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a b s t r a c t

The study focuses on the reaction between hydrogen gas and LaNi5�xSnx alloys, where

0 � x � 0.5, in broad temperature and pressure ranges. It was performed by means of

dynamic volumetric techniques using specific equipment developed at our laboratory. The

substitution of Ni by Sn lowers the system equilibrium pressure and increases the

hydrogen absorption reaction rate. Reaction pressures at room temperature range from

8 kPa (x ¼ 0.5) to 250 kPa (x ¼ 0). At 415 K the reaction pressure is within the range from

200 kPa to 4000 kPa for x ¼ 0.5 and 0, respectively. The measured characteristic absorption

time at 750 kPa for LaNi5 is around 1 min, while it remains below 2.5 s for LaNi4.5Sn0.5. The

maximum H concentration goes from 1.3 wt.% for LaNi5 down to 0.95 wt.% for LaNi4.5Sn0.5.

These results are useful to identify a metal system where the hydrogen interaction equi-

librium properties can be tuned in a wide pressure range by choosing the chemical

composition and the process temperature.

Copyright ª 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.

1. Introduction

Hydrides belonging to the so-called AB5 family have been

intensively studied during the last decades due to their po-

tential for storing or purifying hydrogen. These alloys

combine an extended range of equilibrium pressures with

hydrogen and fast reaction kinetics at room temperature.

Although their relatively low gravimetric capacity (around

1 wt.% H) in comparison with newly developed hydrogen

storage materials hinders their use for mobile applications,

they are still convenient for static applications. Among the

AB5 alloys, LaNi5 has been the object of numerous studies due

to its good hydrogen interaction properties at room temper-

ature [1e3], its adequate resistance to cycling degradation

[4e6] and to the possibility of recovering the material after

degradation by means of a simple thermal treatment [4,7].

Several of LaNi5 hydrogen interaction properties can be

modified or adapted to a specific need by the partial substi-

tution of its elements [8e10]. For example, it is possible to

increase the equilibrium pressure by substituting part of La by

Ce [11], or to achieve an improvement in electrochemical

properties by replacing a fraction of La by Dy [12]. The partial

substitution of Ni, on the other hand, has been reported to

improve the resistance to thermal and pressure cycling

degradation [3]. Ni substitutions also produce changes in the

equilibrium pressure which could be useful for the develop-

ment of applications based on thesematerials. In particular, it

has been found that the substitution of small amounts of Ni by
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Sn produces a steep decrease on the equilibrium pressure and

improves the cycling degradation resistance of thematerial in

comparison to LaNi5 [13e16]. The resulting ternary system,

LaNi5�xSnx, orders in a CaCu5 (P6/mmm) crystalline structure.

Sn atoms replace Ni in 3g sites up to the reported solubility

limit of this element at around 8 at.% Sn (LaNi4.6Sn0.4) [17,18].

Due to the fact that the atomic radius of Sn is 30% larger than

that of Ni, the substitution is associated with the introduction

of crystalline defects, mainly stacking faults and twins, in

order to accommodate the resulting lattice distortion [19]. The

formation of the full hydride, LaNi5�xSnxH6, reduces the

structure symmetry to P6mm. Hydrogen atoms occupy all 3c

sites and a fraction of 6e1, 6e2 y 2b sites [20]. It has been re-

ported that the relative occupation of these sites varies be-

tween the hydride formation and hydride dissolution

processes [20].

Thermodynamic data have been reported by different re-

searchers for LaNi5�xSnx alloys in the Sn range from 0 to 0.5 at.

[13,21,22]. In all cases, the results show that both the equi-

librium pressure and hysteresis decrease by increasing the

amount of Sn in the alloy. Luo and coworkers presented re-

sults obtained from carefully made alloys in a series of papers

[14,15,23] showing the variation of equilibrium pressures and

lattice parameters with Sn content and temperature. These

researchers have also studied the differences between the first

hydriding cycle (so-called activation cycle) and the second

cycle for samples containing 0e0.5 at. Sn [23]. The results

indicate that these alloys activate on their first hydriding

stage. Moreover, the difference between the first and second

absorption pressures strongly decreases with increasing Sn

content. This difference could be related to the formation of

interfaces and the entropy change due to crystal defects

generation [23].

