

GSE76894 (GEO) GPL570 n 84  - 19 

(reference 19)   Gender 38/46  -  13/6 

    Age 60±16  - 72±7 

    BMI  25.8±4.2 (n=83)  - 26.5±3.6 

GSE50397 (GEO) GPL6244 n 51 15 11 

(reference 10, 11 and 12) Gender  33/18  9/6  5/6 

    Age 56±12 62±7 61±11 

    BMI  25.6±2.2 25.6±3.4 29.8±3.1 

GSE76895 (GEO) GPL570 n 32 15 36 

(reference 19)   Gender 16/16  9/6 23/13 

    Age 60±14 63±13 66±12 

    BMI  24.9±3.4 25.7±3.5 25.8±5.0 
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N° Gene symbol Entrez ID Full name Hits Average FC p -value meta-analysis

1 CHL1 10752 cell adhesion molecule L1 like -2,78 <0.001

2 SLC2A2 6514 solute carrier family 2 member 2 5 -2,74 <0.001

3 PPP1R1A 5502 protein phosphatase 1 regulatory inhibitor subunit 1A 5 -1,98 <0.001

4 ARG2 384 arginase 2 5 -1,83 <0.001

5 PFKFB2 5208 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 4 -2,06 <0.001

6 GLRA1 2741 glycine receptor alpha 1 4 -2,01 0,001

7 RASGRP1 10125 RAS guanyl releasing protein 1 4 -1,88 0,003

8 FFAR4 338557 free fatty acid receptor 4 4 -1,81 <0.001

9 PPM1E 22843 protein phosphatase, Mg2+/Mn2+ dependent 1E 4 -1,79 <0.001

10 CAPN13 92291 calpain 13 4 -1,64 <0.001

11 IAPP 3375 islet amyloid polypeptide 4 -1,59 <0.001

12 MYCN 4613 MYCN proto-oncogene, bHLH transcription factor 3 -2,24 <0.001
13 LINC01933 101927115 long intergenic non-protein coding RNA 1933 3 -2,15 <0.001

14 HHATL 57467 hedgehog acyltransferase like 3 -2,14 <0.001

15 PLA1A 51365 phospholipase A1 member A 3 -2,01 <0.001

16 EDN3 1908 endothelin 3 3 -2,00 0,045

17 LOC101929550 101929550 ncRNA uncharacterized 3 -1,95 0,003

18 TMEM37 140738 transmembrane protein 37 3 -1,91 <0.001

19 HS6ST2 90161 heparan sulfate 6-O-sulfotransferase 2 3 -1,90 <0.001

20 ABCC8 6833 ATP binding cassette subfamily C member 8 3 -1,89 0,003

21 RASGRF1 5923 Ras protein specific guanine nucleotide releasing factor 1 3 -1,83 0,001

22 GLP1R 2740 glucagon like peptide 1 receptor 3 -1,81 0,01

23 TMED6 146456 transmembrane p24 trafficking protein 6 3 -1,80 <0.001

24 TAGLN3 29114 transgelin 3 3 -1,79 <0.001

25 SCD 6319 stearoyl-CoA desaturase 3 -1,74 0,004

26 NR0B1 190 nuclear receptor subfamily 0 group B member 1 3 -1,68 0,008

27 HADH 3033 hydroxyacyl-CoA dehydrogenase 3 -1,65 <0.001

28 G6PC2 57818 glucose-6-phosphatase catalytic subunit 2  3 -1,64 <0.001
29 PLCB4 5332 phospholipase C beta 4 3 -1,64 0,003

30 RBP4 5950 retinol binding protein 4 3 -1,62 0,002

31 ELMO1 9844 engulfment and cell motility 1 3 -1,62 0,129

32 PLCXD3 345557 phosphatidylinositol specific phospholipase C X domain containing 3 3 -1,62 <0.001

33 ELAVL4 1996 ELAV like RNA binding protein 4 3 -1,61 <0.001

34 VAT1L 57687 vesicle amine transport 1 like 3 -1,59 <0.001

35 ROBO2 6092 roundabout guidance receptor 2 3 -1,59 0,012

36 SLC4A8 9498 solute carrier family 4 member 8 3 -1,53 0,001

37 ALDOB 229 aldolase, fructose-bisphosphate B 3 6,07 0,041

38 PNLIPRP1 5407 pancreatic lipase related protein 1 3 2,72 0,01

39 GAD1 2571 glutamate decarboxylase 1  3 2,10 0,023
40 MMP3 4314 matrix metallopeptidase 3 3 2,09 0,071

41 IL6 3569 interleukin 6 3 2,02 0,321

42 AADAC 13 arylacetamide deacetylase 3 1,99 <0.001

43 IL33 90865 interleukin 33 3 1,91 <0.001

44 CCDC69 26112 coiled-coil domain containing 69 3 1,85 0,028

45 TPD52L1 7164 TPD52 like 1  3 1,84 0,01
46 SV2B 9899 synaptic vesicle glycoprotein 2B 3 1,79 <0.001

47 TMPRSS2 7113 transmembrane serine protease 2 3 1,78 0,136

48 IL24 11009 interleukin 24 3 1,78 0,101

49 NNMT 4837 nicotinamide N-methyltransferase 3 1,77 0,046

50 ITIH4 3700 inter-alpha-trypsin inhibitor heavy chain 4  3 1,76 <0.001

51 LINC01116 375295 long intergenic non-protein coding RNA 1116  3 1,75 0,005

52 IL7R 3575 interleukin 7 receptor  3 1,71 0,001

53 LIF 3976 LIF interleukin 6 family cytokine 3 1,71 0,55

54 CD44 960 CD44 molecule (Indian blood group)  3 1,68 0,021

55 PDGFRA 5156 platelet derived growth factor receptor alpha  3 1,67 0,096

UPREGULATED DEGs

DOWNREGULATED DEGs
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