Laurencelle et al. presented absorption kinetics results for

LaNi4.8Sn0.2 [16]. The activation procedure consisted, as usual,

in placing a sample in contact with hydrogen while recording

the pressure drop. By presenting themeasurement of pressure

drop versus time, these authors reported an incubation time

of around 30 min. After this activation procedure, they

measured reaction kinetics at different temperatures between

23 �C and 80 �C. During the absorption stage, the initial

hydrogen pressure was adjusted in order to keep a constant

driving force level. Under these conditions, the reported ab-

sorption kinetic coefficients are almost temperature inde-

pendent. On the other hand, desorption kinetics

measurements were all performed at the same pressure level

(0.1 bar), leading to an increment in kinetic coefficients with

the increment in temperature, which is at least partially due

to the corresponding driving force increase. A study by Sato

et al. [24] identified H diffusion as the limiting step for

desorption kinetics. Up to the best of our knowledge, these are

the only studies reporting LaNi5�xSnx alloys absorption and

desorption kinetics.

We are considering the use of these alloys for an on-site

hydrogen separation application. We found that, although

there are reports about equilibrium pressures and heat of re-

action for LaNi5�xSnx alloys, there is an important lack of data

on the alloys reaction kinetics and dynamic behavior which

would be necessary for designing and implementing applica-

tions.We are interested in studying the behavior of LaNi5�xSnx

alloys under dynamic hydriding/dehydriding conditions,

analyzing in particular possible variations of equilibrium

pressures. As we mentioned before, hydrogen reaction pres-

sures reported by previous studies correspond to quasi-static

equilibrium measurements. Although this is valuable infor-

mation from the point of view of thermodynamics and basic

materials research, in actual applications quasi-static condi-

tions are rarely met. It is then important to know how equi-

librium parameters change under dynamic conditions. In

addition, we only have information about the kinetics of

hydrogen absorption and desorption for one particular

LaNi5�xSnx alloy [16]. We would like to increase the existing

data base, while considering a situation where a container

with a given hydrogen pressure at the beginning is being

depleted of gas by the hydride formingmaterial. This situation

closely resembles an actual application where an alloy is part

of a hydrogen sequestration device. This paper is then aimed

at providing additional experimental data on the hydrogen

reaction kinetics of the LaNi5�xSnx system and further

exploring its behavior under dynamic absorption/desorption

conditions.

2. Experimental procedure

We have prepared LaNi5�xSnx alloys by arc melting pure La

(99.9%), Ni (99.95%) and Sn (99%) several times on a water-

cooled Cu crucible under Ar atmosphere. In each case, we

added 5% to the Sn calculated weight in order to compensate

evaporation during themelting process. The furnace chamber

was first evacuated to a final pressure of 5 � 10�3 kPa and

subsequently purged three times with 40 kPa Ar each. Pure

elements were first joined using a low discharge voltage and

later melt at full power in 7 steps. Each melting step lasted

about 3min. After each step, the alloy buttonswere left to cool

down and then turned upside down using a manipulator. A

final melting step at low power was applied in each case in

order to level the button surface. The resulting alloys, buttons

weighting 10e12 g, were encapsulated in quartz under an Ar

atmosphere and heat treated for 48 h at 1223 K in a muffle

furnace. The encapsulated alloys were then left to slowly cool

down inside the furnace. Each button was finally weighted in

order to control possiblematerial loss. In order to characterize

its interaction with hydrogen, each button was mechanically

broken into pieces of about 0.2 g, while exposed to air for about

30 min.

Chemical analysis was performed on samples from each

alloy by means of atomic absorption spectroscopy (AAS).

Table 1 presents the results, together with the alloy designa-

tion that will be used from this point on in this paper.

In order to determine structural parameters, powder

samples were measured at room temperature by X-ray

diffraction (XRD) using a PC controlled Philips PW3710

diffractometer in qe2q geometry with Cu Ka radiation at 40 kV.

The receiving slit size was 0.1 mm, the step was 0.02� and the

exposition time was 1 s by step. The scanned 2q angles ranged

from 10� to 90�.
Hydrogen reaction experiments on samples of about 1 g

were performed using a modified Sieverts volumetric equip-

ment designed and built at our laboratory [25]. The equipment

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 8 ( 2 0 1 3 ) 7 3 3 5e7 3 4 37336
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allows characterizingmaterials in the pressure range between

0 kPa and 10,000 kPa at a temperature in the range between

293 K and 823 K. The design includes a 0e20 sccm program-

mable mass flow controller that regulates the amount of

hydrogen that enters and exits a 304L steel sample holder. The

sample holder temperature is measured by means of a Pt-100

sensor placed in contact to its outer wall. Differences between

the holder outer and inner temperatures were corrected by

applying an experimentally determined calibration curve. In

each case, measurements were started at least 20 min after

the holder temperature stabilized. Experiment control and

data acquisitionwere performed by using a dedicated PC and a

computer program developed in MS Visual Basic. Dynamic

pressureecomposition isotherms (PCT) were measured by the

mass-flow method reported by Bielmann et al. [26]. Hydrogen

flowwas set to 2 sccm for a sample holder free volume around

10 cm3. Absorption kinetic measurements were performed by

recording the pressure drop (of about 1 bar in the given con-

ditions) at constant volume. During the desorption process

pressurewould rise, stopping the reaction. For this reason, the

desorption volume was evacuated when necessary in a

controlled manner. As a result, the pressure is always kept

below a fixed value.

In order to characterize the materials interaction with

hydrogen, we started each experiment by performing an

activation procedure. This procedure consisted in placing

each sample under a hydrogen pressure of 1000 kPa at 313 K

for approximately 40 min. The whole set of samples con-

taining Sn were successfully activated in this way. However,

activation did not take place for the sample Sn00 (LaNi5) even

after 24 h under the same conditions. For this reason, we used

a standard thermal cycling activation procedure for the latter

sample. It consisted on one thermal cycle between 380 K and

300 K at a pressure of 6000 kPa after which the sample readily

reacted with hydrogen. The morphology of powder samples

after activation was observed with a Philips 515 scanning

electron microscope (SEM) operating at 30 kV.

3. Experimental results and discussion

3.1. Structural parameters

XRD results indicate the presence of a single phase ordered

according to a P6/mmm symmetry for all samples. The lattice

parameters calculated fromXRDmeasurements of LaNi5�xSnx

alloys after heat treatment are presented in Fig. 1(a) and (b), a

and c being the cell side length and height, respectively.

Values reported by Wasz et al. [27] and Luo et al. [23] are also

included in the figures. As it was previously found by these

groups, both lattice parameters increase when the amount of

Sn in the alloys is increased. Present data for parameter a

closely agree with results from Ref. [23], these two sets of re-

sults being higher than measurements presented in Ref. [27].

In the case of parameter c, present results are slightly higher

than the values previously reported by both groups of re-

searchers [23,27], except for the LaNi5 result which is similar

to that measured by Luo et al. [23]. The unit cell volume line-

arly increases with increasing Sn content (Fig. 1(c)). In coin-

cidence with the report from Ref. [23], present values do not

deviate from the linear tendency at higher Sn contents up to

x ¼ 0.51, suggesting that the solubility limit has not been

reached at this point. We found no significant difference be-

tween the cell parameters of samples before and after

activation.

3.2. Sample activation

The activation of sampleswas performed in theway described

in Section 2. We recorded the sample holder pressure

Table 1 e Designation, nominal composition and
measured chemical composition of the studied alloys.
Values, expressed in atoms per unit formula, were
measured by atomic absorption spectroscopy.

Alloy
designation

Nominal
composition

La (at.) Ni (at.) Sn (at.)

Sn00 LaNi5 Bal. 5.00 0.00

Sn01 LaNi4.85Sn0.15 Bal. 4.82 0.18

Sn02 LaNi4.75Sn0.25 Bal. 4.73 0.27

Sn03 LaNi4.65Sn0.35 Bal. 4.66 0.34

Sn04 LaNi4.55Sn0.45 Bal. 4.55 0.45

Sn05 LaNi4.50Sn0.50 Bal. 4.49 0.51

Fig. 1 e Structural parameters of LaNi5LxSnx alloys

calculated from XRD measurements as a function of Sn

content. Results from Wasz et al. [27] and Luo et al. [23] are

included. The cell geometry is hexagonal. (a) Lattice

parameter a, corresponding to the hexagonal cell side

length. (b) Lattice parameter c, corresponding to the cell

height. (c) Volume per unit cell.
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evolution as a function of time during the activation proce-

dure. Fig. 2(a) shows the activation curves for samples con-

taining Sn. In all cases, activation took place in two stages. In

the first one, immediately after the samples were placed

under activation conditions, there is an incubation process.

During this stage the pressure remained stable and hydrogen

intake by the samples was not detected. After this incubation

stage, samples started absorbing hydrogen up to a point

where the pressure stabilizes again. The observed trend dur-

ing this second stage is to decrease the total amount of

absorbed hydrogen with the increment in Sn content.

Although the incubation process was observed in all of the

samples under study, it is difficult to precisely establish an

incubation time for each alloy because there are important

variations from sample to sample, even for the same alloy.We

observed a loose correlation indicating that an increase in the

substitution level leads to a decrease in the incubation time,

as illustrated in Fig. 2(a). However, the incubation times

shown in the figure should be regarded with caution because

they strongly depended on each sample surface conditions at

the beginning of the experiments. These conditions depend

on a number of factors such as air exposure time before

activation [28].

After a sample was subjected to the activation process

described above, the incubation stage was no longer observed.

As an example of this behavior, Fig. 2(b) shows hydrogen ab-

sorption stages during and after activation for sample Sn04.

While the incubation process roughly takes 300 s during the

activation cycle, hydrogen intake occurs immediately during

subsequent cycles. It is also remarkable that the sample rea-

ches the same final hydrogen concentration after these two

absorption stages, indicating that the sample reaches its full

hydride condition during its first absorption. Further hydrid-

ing processes closely resemble the behavior shown for the

activated absorption stage.

We have performed SEM observations of samples corre-

sponding to all the alloys under study after 3 hydrogen ab-

sorption/desorption pressure cycles. Images shown in Fig. 3

correspond to alloy Sn02, but the main features were also

observed in all other samples. Fig. 3(a) is a low magnification

image showing a general view of the activated material. As a

result of the activation process, the mean particle size went

from about 2 mm to 20 mm. Some relatively large chunks of

material can still be seen in the picture with a size around

150 mm. Fig. 3(b) is a close up on the central part of the area

shown in Fig. 3(a), which includes one of these bigger parti-

cles. Most of the particles in the image havewell defined edges

and smooth faces, which suggests they were formed by brittle

fracture from larger pieces. Fig. 3(c) shows a detail of the

surface of the large particle at the center of Fig. 3(b). Two

important features can be observed in this figure. First, what

appears as a big particle at low magnification (see the center

area of Fig. 3(b)), is actually severely cracked. The bigger par-

ticle is composed of smaller pieces with a size in the micro-

meter range. This is a classic feature observed in AB5materials

in the as-activated state and it is usually associated to the

generation of fresh surface during activation.

In this sense, the evidence of this early decrepitation pro-

cess can be related to the fast activation process observed in

LaNi5�xSnx alloys (Fig. 2). The second important feature visible

in Fig. 3(c) is the presence of cleavage lines on the surface. The

lines follow two well defined directions in most of the pieces

and form a step-like pattern. The presence of these marks

provides additional evidence of the brittle character of the

fracture process that gave place to these particles.

3.3. Pressureecomposition isotherms

Fig. 4(a) and (b) shows examples of the absorption branch of

dynamic PCT measurements at different temperatures for

alloys Sn01 and Sn05, respectively. These results illustrate the

behavior of materials with relatively low and high Sn content.

The graphs show that a small amount of hydrogen is incor-

porated to the system at the beginning of the measurements,

up to about 0.05 wt.% H, at very low pressure (up to 30 kPa).

The dynamic measurement procedure used in this work

essentially integrates the incoming hydrogen flux as detected

by a calibrated flow controller. Similar experiments performed

with an empty reactor using the same procedure do not show

this kind of signal, so it does not seem to be an experimental

artifact. As these initial parts do not play a role on the ther-

modynamic data extracted from the measurements, they

were left as measured although we still cannot provide a clear

physical explanation about their origin.

In the case of alloy Sn01 (Fig. 4(a)), the dynamic equilibrium

pressure increases from 189 kPa at 300 K up to 2530 kPa at

410 K. As a result, the equilibrium pressure increases about 13

times for 110 K temperature difference. On the other hand,

alloy Sn05 has a dynamic equilibrium pressure of 8.5 kPa at

room temperature, and a corresponding equilibrium pressure

Fig. 2 e (a) Hydrogen intake as a function of time for the activation stages of samples containing Sn. (b) Comparison between

the first activation stage and the fourth hydriding stage for a Sn04 sample.
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ratio over 30:1 at 410 K. This ratio is very high compared to

other AB5 alloys. From the point of view of applications, this

particular alloy can absorb hydrogen below ambient pressure

at room temperature, while desorption pressure could be as

high as 270 kPa if the temperature were increased by 110 K.

Fig. 5(a) presents dynamic absorption isotherms measured

at 355 K for the alloys under study. Fig. 5(b) shows the results

corresponding to the absorption isotherms of all samples

under study at different temperatures. The equilibrium pres-

sure and hydrogen storage capacity decrease with the incre-

ment of Sn amount in the alloy, both in agreement with

previous reports [14,23,29]. The results show a linear trend

between the pressure logarithm and Sn content, reflecting the

linear dependence found between the reaction enthalpy and

amount of Sn. Themain outcome of present results is that the

dynamic equilibrium pressure at room temperature can be

selected in a wide interval from 250 kPa to 8.5 kPa, simply by

controlling the Sn concentration in the material. This feature

is useful from the point of view of applications because it al-

lows tailoring the material reaction with hydrogen in order to

meet specific design requirements.

Fig. 6(a) and (b) are Van’t Hoff plots presenting the dynamic

equilibrium pressure measurements for the whole set of al-

loys as a function of temperature for hydrogen absorption and

desorption, respectively. Dynamic equilibriumpressureswere

evaluated at the center of the plateau for each sample.

Remarkably, all studied alloys containing Sn reacted with

hydrogen at pressures below atmospheric pressure at room

temperature. Individual data sets can be fit using the Van’t

Hoff expression:

Rln P ¼ DH=Tþ DS (1)

Here, R is the ideal gas constant, P is the dynamic equilib-

rium pressure, DH is the reaction enthalpy, T is the tempera-

ture and DS is the entropy change. Applying Eq. (1) to

experimental data sets, we have obtained the values pre-

sented in Table 2.

Although Luo and coworkers pointed out that isotherms

measured at temperatures above 300 K are less reliable for

precise determination of enthalpy and entropy values [24],

those obtained in thiswork are in agreementwith their results

[14] within the margin of experimental error. Entropy values

show a larger dispersion than values obtained by Luo et al.

[14], as shown in Fig. 7(a). A linear fit of current data is

included in Fig. 7(a) to show that values are independent of Sn

content. Themean value obtained, DS¼ 104 J/mol K, is slightly

lower than the value of DS¼ 108 J/mol K reported in [14] as the

average of several samples. The estimated error margin for

this latter averagewould be at least of�4 J/mol K [14]. It should

also be noted that while Luo et al. defined the equilibrium

pressure as that taken at a fixed hydrogen content (H/AB5 ¼ 3)

for all temperatures and samples, we decided to use the

standard criterion of taking the equilibrium pressure as that

corresponding to the middle of the plateau. This criterion

leads to consistently lower pressure values. As a result, pre-

sent entropy values are lower than those reported in [14] but

still within the margin of experimental error.

Enthalpy values presented in Table 2 are plotted in Fig. 7(b)

together with those values reported by Luo et al. [14]. The

enthalpy linearly increases with the increment in Sn content.

A similar trend was previously informed in [14]. Present re-

sults are within the margin of error with respect to those

literature values, although showing a larger difference be-

tween absorption and desorption. This effect is probably

related to the dynamic nature of the measurement technique

which involves a certain degree of indetermination in the

sample temperature.

Hysteresis values are calculated using the following

expression [30]:

HysT ¼ 1=2RTln ðPa=PdÞ (2)

, where Pa and Pd are the hydrogen absorption and desorption

equilibrium pressures, respectively. Hysteresis values pre-

sented in Table 2 were calculated for T ¼ 355 K. Present hys-

teresis values are higher than those reported by Luo et al. [14].

This difference canbe rationalized by considering thedynamic

character of present absorption/desorption measurements.

Hysteresis values are lower for alloys containing Sn than

for LaNi5. Considering the Van’t Hoff expression (1), hysteresis

in hydride forming systems can be related to an enthalpy

difference between the hydrogen absorption and desorption

stages. The corresponding energy difference is, at least in part,

available to produce the plastic deformation in the material

that accommodates the volume difference between the metal

and hydride phases [19,31,32]. In the case of LaNi5 the internal

stresses involved in the phase transformation are very high,

stabilizing an intermediate b phase [33] that has not been

observed in LaNi5�xSnx alloys [15,34]. Fultz et al. [29] have

Fig. 3 e SEM pictures of sample Sn02 after 3 activation cycles. (a) General view. The material is distributed in particles with

sizes around 20 mm (b) Close up of the central area of picture 3a. Particles show sharp edges and apparent cracking. (c)

Central area of picture 3b, as seen with higher magnification. Particles are heavily cracked. Resulting pieces have sizes

ranging from 1 mm to 5 mm. Cleavage lines are also apparent on the surface of the particle.
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shown that during the hydriding process, internal hydrogen

distribution is more homogeneous for the ternary alloys

containing Sn than in LaNi5. As a consequence, internal

stresses are expected to be lower in ternary alloys, which

would explain the fact that vacancy formation is two orders of

magnitude lower in these alloys compared to LaNi5 [35].

3.4. Reaction kinetics

Fig. 8(a) and (b) shows the results from reaction kinetics

measurements at 316 K in the absorption and desorption

stages, respectively. These results can be regarded as opera-

tional information, for all samples were measured under the

same initial pressure and temperature conditions. During the

absorption stage the initial pressurewas set at 750 kPa and the

resulting final pressure was around 630 kPa for all samples.

Absorption kinetics improve with the addition of Sn, mainly

due to the increased driving force resulting from the differ-

ence between the external initial pressure and the equilibrium

pressure for each case. All Sn containing alloys are hydrided

after 60 s. In particular, alloys Sn04 and Sn05 are completely

hydrided after 30 s.

In the case of desorption measurements the pressure was

kept below 5 kPa by evacuating an intermediate volume when

necessary. This procedure introduces a slight but visible ripple

in the curves corresponding to alloys with higher Sn contents,

due to their lower equilibrium pressure. Desorption kinetics

decrease as the amount of Sn in the alloys increases. Once

again, this observation is associated to the driving force dif-

ference resulting from the externally set pressure and each

alloy equilibrium pressure.

Laurencelle et al. [16] analyzed kinetic results in terms of a

shrinking plate model characterized by an exponential

dependence of the type xr ¼ (1 � e�kt), where xr corresponds to

the reacted fraction, k is the kinetic coefficient and t is the

elapsed time. After Ron [36], the kinetic coefficient depends on

the temperature (T ) and the initial pressure (P), and it can be

expressed in terms of an activation energy Ea, a reaction rate

constant k0 and the equilibrium pressure measured at the

middle of the reaction plateau (P1/2) at the same temperature:

k ¼ k0

�
�
�
�

P� P1=2

P1=2

�
�
�
�
e�

Ea
RT (3)

Values for k reported by Laurencelle et al. were determined

directly from the kinetic curves by measuring the time at

which half the material had reacted with hydrogen (t1/2) and

then using the relation: k ¼ ln(2)/t1/2. A similar procedure was

applied to present results in order to calculate k coefficients

for each alloy (Table 3). Although a shrinking plate model

could be an over simplification, we can compare current re-

sults to those reported by Laurencelle et al. for a LaNi4.8Sn0.2

alloy [16]. Alloy Sn01will be used as a basis for the comparison

as it has a similar chemical composition to the reported ma-

terial. Measured values cannot be directly compared because

Fig. 4 e Absorption branch of dynamic PCT measurements at different temperatures for alloys: (a) Sn01 and (b) Sn05.

Fig. 5 e (a) Dynamic hydrogen absorption isotherms at 355 K corresponding to all the alloys studied in this work. (b)

Dynamic equilibrium pressure as a function of the Sn content of LaNi5LxSnx alloys at different temperatures. Lines have

been added as a guide to the eye. Solid line and symbols correspond to the curves shown in (a).
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Laurencelle et al. applied in absorption an initial hydrogen

pressure of 340 kPa while, for a similar alloy, we applied

750 kPa. In desorption they used 10 kPa while 5 kPa were

applied in this work. However, by using Eq. (3) and the values

reported by Laurencelle et al. for Ea, k0 and P1/2 in absorption

and desorption, results can still be compared. Table 3 includes

k values calculated from Laurencelle et al. results for 313 K and

750 kPa in absorption, and 5 kPa in desorption.

In the case of the absorption stage, the current value for

kabs is close to that calculated from Laurencelle et al. fits of

their kinetic results. However, the desorption kinetics re-

ported here is considerably faster. A possible explanation for

this difference resides in the different procedure necessary for

performing kinetic measurements in absorption and desorp-

tion. In one hand, the absorption stage kinetic measurements

can be performed essentially in one step by placing enough

hydrogen to completely hydride the sample inside the reactor.

On the other hand, during desorption the pressure increased

abruptly at the beginning as the samples release hydrogen.

This sudden increase affects the desorption kinetics as the

reactor free volume is filled with hydrogen, and it coincides

with the part of the desorption curves from where kdes values

are determined. As we used a lower initial pressure, and

considering similar reactors and sample sizes, this could

Fig. 6 e Van’t Hoff plots of measured dynamic equilibrium pressures as a function of the temperature for LaNi5LxSnx alloys.

Black symbols are measured values and lines represent the corresponding least-squares linear fits using Eq. (1). (a)

Hydrogen absorption results. (b) Hydrogen desorption results.

Table 2 e Reaction enthalpy (DH ), entropy change (DS ) corresponding to hydrogen absorption (ABS) and desorption (DES)
processes, and reaction hysteresis (Hys) for LaNi5LxSnx.

Alloy DHABS (kJ/mol H2) DSABS (J/K mol H2) DHDES (kJ/mol H2) DSDES (J/K mol H2) Hys355 K (J/mol H2)

Sn00 29 � 2 107 � 7 32 � 2 114 � 7 438

Sn01 32 � 2 105 � 7 35 � 2 110 � 7 362

Sn02 33 � 2 105 � 7 34 � 2 107 � 7 173

Sn03 35 � 3 108 � 10 37 � 5 113 � 15 334

Sn04 34 � 3 98 � 9 37 � 3 104 � 9 197

Sn05 36 � 5 97 � 13 40 � 5 107 � 15 302

Fig. 7 e (a) Entropy values versus Sn content, calculated from Van’t Hoff plots according to Eq. (1). The line corresponds to a

linear fit of the data. Values from Luo et al. [14] have been included for comparison. (b) Enthalpy values versus Sn content,

calculated from Van’t Hoff plots according to Eq. (1). The solid and dotted lines correspond to linear fits of absorption and

desorption data, respectively. Values from Luo et al. [14] have been included for comparison.
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explain the observed difference. In addition, and by following

a similar argument, current kdes values for the samples con-

taining higher amounts of Sn (Sn04 and Sn05) are probably

affected by the measurement procedure and should be

regarded as approximate.

An improvement in the reaction kinetics due to the intro-

duction of Sn in place of Ni is expected to result from the

deformation associated to the lattice expansion produced by

Sn (Fig. 1) and its positive influence on H2 diffusion on the

material surface and in the bulk [37,38]. However, under fixed

initial pressure conditions such as those used in this work the

dominant effect is given by the driving force associated to the

pressure difference, which is larger for higher substituted al-

loys in absorption and the opposite in desorption. Quantifi-

cation of the effect of the different mechanisms responsible

for the observed kinetics needs further examination and is the

subject of ongoing research.

4. Conclusions

LaNi5�xSnx alloys with 0 � x � 0.5 were successfully prepared

by arc melting and their structure and microstructure char-

acterized bymeans of X-ray diffraction and SEM observations.

Sn containing alloys readily reacted with hydrogen after a

single step activation process. Dynamic equilibrium absorp-

tion and desorption pressures were measured. The substitu-

tion of Ni by Sn results in a lower equilibrium pressure.

Moreover, absorption kinetics is increased by increasing the

amount of Sn in the material. This last effect is partially

related with the increased driving force related to the differ-

ence between the external pressure and the equilibrium

pressure. Research is being performed to identify the kinetics

determining mechanism. From the point of view of applica-

tions in hydrogen sequestration systems, alloys containing Sn

in the range 0.2 � x � 0.4 are good candidates for their use in

devices due to their low dynamic equilibrium pressure and

fast hydrogen absorption kinetics. The actual selection will

probably be limited by desorption kinetics and the final

pressure reached by the hydrogen evacuation system.
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